首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
To analyse and invert refraction seismic travel time data, different approaches and techniques have been proposed. One common approach is to invert first‐break travel times employing local optimization approaches. However, these approaches result in a single velocity model, and it is difficult to assess the quality and to quantify uncertainties and non‐uniqueness of the found solution. To address these problems, we propose an inversion strategy relying on a global optimization approach known as particle swarm optimization. With this approach we generate an ensemble of acceptable velocity models, i.e., models explaining our data equally well. We test and evaluate our approach using synthetic seismic travel times and field data collected across a creeping hillslope in the Austrian Alps. Our synthetic study mimics a layered near‐surface environment, including a sharp velocity increase with depth and complex refractor topography. Analysing the generated ensemble of acceptable solutions using different statistical measures demonstrates that our inversion strategy is able to reconstruct the input velocity model, including reasonable, quantitative estimates of uncertainty. Our field data set is inverted, employing the same strategy, and we further compare our results with the velocity model obtained by a standard local optimization approach and the information from a nearby borehole. This comparison shows that both inversion strategies result in geologically reasonable models (in agreement with the borehole information). However, analysing the model variability of the ensemble generated using our global approach indicates that the result of the local optimization approach is part of this model ensemble. Our results show the benefit of employing a global inversion strategy to generate near‐surface velocity models from refraction seismic data sets, especially in cases where no detailed a priori information regarding subsurface structures and velocity variations is available.  相似文献   

2.
Multiparameter inversion for pre‐stack seismic data plays a significant role in quantitative estimation of subsurface petrophysical properties. However, it remains a complicated problem due to the non‐unique results and unstable nature of the processing; the pre‐stack seismic inversion problem is ill‐posed and band‐limited. Combining the full Zoeppritz equation and additional assumptions with edge‐preserving regularisation can help to alleviate these problems. To achieve this, we developed an inversion method by constructing a new objective function that includes edge‐preserving regularisation and soft constraints based on anisotropic Markov random fields and is intended especially for layered formations. We applied a fast simulated annealing algorithm to solve the nonlinear optimisation problem. The method directly obtains reflectivity RPP values using the full Zoeppritz equation instead of its approximations and effectively controls the stability of the multiparameter inversion by assuming a sectionally constant S‐ and P‐wave velocity ratio and using the generalised Gardner equation. We substituted the inverted parameters, i.e., the P‐wave velocity, the fitting deviation of S‐wave velocity, and the density were inverted instead of the P‐wave velocity, the S‐wave velocity, and the density, and the generalised Gardner equation was applied as a constraint. Test results on two‐dimensional synthetic data indicated that our substitution obtained improved results for multiparameter inversion. The inverted results could be improved by utilising high‐order anisotropic Markov random field neighbourhoods at early stages and low‐order anisotropic Markov random field neighbourhoods in the later stages. Moreover, for layered formations, using a large horizontal weighting coefficient can preserve the lateral continuity of layers, and using a small vertical weighting coefficient allows for large longitudinal gradients of the interlayers. The inverted results of the field data revealed more detailed information about the layers and matched the logging curves at the wells acceptably over most parts of the curves.  相似文献   

3.
三维复杂地壳结构非线性走时反演   总被引:2,自引:1,他引:1       下载免费PDF全文
中国大陆中西部乃至全球造山带普遍具有复杂地壳结构.随着矿产资源勘探和深部探测研究的深入,探测造山带及盆山耦合区下方地壳精细结构正逐渐成为当前面临的巨大挑战.人工源深地震测深方法正越来越清晰地揭示出不同构造域地壳速度结构的基本特征,然而传统的层状结构模型参数化方法难以准确描述复杂地质模型,通常情况下多忽略速度结构的精细间断面且采用层边界平滑处理,难以满足地壳精细结构成像的发展要求.针对上述困难,本文采用最近发展的块状结构建模方案构建三维复杂地壳模型,基于逐段迭代射线追踪正演走时计算方法,推导了走时对三角形界面深度以及网格速度的偏导数,开展了非线性共轭梯度走时反演方法研究.发展了利用直达波和反射波等多震相走时数据对界面深度和网格速度的多参数联合反演方法,并引人不同种类震相数据的权系数和不同类型参数偏导数归一化的方法.数值算例表明,基于块状结构的非线性共轭梯度走时反演方法适用于复杂地壳结构模型,在利用人工源走时数据反演复杂地壳精细结构领域具有良好的应用前景.  相似文献   

