首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
OzoneVerticalProfileCharacteristicsoverQinghaiPlateauMeasuredbyElectrochemicalConcentrationCelOzonesondes①LiuQijun(刘奇俊),Zheng...  相似文献   

2.
The Pic 2005 field campaign took place from 13 June to 7 July 2005 close to the high-altitude permanent atmospheric observatory Pic-du-Midi (PDM), situated at 2875 m asl in the French Pyrenees. The experimental set-up combined in situ ground-based observations at PDM with ozone lidar measurements at two lower sites in close vicinity (600 m asl/28 km away, and 2380 m asl/500 m away). Such an experimental configuration is appropriate to address the question of the vertical layering of the chemical atmosphere in a mountain area and above the plain nearby, and how this influences measurements conducted on a mountain summit under the influence of horizontal transport at regional scale, and vertical transport at local scale. Forecast tools made it possible to plan and carry out 6 one-day Intensive Observation Periods (IOPs), mostly in anticyclonic conditions favoring local thermally induced circulations, with and without local pollution in the lower troposphere.It was thus possible to document i) ozone diurnal variations at PDM; ii) correlation between ozone measurements at PDM and their counterparts at the same altitude in the free troposphere; iii) ozone variability in the vicinity of PDM.The field campaign provided direct experimental evidence that at daytime in the encountered conditions (mostly anticyclonic), PDM failed in a large extent to be representative of the troposphere above the surrounding flat areas at similar altitude. First, ozone daily averages at PDM were found lower than their free-tropospheric counterpart. Thermally induced circulations and convection pumping clean air from the rural boundary layer can account qualitatively for ozone depletion observed at PDM during daytime. However the surface measurements do not support the hypothesis of direct lifting of near-surface air masses up to PDM. Thus, mixing with free-tropospheric air, photochemistry and surface deposition in the valleys appear to be needed ingredients to account quantitatively for the observed variations (in proportions that further studies should determine). Second, ozone variability was found to be much lower at PDM than in the free troposphere—again an indication of atmospheric mixing. In particular at daytime, the PDM observatory did not allow for detection of ozone-rich layers simultaneously visible above the plain. Beyond these first results, the data set presented here paves way to detailed studies of the IOPs.  相似文献   

3.
Results of simultaneous balloon and acoustic sounding in the lower troposphere (in the surface layer up to 800 m) carried out in Velikie Luki in May–June 2002 jointly by the Moscow State University (MSU) and Central Aerological Observatory (CAO) are discussed. During the experiment, the tethered (captive) balloon for measuring air temperature and ozone partial pressure was ascended and descended 15 times. Simultaneously, gradient measurements were performed at a 4-m tower. During the intervals between ascents, the temperature stratification was determined by using the Ekho-1 sodar data. A dominating influence of temperature stratification and of some weather events on the ozone distribution with altitude is shown. In case of unstable stratification, its partial pressure is almost unchanged within the entire lower troposphere; in case of surface inversion, the ozone decrease is observed near the surface. In case of elevated inversion the ozone partial pressure is almost the same both below inversion and above it; in the layer of the inversion itself, it increases spasmodically with the altitude. Synoptic conditions largely influence the stratification regime: under conditions of the Arctic air mass, the thermal convection is observed more often and surface inversions are observed more rarely than when the local mass dominates. Artificial dynamic mixing can lead to the surface inversion dissipation in several minutes.  相似文献   

4.
During two measuring campaigns in early spring 1994 and 1995 (March/April) and one campaign in summer 1994, measurements of ozone, PAN, sulfur dioxide, nitric acid, and particulate nitrate, sulfate, and ammonium (only 1995) were recorded in the Arctic. Observations were made by aircraft at various sites in the eastern and western Arctic. Ozone concentrations showed a steady increase with altitude both in spring and summer. During five flights in springtime, low ozone events (LOEs) could be observed near the surface and up to altitudes of 2000 m. SO2 background concentrations, ranging from detection limit (0.5 nmol/m3) to 5 nmol/m3, were observed during both spring and summer. Distinct maxima up to 55 nmol/m3 in lower altitudes were only obtained in springtime. Concentrations of the organic nitrate PAN were within a similar range as those of the inorganic nitrate HNO3 during spring campaigns. In contrast, concentrations of particulate nitrate were one half an order of magnitude lower. HNO3 concentrations increased significantly with altitude. Evidently, HNO3 was intruded from the stratosphere into the troposphere. Sulfate concentrations ranged between 5 and 30 nmol/m3; ammonium concentrations were obtained within a range from 10 to 50 nmol/m3.  相似文献   

