首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The remote sensing technology has been widely used for mapping the vegetation types in the tropical landscapes. However, in the temperate and alpine arid regions of India very few studies have been conducted using this technique. In the mountainous temperate arid conditions the vegetation is largely confined to marsh meadows, streams courses, river valleys and moist pockets close to snowfields. The ground truth collection in these zones are physically challenging due to tough terrain and restricted mobility. The detailed mapping of vegetation and other land use classes in these areas is therefore, extremely difficult. This paper describes the use of IRS-ID LISS III sensor for deciphering land cover details Nubra Valley, northern portion of Ladakh Autonomous Hill Council, Jammu & Kashmir (India). This analysis essentially emphasizes in bringing out various vegetation classes (speciallyHippophae rhamnoides and other medicinal plant communities) along the narrow river valleys.  相似文献   

2.
Interpretation of IRS LISS II and LISS III imagery has revealed the various landforms as well as land use/land cover features in a part of the Godavari delta coastal belt. A comparative analysis of geomorphological vs. land use/land cover maps suggested that the landforms exert a certain degree of control over human land use activities even in this monotonously plain area. Further, an analysis of the sequential imagery pertaining to 1992 and 2001 aimed at detecting the land use/land cover change has indicated that the aquaculture has phenomenally increased by 9,293.5 ha during the 9-year period. At the same time, the cropland which occupied about 29,104 ha in 1992 has been reduced to 19,153.9 ha by 2001 mainly due to the encroachment of aquaculture. Village level data on temporal variation in land use/land cover extracted through GIS analysis revealed that in 14 out of the total 39 villages in the area, the conversion of cropland into aquaculture ponds was more than 30% with the highest conversion rate of 89.8% in Gondi village. These fourteen villages, which are designated as ‘aquaculture hotspots’ are grouped into 4 priority classes based on the intensity of conversion.  相似文献   

3.
Abstract

Land use and land cover change, perhaps the most significant anthropogenic disturbance to the environment, mainly due to rapid urbanization/industrialization and large scale agricultural activities. In this paper, an attempt has been made to appraise land use/land cover changes over a century (1914–2007) in the Neyyar River Basin (L=56 km; Area = 483.4 km2) in southern Kerala – a biodiversity hot spot in Peninsular India. In this study, digital remote sensing data of the Indian Remote Sensing satellite series I-D (LISS III, 2006–2007) on 1:50,000 scale, Survey of India (SOI) toposheet of 1914 (1:63,360) and 1967 (1:50,000) have been utilized to map various land use/land cover changes. Maps of different periods have been registered and resampled to similar geographic coordinates using ERDAS Imagine 9.0. The most notable changes include decreases in areas of paddy cultivation, mixed crops, scrub lands and evergreen forests, and increases in built-up areas, rubber plantations, dense mixed forests, and water bodies. Further, large scale exploitation of flood plain mud and river sand have reached menacing proportions leading to bank caving and cut offs at channel bends. Conservation of land and water resources forms an important aspect of ecosystem management in the basin.  相似文献   

4.
Remote sensing and Geographic Information System (GIS) are well suited to landslide studies. The aim of this study is to prepare a landslide susceptibility map of a part of Ooty region, Tamil Nadu, India, where landslides are common. The area of the coverage is approximately 10 × 14 km in a hilly region where planting tea, vegetables and cash crops are in practice. Hence, deforestation, formation of new settlements and changing land use practices are always in progress. Land use and land cover maps are prepared from Indian Remote Sensing Satellite (IRS 1C - LISS III) imagery. Digital Elevation Model (DEM) was developed using 20 m interval contours, available in the topographic map. Field studies such as local enquiry, land use verification, landslide location identification were carried out. Analysis was carried out with GIS software by assigning rank and weights for each input data. The output shows the possible landslide areas, which are grouped for preparation of landslide susceptibility maps.  相似文献   

5.
Sindhu K. 《国际地球制图》2017,32(9):1004-1016
Stream flow forecast and its inundation simulations prior to the event are an effective and non-structural method of flood damage mitigation. In this paper, a continuous simulation hydrological and hydrodynamic model was developed for stream flow forecast and for spatial inundation simulation in Brahmani–Baitarani river basin, India. The hydrologic modelling approach includes rainfall-run-off modelling, flow routing, calibration and validation of the model with the field discharge data. CARTOSAT Digital Elevation Model of 30 m resolution, land use/land cover derived from the Indian Remote Sensing Satellite (IRS-P6) AWiFS and soil textural data of the study area were used in the modelling to compute topographic and hydraulic parameters. The hydrological model was calibrated with the help of field observed discharge data of 2006 and 2009 and validated with the data of 2008 and 2011. From the results, it is found that computed discharges are very well matching well with the observed discharges. The developed model can provide the stream flow forecast with more than 30 h lead time. Possible flood inundations were simulated using hydrodynamic modelling approach. CARTO Digital Elevation Model of 10 m resolution, landuse and the computed flood hydrographs were used in inundation simulations.  相似文献   