4.
地震波干涉偏移和偏移反演成像是近年来十分活跃的两个研究领域.干涉偏移提供了一个新的地震波数据成像工具,而偏移反演则提供了高逼近度地震成像.二者的共同目的是改善传统直接偏移方法的成像效果,展宽成像区域并提高成像的分辨率.本文研究干涉偏移方法和偏移反演方法对于地震成像效果的影响,探讨二者在提高成像分辨率上的异同.对于偏移反演,通过建立正则化模型,研究了预条件共轭梯度迭代正则化方法及改进措施,并通过绕射点模型数值模拟验证了该方法比直接偏移能够提高振幅的保真度和成像的分辨率.对于干涉偏移和偏移反演这两种方法,对层速度地震模型进行了数值模拟.结果表明干涉偏移和偏移反演成像方法比传统的偏移方法在成像效果上是更加有效的,因而对于实际的地震成像问题很有应用前景.  相似文献   

5.
—?A program package, called HYPOSAT, has been under development that attempts to use the maximum information possible to estimate the hypocenter of a seismic source. The standard input parameters can be used: arrival times of first and later onsets with backazimuths and ray parameters (or apparent velocities). In addition, travel-time differences between different phases observed at the same station can be optionally used. The observed standard deviations are used to weight all input parameters and the inversion is done with a generalized matrix inversion code.¶A starting solution with a priori uncertainties can be calculated as the intersection of all backazimuth observations. If S observations are also available, a preliminary origin time is estimated using Wadati's approach to estimate a source time.¶Global earth models and user-defined horizontally layered local or regional models can be used alone or together to locate seismic events. To gain the best result from all input data, observations of all seismic phases as defined in the IASPEI91 tables can be inverted. Station corrections and corrections for phases with reflection points at the earth's surface can be applied by using local velocity structures.  相似文献   

6.
重力异常对地壳横向密度变化敏感,而无约束重力反演得到的密度模型其垂向分辨能力往往不理想.为了改善反演结果的垂向分辨率,本文参考已有先验分层模型,基于贝叶斯原理,提出了一种重震联合反演的新策略,可实现多种参考模型和复杂加权参数条件下的最大后验概率估计.理论模型测试结果表明,对于深度加权、多参考模型约束等多种问题,本文提出...  相似文献   

7.
网架减震球型钢支座减震性能振动台试验研究   总被引:4,自引:1,他引:3       下载免费PDF全文
针对网架结构的受力特点,提出了一种新型网架减震球型钢支座.按照相似原理制作了网架减震球型钢支座的缩尺模型,并通过模拟地震振动台试验系统地研究了这种支座在地震作用下的减隔震性能.试验结果表明,网架减震球型钢支座能够有效阻隔地震动向上部结构的传递,滞回环饱满、等效阻尼比大,具有良好的隔震及减震耗能能力.  相似文献   

8.
We invert three-dimensional seismic data by a multiscale phase inversion scheme, a modified version of full waveform inversion, which applies higher order integrations to the input signal to produce low-boost signals. These low-boost signals are used as the input data for the early iterations, and lower order integrations are computed at the later iterations. The advantages of multiscale phase inversion are that it (1) is less dependent on the initial model compared to full waveform inversion, (2) is less sensitive to incorrectly modelled magnitudes and (3) employs a simple and natural frequency shaping filtering. For a layered model with a three-dimensional velocity anomaly, results with synthetic data show that multiscale phase inversion can sometimes provide a noticeably more accurate velocity profile than full waveform inversion. Results with the Society of Exploration Geophysicists/European Association of Geoscientists and Engineers overthrust model shows that multiscale phase inversion more clearly resolves meandering channels in the depth slices. However, the data and model misfit functions achieve about the same values after 50 iterations. The results with three-dimensional ocean-bottom cable data show that, compared to the full waveform inversion tomogram, the three-dimensional multiscale phase inversion tomogram provides a better match to the well log, and better flattens angle-domain common image gathers. The problem is that the tomograms at the well log provide an incomplete low-wavenumber estimate of the log's velocity profile. Therefore, a good low-wavenumber estimate of the velocity model is still needed for an accurate multiscale phase inversion tomogram.  相似文献   