5.
利用南极大陆沿岸中山站2008-2013年的地面臭氧连续观测数据和相关资料,对地面臭氧损耗事件(ODE)进行研究。结果显示,春季南极中山站常发生臭氧损耗事件。在该事件发生期间,气象要素有明显的突变过程,包括气温明显下降,风向由偏东风转变为偏北风,风速随之下降。来自海冰区的偏北风增多,风速很小,使臭氧浓度维持在较低水平。地面臭氧损耗事件主要与南极沿岸海冰区的活性溴(BrO)浓度有关。春季南极大陆沿岸海冰冻融过程中形成的冰间水道和冰间湖,在低温的作用下会再次冻结,形成薄冰和霜花。卫星资料能够观测到薄冰区释放的活化海盐溴高浓度区,活性溴与臭氧发生化学反应形成地面臭氧损耗事件。臭氧损耗现象是在未受到人为影响的自然状态下发生的,与中高纬度地区光化学反应导致臭氧消耗有所不同。   相似文献   

6.
拉萨地区1998年夏季臭氧总量及垂直廓线的观测研究   总被引:9,自引:4,他引:9       下载免费PDF全文
该文根据1998年6~10月上旬在拉萨地区进行的臭氧总量及臭氧垂直廓线的观测结果, 并结合同期同纬度其他两个臭氧站数据资料, 证实了以拉萨地区为代表的青藏高原在夏季存在“臭氧低谷”的现象.分析表明, 地基和卫星观测的臭氧总量有一定误差. Umkehr观测反演结果表明夏季拉萨地区平流层臭氧分布和同纬度其他地区相比略有不同; 在对流层, 探空资料显示了该地区对流层臭氧有低值分布的特征.  相似文献   

7.
利用探空资料验证GOME卫星臭氧数据   总被引:2,自引:0,他引:2       下载免费PDF全文
利用1996年3月-2003年6月部分时段拉萨、西宁、北京3个站的臭氧探空资料验证了GOME(Global Ozone Monitoring Experiment)卫星臭氧廓线及对流层臭氧柱总量。对比结果表明:在对流层中下层,拉萨和西宁两地GOME与探空的平均偏差小于5%,北京地区平均偏差小于10%;在对流层上层/平流层下层,拉萨和西宁平均偏差小于10%,北京小于20%;在平流层中上层3个站的平均偏差均小于5%。在对流层上层/平流层下层区域,GOME与臭氧探空的平均偏差在北京明显高于拉萨和西宁。3个地区对流层柱总量的平均偏差都在10%以内,表明该资料可用于研究我国对流层臭氧总量的变化规律。同时段的GOME最低层(0~2.5km)月平均臭氧浓度对比结果显示,GOME结果同地面臭氧观测值有很好的相关性,GOME臭氧浓度反映了拉萨、瓦里关、临安地面臭氧浓度的主要变化特征。  相似文献   

8.
我国北方地区对流层中下层臭氧收支   总被引:1,自引:0,他引:1       下载免费PDF全文
为了揭示我国北方地区对流层中下层臭氧(O3) 的形成机理以及周边地区的污染输送对我国北方地区对流层中下层O3收支的影响, 在与外场观测数据比较分析的基础上, 利用全球化学输送模式(MOZART-2) 采用收支分析方法定量分析了影响我国北方地区对流层中下层O3的各个物理化学过程。结果表明:我国北方地区对流层下层O3最重要的来源是光化学生成作用, 约占总来源的58.3%(41.5 Tg), 光化学生成反应中HO2对于O3生成的贡献最大; 最大的汇是干沉降过程, 约占总汇的43.2%(26.2Tg); 水平净输送作用对我国北方地区对流层中下层O3收支的影响非常大, 在我国北方地区对流层下层, 41.6%左右的O3来自水平净输送, 随高度增加, 水平输送影响增大, 我国北方地区对流层中层大约81.5%的O3来自水平净输送。  相似文献   