6.
In the present study, an attempt has been made to delineate and characterize the different geomorphic units of Tundiya river catchment in a part of Lower Maharahstra Metamorphic Plateau, north-eastern part of Nagpur district, Maharashtra. The drainage, contour and delineated geological units have been overlaid on IRS-ID LISS III satellite imagery (bands 2,3 and 4) in EASI/PACE analysis system to delineate and characterize different geomorphological units and analysis of their processes based on the field observations. The study area is basically of metamorphic in origin with different geological formations and is influenced by the various fluvio-morphological processes. Based on the satellite data analysis, the distinct geomorphological units viz., table top summits, structural hills, subdued plateau, linear ridges, shallow, moderate and deeply buried foot slopes, shallow valley fills and deep valley fills have been delineated and characterized. The information generated from satellite data in the form of vector layers has been used in GIS to generate geological and geomorphological maps of the study area. The present study demonstrates that IRS-ID LISS-III data in conjunction with geology, drainage and contour parameters to enable detailed evaluation of different geomorphological units and analysis of their processes based on the field observations. The delineated geomorphological units can be utilized for evaluation and management of natural resources and geo-environment on sustainable basis at river catchment level.  相似文献   

7.
The present study was aimed to identify and delineate the groundwater potential areas in parts of Western Ghats, Kottayam, covering the upper catchment of Meenachil river. The study area is composed rocks of Archaean age and Charnockite dominated over others. The information on lithology, geomorphology, lineaments, slope and land use/land cover was generated using the Resourcesat (IRS P6 LISS III) data and Survey of India (Sol) toposheets of scale 1:50,000 (surveyed in 1969) and integrated them with raster based Geographical Information System (GIS) to identify the groundwater potential of the study area. Thus, a GIS-based model which takes account of local condition/variations has been developed specifically for mapping groundwater potential. On the basis of hydrogeomorphology, three categories of groundwater potential zones namely good, moderate and poor were identified, and delineated. The high potential zones correspond to the fracture valleys, valley fills, pediments and denudational slope, which coincide with the low slope and high lineaments density areas. The low zone mainly comprise structural hills and escarpments and these act as run-off zones. The derived panchayath-wise groundwater potentiality information could be used for effective identification of suitable locations for extraction of potable water for rural populations.  相似文献   

8.
GIS. a potential tool for facilitating the generation and use of thematic information, has been applied to groundwater potentiality of the Shamri micro-watershed in Shimla Taluk. The role of various parameters, namely, drainage. lineament. lithology . slope and landuse have been emphasised for delineation of groundwater potential iones. IRS-I C IAN and LISS Ill FCC merged satellite images on 1:25000 scale and Topographic map no. 53L/4 SI together with field traverses have been used as the data source. A multi-criteria evaluation following probability weighted approach has been applied for overlay analysis that allows a linear combination of weights of each thematic map with the individual capability value. 1 he resultant map indicates a high groundwater potentiality in the flood plains, river terraces and river channels in the vicinity of the Shamri nala. Other sites of high potentiality include places showing break in slopes and criss-crossing of lineaments.  相似文献   

9.
The article outlines a procedure of pre-feasibility analysis of planned rural water supply pipeline grids in India. Usually, these type of pre feasibility studies prior to actual implementation, is carried out based on ground surveys and is time consuming. In this work, we use thematic spatial data, such as geomorphology and landuse–landcover along with digital elevation model (DEM) to carry out the pre-feasibility assessment of proposed pipeline grids. DEM generated from CartoSat-1 stereo data has been used to understand the possible topographic hindrances along the planned pipeline route and optimise the same. Further, topographic data also indicates the possible routes of gravity assisted flow. The geomorphology thematic data interpreted from Resourcesat-1 LISS III imagery is used to identify possible geomorphologic hindrances along the pipeline route. Similarly, landuse–landcover information derived from Resourcesat-2 LISS III images, was used to assess the land use/cover impact of the planed pipeline corridor. This has been demonstrated, in the current article using a hypothetical pipeline route. The activity can be carried in a specially designed geo-spatial interface in NRSC/ISRO Bhuvan geoportal. This type of assessment can prove to be time saving and cost effective at a pre-feasibility stage.  相似文献   

10.
Information on various agricultural resource parameters at various levels is essential for proper management and efficient resource allocation for sustainable agricultural development. Limitations in ground-based method have encouraged the use of satellite data coupled with geographical information system (GIS) in providing spatial as well as temporal information over large and inaccessible areas. In the present study, an attempt has been made to generate raster maps using remote sensing and GIS techniques to characterize the agroecosystem of South 24 Paraganas district of West Bengal, based on land utilization indices. Information on multi-season landcover derived from the analysis of the multi-temporal RADARSAT-1 SAR and IRS-ID LISS III data as well as other ancillary information in GIS environment are the basic inputs used in the study. The present analysis shows that northern and northwestern parts are more diverse in terms of agricultural intensification as compared to the southern and northeastern parts whereas the central parts show moderate density. In terms of carrying capacity, the high carrying capacity has been observed in the southern to northeastern parts whereas the northwestern and central parts show moderate and northern parts show low carrying capacity. Overall, the characterization of agroecosystem using land utilization indices can be identified as major input to formulate a management plan for sustainable agriculture with concerns for the environment.  相似文献   

