首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mean seasonal variability of turbulent heat fluxes in the tropical Atlantic Ocean is examined using the Woods Hole Oceanographic Institution(WHOI) flux product.The most turbulent heat fluxes occur during winter seasons in the two hemispheres,whose centers are located at 10°~20°N and 5°~15°S respectively.In climatological ITCZ,the turbulent heat fluxes are the greatest from June to August,and in equatorial cold tongue the turbulent heat fluxes are the greatest from March to May.Seasonal variability of sensible heat flux is smaller than that of latent heat flux and mainly is dominated by the variations of air-sea temperature difference.In the region with larger climatological mean wind speed(air-sea humidity difference),the variations of air-sea humidity difference(wind speed) dominate the variability of latent heat flux.The characteristics of turbulent heat flux yielded from theory analysis and WHOI dataset is consistent in physics which turns out that WHOI's flux data are pretty reliable in the tropical Atlantic Ocean.  相似文献   

2.
The role of extreme surface turbulent fluxes in total oceanic heat loss in the North Atlantic is studied. The atmospheric circulation patterns enhancing ocean–atmosphere heat flux in regions with significant contributions of the extreme heat fluxes (up to 60% of the net heat loss) are analyzed. It is shown that extreme heat fluxes in the Gulf Stream and the Greenland and Labrador Seas occur in zones with maximal air pressure gradients, i.e., in cyclone–anticyclone interaction zones.  相似文献   

3.
A conclusion about two extreme regimes existing in the large-scale circulation in the North Atlantic has been drawn based on an analysis of the inter-annual variability of the analogue to the Rossby index, as well as that of the heat and dynamic characteristics in separate areas of the north subtropical circulation. The former is defined by a high level of circulation both in the atmosphere and in the subtropical water circulation. In the current century this regime was realized mainly in the years pertaining to the middle and end of a 22-year solar activity cycle (a 22-year cycle). The relatively low level of atmospheric circulation and the slackened water mass transport are typical of the second regime. It dominated mainly during the years relevant to the beginning and second half of a 22-year solar activity cycle.Translated by Mikhail M. Trufanov.  相似文献   

4.
Using the data of UWM/COADS (University of Wisconsin-Milwaukee/Comprehensive Ocean—Atmosphere Data Set), we have performed cluster and spectral analyses of the average monthly anomalies of temperature and heat balance of the surface of the Atlantic Ocean in three frequency ranges (intraannual, interannual, and decadal). It is shown that these anomalies are closely related on intraannual scales, where the anomalies of the surface temperature of the ocean can be regarded as a result of the direct local generation by heat balance anomalies. The generation mechanism is explained within the known Hasselman model [1, 2]. On interannual scales, this mechanism is not valid, and nonlocal effects related to heat advection become important. On decadal scales, the local generation of anomalies of the surface temperature of the ocean is insignificant, local correlation between fluctuations of heat balance and the surface temperature of the ocean is completely broken, and the spatial structure of anomalies of the surface temperature of the ocean is governed by the global system of currents, which redistributes heat flux from the ocean to the atmosphere. Violations of the local correlation between anomalies of heat balance and the surface temperature of the ocean are observed on intraannual scales in regions with powerful jet currents and in the equatorial region. In some parts of the World's ocean with weak advection, the correlation between heat balance and the surface temperature of the ocean persists up to a decadal period. Translated by Peter V. Malyshey and Dmitry V. Malyshey  相似文献   

5.
6.
Over the past three to four decades, there has been a growing awareness of the important controls exerted by large-scale meteorological events on coastal systems. For example, definitive links are being established between short-term (timescales of 5–10 years) beach dynamics and storm frequency. This paper assesses temporal variability of coastal storms (both tropical and extratropical) and the wave climatology in the North Atlantic Basin (NAB), including the Gulf of Mexico. With both storm types, the empirical record shows decadal scale variability, but neither demonstrates highly significant trends that can be linked conclusively to natural or anthropogenic factors. Tropical storm frequencies have declined over the past two or three decades, which is perhaps related to recent intense and prolonged El Niños. Some forecasts predict higher frequencies of tropical storms like that experienced from the 1920s to the 1960s to occur in coming decades. Results from general circulation models (GCMs) suggest that overall frequencies of tropical storms could decrease slightly, but that there is potential for the generation of more intense hurricanes. These data have important implications for the short-term evolution of coastal systems.