9.
Using radiosonde and satellite observations, we investigated the trends of air temperature changes over the Tibetan Plateau (TP) in comparison with those over other regions in the same latitudes from 1979 to 2002. It is shown that Over the TP, the trends of air temperature changes in the upper troposphere to lower stratosphere were out of phase with those in the lower to middle troposphere. Air temperature decreased and a decreasing trend appeared in the upper troposphere to lower stratosphere. The amplitude of the annual or seasonal mean temperature decreases over the TP was larger than that over the whole globe. In the lower to middle troposphere over the TP, temperature increased, and the increasing trend was stronger than that over the non-plateau regions in the same latitudes in the eastern part of China. Meanwhile, an analysis of the satellite observed ozone data in the same period of 1979-2002 shows that over the TP, the total ozone amount declined in all seasons, and the ozone depleted the most compared with the situations in other regions in the same latitudes. It is proposed that the difference between the ozone depletion over the TP and that over other regions in the same latitudes may lead to the difference in air temperature changes. Because of the aggravated depletion of ozone over the TP, less (more) ultraviolet radiation was absorbed in the upper troposphere to lower stratosphere (lower to middle troposphere) over the TP, which favored a stronger cooling in the upper troposphere to lower stratosphere, and an intenser heating in the lower to middle troposphere over the TP. Therefore, the comparatively more depletion of ozone over the TP is possibly a reason for the difference between the air temperature changes over the TP and those over other regions in the same latitudes.  相似文献   

10.
In this paper we present first-time measurements of ozone profiles from a high altitude station in Quito, Ecuador (0.19°S, 78.4°W, and 2391 masl) taken from June 2014 to September 2015. We interpret ozone observations in the troposphere, tropopause, and stratosphere through a zonal comparison with data from stations in the Atlantic and Pacific (Natal and San Cristobal from the SHADOZ network). Tropospheric ozone concentrations above the Andes are lower than ozone over San Cristobal and Natal for similar time periods. Ozone variability and pollution layers are also reduced in the troposphere above the Andes. We explain these differences in terms of reduced contributions from the boundary layer and from horizontal transport. In the tropical tropopause layer, ozone is well-mixed up to near the cold point tropopause level. In this regard, our profiles do not show constraints to deep mixing above 14 km, as has been consistently observed at other tropical stations. Total column ozone and stratospheric column ozone are comparable among the three sites. However, the contribution of tropospheric column ozone to total column ozone is significantly lower above the Andes. Our comparisons provide a connection between observations from tropical stations in equatorial South America separated by the wide continental mass. Identified differences in ozone throughout the atmospheric column demonstrate the global benefit of having an ozone sounding station at the equatorial Andes in support of global monitoring networks.  相似文献   

11.
利用ACTIVE(aerosol and chemical transport in tropical convection)试验资料,取2006年1月20日澳大利亚北部达尔文岛附近发生的一次飑线强对流天气的AE17航次和2006年1月27日无对流天气的AE21航次飞行路径中的探测资料,对澳大利亚达尔文地区夏季风盛行期间发生的有无强对流发生时O3和CO浓度垂直分布变化进行对比,考察强对流性天气发生对O3和CO浓度垂直输送作用。深对流云内强烈的垂直上升运动将O3和CO等化学气体携带输送至对流层上部并在对流层顶堆积,从而在对流层上部产生浓度峰值。当有强对流发生,飞机进入对流云上层时,O3浓度和CO浓度升高,O3和CO浓度变率增大,在对流层上部浓度出现峰值;当飞机飞出对流云时,O3和CO浓度相对较低,在对流云外出现谷值。在无对流发生的条件下O3和CO浓度相对较小,浓度变率也较小,无峰值产生。分析表明:O3和CO浓度分布不仅与强对流的垂直输送作用关系密切,且与气象要素垂直和水平分布以及动力输送过程密切相关。  相似文献   

12.
Summary  In the central region of Taiwan, ozone episodes occur most often during autumn. Two field experiments were conducted during the autumns of 1998 and 1999 to analyze the vertical profile of the boundary layer and determine its effects on ozone concentration over the region. The vertical virtual potential temperature and wind profiles were derived from tethersonde data. The NOx, NMHC and O3 concentration vertical profiles were monitored up to a height of 500 meters using black-covered Teflon tedler sampling bags. During the experimental periods, nighttime terrestrial long wave radiation could cause the inversion height to reach 500 meters by the following morning. It was shown that these types of synoptic structures suppress the vertical diffusion of NOx, NMHC and O3. During the daytime, measurements indicate that pollutants were well mixed in the upper portion of the mixing layer. At night, the ground level ozone concentration was on the decrease but increased with altitude to a height of 500 m. The NOx decreased with altitude whereas the NMHC showed no significant variations. Received April 13, 2000 Revised July 24, 2000  相似文献   