9.
Theoretical models of mantle convection predict that the major temperature fluctuations within the mantle are confined to narrow horizontal boundary layers and vertical plumes. These fluctuations result in heterogeneities in seismic body wave velocities which could, in principle, be detected by seismic tomographic techniques. However, recent tomographic images of the spatial variations of temperature in the mantle are considerably “out of focus” in that only the longest wavelength components can be resolved. To assess this partial recovery of the total tomographic image, theoretical temperature fields have been generated with a numerical model of high Rayleigh number mantle convection and then Fourier analysed in two dimensions. Upon re-synthesizing the model temperature fields, the Fourier series expansions were truncated at various levels of resolution. The truncated expansions, containing only the long wavelength components of the model temperature fields, are compared to both the complete field and the tomographic images of the mantle. At the current level of resolution it seems unlikely that seismic tomography could distinguish between layered and whole-mantle convection. Estimates, based on current tomographic data, of long wavelength fluctuations of temperature and surface topography are predicted, in the case of whole-mantle convection, to represent approximately 10% of the total temperature variation, and approximately 50% of the total topographic relief. Thus topography at the core-mantle boundary may be more accurately inferred from seismic tomography than may the characteristic lateral temperature fluctuation which drives the convective circulation.  相似文献   

10.
子波相位不准对反演结果的影响(英文)   总被引:5,自引:1,他引:4  
本文重点讨论在振幅谱估计准确的情况下,采用不同相位谱子波作为实际估计子波进行线性最小二乘反演,并对结果进行分析。除子波相位外,所有其它影响反演结果的因素均忽略。稀疏反射系数模型(块状波阻抗模型)反演结果表明:(1)使用不同相位谱子波进行反演,其反演结果合成的记录与原始记录都非常匹配,但反演的反射系数和声波阻抗结果与真实模型有差异;(2)反演结果的可靠程度主要与不同相位子波z变换的根的分布有关,当估计子波与真实子波Z变换的根的分布仅在单位圆附近有差异时,反演的反射系数和声波阻抗与真实模型很接近;(3)尽管反演前后地震记录都匹配了,并且评价反演结果好坏的柯西准则或改进柯西准则(反演参数没有进行自适应处理)已经达到了最优(最小),但反演结果与真实模型仍存在较大差异。最后,针对子波相位估计不准可能导致反演效果较差这个问题,我们提出采用求L1范数、丰度、变分、柯西准则(反演参数进行了自适应处理)或/和改进柯西准则(反演参数进行了自适应处理)的最优值或次优值作为评价准则的一种解决办法,理论上得到了好的效果。  相似文献   

11.
Joint inversion of teleseismic P-waveforms and local group velocities of surface waves retrieved from ambient seismic noise has been performed to model velocity structure of the crust and uppermost mantle of the Bohemian Massif. We analysed P-waveforms of 381 teleseismic earthquakes recorded at 54 broadband seismic stations located on the territory of the Czech Republic and in its close surroundings. Group velocities of Rayleigh and Love surface waves were obtained by cross-correlating long-term recordings of seismic noise. The basis for waveform inversion is the well-known methodology of P-to-S receiver functions constructed from converted phases. Due to instabilities in direct inversion of receiver functions caused by the necessity of applying deconvolution, we propose an alternative formulation to fit observed and calculated radial components of P waveforms. The joint inversion is transformed into a search for the minimum of the cost function defined as a weighted sum of waveform and group velocity misfits. With the use of the robust stochastic optimizer (Differential Evolution Algorithm), neither derivatives nor a starting model are needed. The task was solved for 1D layered isotropic models of the crust and the uppermost mantle. We have performed a sequence of inversions with models containing one, two, three and four layers above a half-space. By using statistical criteria (F-test) we were able to select the simplest velocity models satisfying data and representing local geological structures. Complex crustal models are typical for stations located close to boundaries of major tectonic units. The relatively low average P to S wave-velocity ratio is in agreement with the generally accepted view that the BM crust is predominantly felsic.  相似文献   

12.
陶传迁    解恒燕    杨光  刘文洋 《世界地震工程》2021,(4):122-136
为了拓宽隔震技术的应用范围,提出了梁板分离式分层隔震结构概念,其核心思想是将框架结构或框架剪力墙结构中的所有楼层或某些楼层的全部或部分楼板通过橡胶隔震支座支承于梁上。建立了分层隔震结构的动力分析模型,利用自编程序按时程分析法和振型分解反应谱法分别计算了不同工况下分层隔震结构的地震反应,运用隔震技术的基本原理和振型分析法分析了刚度比和场地条件等因素对减震效果的影响。发现了刚度比变化过程中分层隔震结构的两个极限状态,并利用其中之一初步判断减震效果。  相似文献   