There is strong suggestion that extratropical systems have declined overall over the past 50–100 years, but that there is an increase in frequency of very powerful storms, especially at higher latitudes. Both ENSO and the North Atlantic Oscillation (NAO) are shown to have associations with frequencies and tracking of these systems. These empirical results are in general agreement with GCM forecasts under global warming scenarios. Analyses of wave climatology in the NAB show that the last two to three decades have been rougher at high latitudes than several decades prior, but this more recent sea state is similar to conditions from about 100 years ago. The recent roughness at sea seems to be related to high NAO index values, which are also expected to increase with global warming. Thus, when coupled to an anticipated continued rise in global sea level, this trend will likely result in increasing loss of sediment from the beach-nearshore system resulting in widespread coastal erosion.  相似文献   


7.
A classification based on the number and types of large-scale acoustic waveguides is proposed for the mean seasonal profiles of sound speed propagation. A scheme for North Atlantic zoning, using typical curves of the sound speed vertical distribution, is given. The channel axis's position is shown not to depend on the water mass haline properties, being controlled by the temperature field vertical stratification.Translated by Vladimir A. Puchkin.  相似文献   

8.
The low-frequency variability of the North Equatorial Current (NEC) bifurcation during 1958 to 2001 was investigated with the Simple Ocean Data Assimilation (SODA) 2.0.2 dataset.In agreement with recent observations,the NEC bifurcation latitude (NBL) shifted northward as depth increases, from about 12.7°N near the surface to about 17.1°N at depths around 500 m for the annual average. This study reveals that the interannual variations of NBL,with five years period,mainly focused on the upper 500 m with amplitude increasing as depth increased.The NBL shifted southward in the past 40 years,which was more significant in the subsurface at more than -0.02°/a.The NBL manifests itself in the transports of NMK (NEC-Mindanao Current (MC)-Kuroshio) system in strong relationship with MC (0.7) and Kuroshio (-0.7).The EOF analysis of meridional velocity off the Philippine coast shows that the first mode,explaining 62% of variance and 5 years period,was highly correlated with the southward shift of NBL with coefficient at about 0.75.The southward shift of NBL consists with the weakening of MC and strengthening of Kuroshio,which exhibited linear trends at -0.24Sv/a and 0.11Sv/a.Both interannual variation and trend of NBL were closely related to the variation of NMK system.  相似文献   

9.
10.
On the basis of processing of the oceanographic data accumulated for the water area of the North Atlantic in 1950–1999 (∼500,000 stations), we study seasonal and interannual variations of the principal characteristics of pycnocline within the range of σt = 25.5–27.5 conventional density units. It is shown that the interannual oscillations of these characteristics in the entire analyzed layer can be regarded as a superposition of fluctuations with periods from 2–3 to 10–12 yr. The typical ranges of these fluctuations for the depths of occurrence of isopycnic surfaces and the corresponding temperature and salinity are equal to 20–25 m, 1–1.5°C, and 0.25‰, respectively. The intensification of atmospheric circulation at middle latitudes is accompanied by the simultaneous deepening of the pycnocline and its heating in the central part of the North Subtropical Anticyclonic Gyre. At the same time, the process of weakening of the atmospheric circulation leads to the rise of the pycnocline and its cooling. The complete cycle of interaction of the North-Atlantic Oscillation with the anomalies of isopycnic characteristics (with regard for the period of their advection) is equal to ∼6–8 yr. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 2, pp. 29–48, March–April, 2007.  相似文献   

11.
At interannual to multidecadal time scales, much of the oceanographic and climatic variability in the North Atlantic Ocean can be associated with the North Atlantic Oscillation (NAO). While evidence suggests that there is a relationship between the NAO and zooplankton dynamics in the North Atlantic Ocean, the phytoplankton response to NAO-induced changes in the environment is less clear. Time series of monthly mean phytoplankton colour values, as compiled by the Continuous Plankton Recorder (CPR) survey, are analysed to infer relationships between the NAO and phytoplankton dynamics throughout the North Atlantic Ocean. While a few areas display highly significant (p < 0.05) trends in the CPR colour time series during the period 1948–2000, nominally significant (p < 0.20) positive trends are widespread across the basin, particularly on the continental shelves and in a transition zone stretching across the Central North Atlantic. When long-term trends are removed from both the NAO index and CPR colour time series, the correlation between them ceases to be significant. Several hypotheses are proposed to explain the observed variability in the CPR colour and its relationship with climate in the North Atlantic.  相似文献   