13.
Observations have shown highly variable ozone depletion over the Antarctic in the 2000s, which could affect the long-term ozone trend in this region as well as the global ozone recovery. By using the total column ozone data (1979-2011), interannual variation of the springtime Antarctic ozone tow is investigated, together with its relationship with the polar vortex evolution in the lower stratosphere. The results show that springtime Antarctic ozone depletion has continued in the 2000s, seemingly contradicting the consensus view of a global ozone recovery expected at the beginning of the 21st century. The spring Antarctic polar vortex in the lower stratosphere is much stronger in the 2000s than before, with a larger area, delayed breakup time, and greater longevity during 2000-2011. Fhrther analyses show that the recent continuation of springtime Antarctic ozone depletion could be largely attributed to the abnormal variation of the Antarctic polar vortex.  相似文献   

14.
During the summer (8 June through 3 September) of 2008, 9 ozone profiles are examined from Dakar, Senegal (14.75°N, 17.49°W) to investigate ozone (O3) variability in the lower/middle troposphere during the pre-monsoon and monsoon periods. Results during June 2008 (pre-monsoon period) show a reduction in O3 concentrations, especially in the 850–700 hPa layer with Saharan Air Layer (SAL) events. However, O3 concentrations are increased in the 950–900 hPa layer where the peak of the inversion is found and presumably the highest dust concentrations. We also use the WRF-CHEM model to gain greater insights for observations of reduced O3 concentrations during the monsoon periods. In the transition period between 26 June and 2 July in the lower troposphere (925–600 hPa), a significant increase in O3 concentrations (10–20 ppb) occur which we suggest is caused by enhanced biogenic NOX emissions from Sahelian soils following rain events on 28 June and 1 July. The results suggest that during the pre-monsoon period ozone concentrations in the lower troposphere are controlled by the SAL, reducing ozone concentrations through heterogeneous chemical processes. At the base of the SAL we also find elevated levels of ozone, which we attribute to biogenic sources of NOX from Saharan dust that are released in the presence of moist conditions. Once the monsoon period commences, lower ozone concentrations are observed and modeled which we attribute to the dry deposition of ozone and episodes of ozone poor air that is horizontally transported into the Sahel from low latitudes by African Easterly Waves (AEWs).  相似文献   

15.
Summary Long-term ozone recordings at different altitude levels, conducted in remote areas, can make a valuable contribution to an understanding of the background level of ozone, its periodical variations and possible long-term trends.The measuring stations (three high mountain stations between 740 and nearly 3000 m a.s.l. with small horizontal distance) are described together with recording and calibration procedures. Information is provided on the time history of all recordings since 1978, considering not only the annual means but also the monthly and 10-day means as a function of height. An analysis is presented of the annual variations which differ considerably in the respective height levels and—in three-dimensional diagrams—the correlation between daily and annual variation is shown as a function of height. Then follows a careful parameterization: analysis of the frequency distribution of the ozone concentration, correlation with relative humidity, relative sunshine duration, and temperature. It can be seen that the correlations are very different and partly inverse, depending on the altitude level.Many ozone profiles obtained between valley level and nearly 3000 m a.s.l. (cable car O3 radiosonde) give a picture of the typical ozone profile for different meteorological situations and for the case of stratospheric intrusions of ozone into the troposphere. The stratospheric contribution of ozone to the tropospheric ozone budget is discussed.Since obviously a very high photochemical production rate can be established for ozone in the lowest layer above ground (correlation of O3 with the daily variation of the sunshine duration) it was examined if this O3 variation might be caused only by horizontal transport of ozone from remote areas with high anthropogenic activity by the daily quasiperiodical currents near the ground. But this is not the case.The correlation between ozone concentration, other trace gases such as nitrogen-oxygen compounds and hydrocarbons is shown.With 29 Figures  相似文献   