13.
低频成分缺失和地下速度强烈变化会导致严重的周期跳现象,是地震数据全波形反演的难题.通过对地震数据加时间阻尼和时间积分降主频处理,提出了一种可有效去除周期跳现象的多主频波场时间阻尼全波形反演方法.由浅到深的速度不准确会造成波形走时失配和走时失配的累积.浅部速度的准确反演可有效地减小深部波形走时失配与周期跳现象.对地震数据施加时间阻尼得到时间阻尼数据,利用不同阻尼值的时间阻尼地震数据实现由浅到深的全波形反演.低主频波场的周期跳现象相对高主频波场的要弱.对地震波场进行不同阶的时间积分以得到不同主频的波场,把低主频波场的全波形反演结果作为高主频波场全波形反演的初始模型.应用缺失4 Hz以下频谱成分的二维盐丘模型合成数据验证所提出的全波形反演方法的正确性和有效性,数值试验结果显示多主频波场的时间阻尼全波形反演方法对缺失低频成分地震数据和地下速度强烈变化具有很好的适应性.  相似文献   

14.
The radial viscosity structure of the Earth is explored on the basis of the geoid observations. The variations of uncertainty in seismic tomography models are accounted for when finding the radial viscosity structure. The new methodology we propose attempts to fit more closely those features of the geoid that are better constrained by tomography models and avoids to fit those features that are poorly constrained. This approach is particularly important because the error of geoid predictions caused by uncertainties in seismic tomography models is overwhelmingly larger than the noise in the geoid measurements. The synthetic tests indicate that the viscosity structures obtained by disregarding the uncertainty variations in seismic tomography models can be biased depending on the geoid spectral band and on the ‘input’ seismic tomography model. When the uncertainty variations in seismic models are considered in the inversion process, results do not indicate a viscosity in the transition zone lower than in the upper mantle. A robust feature found with the new method is a viscosity in the upper mantle two orders of magnitude smaller than in the lower mantle. The error covariance of seismic tomography models is critical for the method we suggest. A covariance matrix rigorously derived by seismologists should help to even more reliably infer the viscosity structure and relation between anomalies in density and seismic velocities from surface observations such as the geoid, and thus lead to a better knowledge of the Earth interior.  相似文献   

15.
Full waveform inversion algorithms are widely used in the construction of subsurface velocity models. In the following study, we propose a Laplace–Fourier-domain waveform inversion algorithm that uses both Laplace-domain and Fourier-domain wavefields to achieve the reconstruction of subsurface velocity models. Although research on the Laplace–Fourier-domain waveform inversion has been published recently that study is limited to fluid media. Because the geophysical targets of marine seismic exploration are usually located within solid media, waveform inversion that is approximated to acoustic media is limited to the treatment of properly identified submarine geophysical features. In this study, we propose a full waveform inversion algorithm for isotropic fluid–solid media with irregular submarine topography comparable to a real marine environment. From the fluid–solid system, we obtained P and S wave velocity models from the pressure data alone. We also suggested strategies for choosing complex frequency bands constructed of frequencies and Laplace coefficients to improve the resolution of the restored velocity structures. For verification, we applied our Laplace–Fourier-domain waveform inversion for fluid–solid media to synthetic data that were reconstructed for fluid–solid media. Through this inversion test, we successfully restored reasonable velocity structures. Furthermore, we successfully extended our algorithm to a field data set.  相似文献   