12.
冬季北太平洋与北大西洋上空风暴轴特征比较与分析   总被引:1,自引:0,他引:1  
采用1948—2007年NCEP/NCAR再分析资料,选取850,700,600,500,250hPa层风场(u,v)、垂直运动场(ω)、位势高度场(H)和温度场(T),对北半球冬季(12、1、2月)太平洋和大西洋上空风暴轴的特征及影响因素进行了分析和比较。结果表明,北半球冬季风暴轴最强中心位于北大西洋上空,北太平洋高空急流的强度明显大于大西洋高空西风急流的强度。通过诊断分析北太平洋与北大西洋上空风暴轴的影响因素,发现北太平洋和北大西洋上空风暴轴强度的影响因素具有明显的差异:在北太平洋上空,涡度平流随高度的变化和厚度平流项对风暴轴的作用较大西洋而言更明显,而涡动能量的向上输送对北大西洋风暴中心的作用更大。对风暴轴年际变化的分析发现,两大洋风暴轴在1980年代之后均有明显的增强现象,而在空间分布的时间演化上,两大洋风暴轴有着相反的演化:太平洋风暴轴有向西南方向移动的趋势,而大西洋风暴中心则略微向东北方向移动。  相似文献   

13.
In recent decades it has been recognized that in the North Atlantic climatic variability has been largely driven by atmospheric forcing related to the North Atlantic Oscillation (NAO). The NAO index began a pronounced decline around 1950 to a low in the 1960s. From 1970 onward the NAO index increased to its most extreme and persistent positive phase during the late 1980s and early 1990s. Changes in the pattern of the NAO have differential impacts on the opposite sides of the North Atlantic and differential impacts in the north and south. The changes in climate resulting from changes in the NAO appear to have had substantial impacts on marine ecosystems, in particular, on fish productivity, with the effects varying from region to region. An examination of several species and stocks, e.g. gadoids, herring and plankton in the Northeast Atlantic and cod and shellfish in the Northwest Atlantic, indicates that there is a link between long-term trends in the NAO and the productivity of various components of the marine ecosystem. While broad trends are evident, the mechanisms are poorly understood. Further research is needed to improve our understanding of how this climate variability affects the productivity of various components of the North Atlantic marine ecosystem.  相似文献   

14.
15.
南大西洋在地理上连接着北大西洋、南大洋和印度洋。通过环流输运或海表温度变化,该海域的上层海洋热含量(OHC)的变化可能对与之相连的各个洋盆间的再分布产生影响。本文基于1958—2015年的ORAS4全球海洋再分析数据和中国科学院大气物理研究所的格点海温数据集,利用经验正交函数(EOF)分析、相关分析等方法,分析了南大西洋上层海洋不同积分深度(0~100 m,0~300 m,0~500 m,0~700 m)OHC的时空变化特征。EOF第一模态显示,过去60 a来,南大西洋上层700 m存在一个洋盆尺度的变暖趋势,而且随着热含量积分深度的增加,第一模态所解释的方差占比也明显增加。OHC变化EOF第一模态与以年际变化为主的NAO和ENSO指数相关性很低,而与代表较长时间变率的AMO和PDO指数却有较好相关性,且与AMO的相关性随着积分深度的增加而提高。超前滞后相关分析显示AMO滞后南大西洋OHC变化9~12 a,显示南大西洋OHC变化对北大西洋气候变化的潜在影响。南大西洋OHC变化EOF第一模态与PDO之间相关性随着积分深度的增加而降低,显示PDO对OHC的影响主要在表层。另外发现整个洋盆的热含量变化与温跃层变化呈正相关,热含量的变化反映温跃层的动态波动。  相似文献   