16.
Local ozone production and loss rates for the arctic free troposphere (58–85° N, 1–6 km, February–May) during the TroposphericOzone Production about the Spring Equinox (TOPSE) campaign were calculated using a constrained photochemical box model. Estimates were made to assess the importance of local photochemical ozone production relative to transport in accounting for the springtime maximum in arctic free tropospheric ozone. Ozone production and loss rates from our diel steady-state box model constrained by median observations were first compared to two point box models, one run to instantaneous steady-state and the other run to diel steady-state. A consistent picture of local ozone photochemistry was derived by all three box models suggesting that differences between the approaches were not critical. Our model-derived ozone production rates increased by a factor of 28 in the 1–3 km layer and a factor of 7 in the 3–6 kmlayer between February and May. The arctic ozone budget required net import of ozone into the arctic free troposphere throughout the campaign; however, the transport term exceeded the photochemical production only in the lower free troposphere (1–3 km) between February and March. Gross ozone production rates were calculated to increase linearly with NOx mixing ratiosup to 300 pptv in February and for NOx mixing ratios up to 500 pptv in May. These NOx limits are an order of magnitude higher thanmedian NOx levels observed, illustrating the strong dependence ofgross ozone production rates on NOx mixing ratios for the majority of theobservations. The threshold NOx mixing ratio needed for netpositive ozone production was also calculated to increase from NOx 10pptv in February to 25 pptv in May, suggesting that the NOx levels needed to sustain net ozone production are lower in winter than spring. This lower NOx threshold explains how wintertime photochemical ozone production can impact the build-up of ozone over winter and early spring. There is also an altitude dependence as the threshold NOx neededto produce net ozone shifts to higher values at lower altitudes. This partly explains the calculation of net ozone destruction for the 1–3 km layerand net ozone production for the 3–6 km layer throughout the campaign.  相似文献   

17.
The results of lidar measurements of ozone profiles over Obninsk in the altitude range of 12–35 km in 2012–2016 are presented. Temporal variations in total ozone in the above altitude range and seasonal variations in the vertical distribution of ozone are considered. Basic attention is paid to the analysis of ozone profile variations on the daily and weekly scales. The backtrajectory analysis demonstrated that in most cases the formation of layers with low or high ozone values is explained by the direction of meridional advection. Cross-correlation coefficients for the variations in ozone and temperature relative to the current monthly mean variations are calculated. Rather high values of correlation coefficients (~0.4–0.6) are obtained for summer in the low stratosphere (100 and 160 hPa) and for winter in the upper troposphere (50 and 20 hPa). In general, variations in ozone profiles are consistent with available climatologic data.  相似文献   

18.
The reduction of ozone in the nocturnal residual layer by vertical mixing to the surface was investigated for several summer smog episodes on the Swiss plateau in the years 1990 and 1991. Using a limited data set of SODAR measurements and surface ozone concentrations, a parameterization of the ozone depletion in the nocturnal residual layer due to vertical mixing to the ground is proposed. This model is not intended to be physically complete but is rather simple with limited input information required. The nocturnal ozone reduction within the whole planetary boundary layer (nocturnal boundary layer plus residual layer) over the complex terrain of the Swiss plateau for the days investigated is between 20 and 50%.  相似文献   

19.
文中分析了 1996年 8月 1日发生在西宁 (36 .4 3°N ,10 1.4 5°E ,海拔 :2 2 96m)地区对流层异常臭氧次峰现象。观测资料揭示了高空低压槽东移是臭氧次峰的主要天气特征。三维后向轨迹计算表明 ,尽管代表臭氧次峰的气团可以追溯到中亚地区 ,但是明显的气团向下输送则发生在新疆、青海间的高空低压槽内。中尺度模拟进一步确认了对流层顶折叠和平流层向下输送是臭氧次峰出现的动力机制。臭氧次峰在对流层高度位置与准无辐散层有关  相似文献   

20.
The total ozone reduction in the Arctic during the winters of 1993/94 and 1994/95 has been evaluated using the ground-based total ozone measurements of five SAOZ spectrometers distributed in the Arctic and from number density profiles of a balloon-borne version of the instrument. The ozone change resulting from transport has been removed using a 3D Chemistry Transport Model (CTM) run without chemistry. A cumulative total ozone depletion at the end of winter in March of 18% ± 4% in 1994 and of 32% ± 4% in 1995 was observed within the polar vortex, and of 15% ± 4% in both years outside the vortex. This evaluation is not sensitive to the vertical transport in the model. The periods, locations and altitudes at which ozone loss occurred were tightly connected to temperatures lower than NAT condensation temperature. The maximum loss was observed at 50 hPa in 1994 and lower, 60-80 hPa, in 1995. Half of the depletion in 1994 and three quarters in 1995 occurred during the early winter, showing that a late final warming is not a prerequisite for large ozone destruction in the northern hemisphere. The timing, the geographical location and the altitude of the ozone losses are well captured by the 3D CTM photochemical model using current chemistry, but its amplitude at low sun during the early winter, is underestimated. The model simulations also capture the early season reductions observed outside the vortex. This suggests that the losses occurred in situ in the early winter, when low temperatures are frequent, and not later in March, when ozone is most reduced inside the vortex, which would be the case if leakage from the vortex was the cause of the depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号