16.
Piecewise 1D laterally constrained inversion of resistivity data   总被引:1,自引:0,他引:1  
In a sedimentary environment, layered models are often capable of representing the actual geology more accurately than smooth minimum structure models. Furthermore, interval thicknesses and resistivities are often the parameters to which non‐geophysicist experts can relate and base decisions on when using them in waste site remediation, groundwater modelling and physical planning. We present a laterally constrained inversion scheme for continuous resistivity data based on a layered earth model (1D). All 1D data sets and models are inverted as one system, producing layered sections with lateral smooth transitions. The models are regularized through laterally equal constraints that tie interface depths and resistivities of adjacent layers. Prior information, e.g. originating from electric logs, migrates through the lateral constraints to the adjacent models, making resolution of equivalences possible to some extent. Information from areas with well‐resolved parameters will migrate through the constraints in a similar way to help resolve the poorly constrained parameters. The estimated model is complemented by a full sensitivity analysis of the model parameters, supporting quantitative evaluation of the inversion result. Examples from synthetic 2D models show that the model recognition of a sublayered 2D wedge model is improved using the laterally constrained inversion approach when compared with a section of combined 1D models and when compared with a 2D minimum structure inversion. Case histories with data from two different continuous DC systems support the conclusions drawn from the synthetic example.  相似文献   

17.
18.
This paper presents a comparison between subsurface impedance models derived from different deterministic and geostatistical seismic inversion methodologies applied to a challenging synthetic dataset. Geostatistical seismic inversion methodologies nowadays are common place in both industry and academia, contrasting with traditional deterministic seismic inversion methodologies that are becoming less used as part of the geo‐modelling workflow. While the first set of techniques allows the simultaneous inference of the best‐fit inverse model along with the spatial uncertainty of the subsurface elastic property of interest, the second family of inverse methodology has proven results in correctly predicting the subsurface elastic properties of interest with comparatively less computational cost. We present herein the results of a benchmark study performed over a realistic three‐dimensional non‐stationary synthetic dataset in order to assess the performance and convergence of different deterministic and geostatistical seismic inverse methodologies. We also compare and discuss the impact of the inversion parameterisation over the exploration of the model parameter space. The results show that the chosen seismic inversion methodology should always be dependent on the type and quantity of the available data, both seismic and well‐log, and the complexity of the geological environment versus the assumptions behind each inversion technique. The assessment of the model parameter space shows that the initial guess of traditional deterministic seismic inversion methodologies is of high importance since it will determine the location of the best‐fit inverse solution.  相似文献   

19.
In this paper, we develop a general approach to integrating petrophysical models in three-dimensional seismic full-waveform inversion based on the Gramian constraints. In the framework of this approach, we present an example of the frequency-domain P-wave velocity inversion guided by an electrical conductivity model. In order to introduce a coupling between the two models, we minimize the corresponding Gramian functional, which is included in the Tikhonov parametric functional. We demonstrate that in the case of a single-physics inversion guided by a model of different physical type, the general expressions of the Gramian functional and its gradients become simple and easy to program. We also prove that the Gramian functional has a non-negative quadratic form, so it can be easily incorporated in a standard gradient-based minimization scheme. The developed new approach of seismic inversion guided by the known petrophysical model has been validated by three-dimensional inversion of synthetic seismic data generated for a realistic three-dimensional model of the subsurface.  相似文献   

20.
Horizontally layered (1D) earth models are often assumed as a model estimate for the interpretation of geophysical data measured along 2D geological structures. In this process, the individual data sets are usually inverted independently, and it is considered only in a later phase of interpretation that these local (1D) models have common characteristic features. Taking account of these common attributes, instead of the successive independent interpretations, the lateral variations of geometrical and petrophysical parameters can be efficiently determined for the whole 2D structure by applying a series expansion. Using global basis functions, two advantages can be achieved: (i) choosing an appropriate number of basis functions helps us to restrict the complexity of the model; (ii) the integration of all the data sets measured along the profile gives rise to the application of simultaneous or joint inversion methods. This results in a decrease of the number of independent unknowns, a higher stability during the inversion and a more accurate and reliable parameter estimation.In this paper, a joint inversion algorithm is presented using DC geoelectric apparent resistivities and refraction seismic travel times measured along various layouts above a 2D geological model. To describe lateral variations series, expansions are used, and furthermore, to improve the often used approximation of a (locally) 1D forward modelling, the integral mean value of the horizontally changing model parameters (calculated along an appropriately defined interval) is introduced. We call the inversion procedure that combines series expansions and the concept of integral mean Generalised Series Expansion (GSE) inversion. The method was developed and tested for both the simultaneous (integrating data sets of one method or methods on the same physical basis) and the joint inversion (where data sets of methods on different physical bases are joined together), using synthetic and field data sets. It is also demonstrated that the equivalence problem inherent in the independent inversion of DC geoelectric data can efficiently be resolved by the use of the joint GSE inversion method in the cases of conductive and resistive equivalent geological models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号