16.
1 IntroductionThe empirical and simple model studies suggestthe existence of a SST dipole mode in the tropical At-lantic which is antisymmetric about the annual-meanthe intertropical convergence zone (ITCZ) and in-volves air- sea interaction through the wind- SST-evaporation (WES) feedback (Carton, 1996; Chang etal., 1997; Zhao et al., 2003). Chang et al. (2000)found that the dominant near-surface atmospheric re-sponse in the tropical Atlantic sector primarily comesfrom the local SST f…  相似文献   

17.
During the 50th cruise of R/V Akademik Mstislav Keldysh, on the south slope of the Atlantis massif (30°07′N; the Middle Atlantic Ridge), an inactive hydrothermal field named the Lost Village was discovered. This new field was formed of light carbonate rock and was located near the active Lost City hydrothermal field. The mineralogical associations of these fields were studied. A conclusion about the participation the ocean water in the changing of the carbonate composition of the inactive hydrothermal field was reached.  相似文献   

18.
19.
The interdecadal modulation of interannual variability of the atmosphere and ocean is examined over the North Pacific by using Wavelet Transform combined with Empirical Orthogonal Function (EOF) or Singular Value Decomposition (SVD) analysis. For the period of record 1899–1997, the interannual variability of the wintertime Aleutian Low, identified by either the North Pacific Index or the leading eigenvector (EOF-1) of North Pacific sea level pressure (SLP), exhibits an interdecadal modulation. Interannual variance in the strength of the Aleutian Low was relatively large from the mid-1920s to mid-1940s and in the mid-1980s, but relatively small in the periods from 1899 to the mid-1920s and from the mid-1940s to the mid-1970s. The periods of high (low) interannual variability roughly coincide with pentadecadal regimes having a time averaged relatively intense (weak) Aleutian Low. Consistent with this SLP variability the interannual variance in the zonal wind stress is strengthened in the central North Pacific after the 1970s. The SLP EOF-2, which is related to the North Pacific Oscillation, exhibited a strengthening trend from the beginning of this century to the mid-1960s. After the 1970s, the interannual variance of SLP EOF-2 is generally smaller than that in the period from 1930 to 1970. Similar interdecadal changes in interannual variance are found in expansion coefficients for the first two EOFs of the Pacific sector 500 hPa height field for the period 1946–1993. EOF-1 of Pacific sector 500 hPa corresponds to the Pacific/North American (PNA) teleconnection pattern, while EOF-2 is related to the Western Pacific (WP) pattern. The relative influence of the atmospheric PNA and WP interannual variability on North Pacific SSTs appears to have varied at pentadecadal time scales. Results from an SVD analysis of winter season (December–February) 500 hPa and North Pacific spring season (March–May) SST fields demonstrate that the PNA-related SST anomaly exhibited larger interannual variance after the 1970s, whereas the interannual variance of the WP related SST anomaly is larger before the 1970s. Correlations between the coastal North Pacific SST records and gridded atmospheric field data also change on interdecadal time scales. Our results suggest that the SST records from both the northwest and northeast Pacific coasts were more closely coupled with the PNA teleconnection pattern during the periods of 1925–1947 and 1977–1997 than in the regime from 1948 to 1976. Teleconnections between ENSO and preferred patterns of atmospheric variability over the North Pacific also appear to vary on interdecadal time scales. However, these variations do not reflect a unique regime-dependent influence. Our results indicate that ENSO is primarily related to the PNA (WP) pattern in the first (last) half of the present century. Correlation coefficients between indices for ENSO and PNA-like atmospheric variability are remarkably weak in the period from 1948 to 1976.  相似文献   

20.
The basement topography and the free-air gravity along two profiles in the central North Atlantic between 16° and 25° N, crossing a number of fracture zones, were divided in three wavelength intervals. Two-dimensional modelling shows that the short wavelength (>50 km) gravity is well explained by uncompensated topography (mainly spreading topography). For the long wavelengths (>200 km) there is no correlation of topography and gravity. In principle this topography is compensated. Residual anomalies comprise the Ridge effect as well as regional anomalies related to depth anomalies. The 50 to 200km band-pass filtered topography and gravity contain relevant information on fracture zones. Models require a base of the crust that parallels the topography rather than a form of regional compensation. For an explanation of this crustal model that has the appearance of frozen in normal faults we have to consider the typical morphology as created in the transform domain. The geophysical processes that cause this morphology are still an object of study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号