11.
The Keoladeo National Park, Bharatpur, a man-made fresh water wetland carved out of a natural depression on the floodplain of two minor tributaries of the Yamuna-Gambhir and the Banganga is the country’s finest waterfowl habitat. This important wetland was set aside as a bird sanctuary in 1956 and it was elevated to the status of a National Park in 1981. It was also designated a Ramsar site- a wetland of international importance under the Ramsar convention. This important wetland has distinction of being the only Indian wetland to be included under both the Ramsar and the World Heritage convention. The attempt has been made to evaluate the habitat of Sarus crane in the Keoladeo National Park using satellite data — IRS LISS III and PAN merged product and GIS. Geocoded data of IRS —1C LISS III of 21 March 1999 on 1: 50,000 scale and PAN data of March 17, 1999 were used to generate the vegetation cover type map and open water. The maps showing drainage, human habitations, contours, roads, etc. were prepared using the Survey of India topographical sheets and contour map of park area. Information regarding habitat parameters was collected from the existing literature and field observations. The Sarus crane mainly fed in the wetland on the rhizome ofNymphaea sp.,Scirpus tuberosus andEleocharis plantaginea. As there were changes in their habitat requirements at different seasons, the sighting of Sarus crane in each habitat were recorded along with the time and activity during observation. The most utilized habitat for the entire period of study was moderately wet grassland followed by pools. The pools were used mainly during the summer. The water depth requirement observed was between 30–40 cm and 20–40 cm. The suitability maps for Sarus crane were then generated using all remote sensing based and conventional information using rule based equations in the GIS within the Keoladeo National Park.  相似文献   

12.
Singrauli Coalfield spreading over an area of about 300 sq km along Uttar Pradesh and Madhya Pradesh border in the central part of India, is witnessing rapid industrialisation due to a large number of open pit coal mining projects and Super Thermal Power Station (STPS). Large scale mining activities along with operation of STPS have generated a great deal of environmental stress not only on the landuse pattern but also on various ecosystems in this region. An integrated remote sensing study was conducted to assess the impact of industrialisation on landuse pattern in the area under reference. The multispectral, multi-temporal data (1975, 1986 & 1991) of LANDSAT MSS and TM duly supplemented with ground truth were studied for generation of multidate landuse maps. Data base for landuse for the years 1975, 1986 and 1991 was created using PAMAP GIS for landuse analysis and change detection for optimal utilisation, planning and management of land resources. The study has revealed that the areas under built-up land, mining and fly ash pond have increased substantially from 1975 to 1991. Loss in forest cover and agricultural land has occurred due to rapid industrialisation in this region. It has been observed from the comparison of 1986 and 1991 data that the wasteland generated due to deforestation for initiating coal mining projects has gradually been reclaimed under operation “Green Gold” launched by Northern Coalfields Ltd. Further the wastelands have been effectively utilised for establishing the STPS, townships as well as other infrastructures in this area.  相似文献   

13.
The review of study site have revealed the change in vegetation cover of Sal Dense to Sal Medium and Sal Open in 6 forest Mosaics owing to biotic and abiotic conditions prevailing in the specific areas. Analysis carried out using thematic map derived from aerial photograph of 1976 and satellite data of IRS 1C LISS III False Colour Composite (FCC) of March 1999 revealed the cause for change in forest density classes. Deforestation, encroachment and agriculture have been identified as the underlying causes, which have affected some specific locations to a marked extent. There has been a progressive and remarkable change among vegetation classes from 1976 to 1999. It is evident from forest type and density map that Sal density has significantly reduced from Sal Dense 65.61 % in 1976 to Sal Dense 11.12% in the year 1999 followed by Sal Open 11.18 % and Sal Medium 18.24 %. The overall change has been estimated to be 42.11% of the total forested area.  相似文献   

14.
At present the biodiversity in Eastern Ghats is threatened by loss of habitats, exploitation and unscientific management of natural resources, forest fire, biological invasion and other anthropogenic pressures. In this context, we have assessed the forest cover changes, fragmentation and disturbance in the R.V. Nagar Range of Eastern Ghats region, Andhra Pradesh using satellite remote sensing and GIS techniques. Satellite data of IRS-1A LISS II of 1988 and IRS-P6 LISS III of 2006 were assessed for forest cover changes in 1 sq.km grid and generated as Sensitivity Index map. Further the road and settlement buffer of 1000 m was generated to represent Threat Index map. From 1988 to 2006, the forest cover had a total cover loss of 35.2 sq.km and increase in scrub cover by 7.2%. Over all change analysis from 1988 to 2006 with reference to forest cover indicates, negative changes (loss of forest area) accounted for 48.1 sq.km area and positive changes (gain of forest) for an area of 12.1 sq.km of area. The results of the change detection using multi-date satellite imagery suggest degradation in forest cover over two decades, which necessitates the conservation measures in this range with high priority.  相似文献   

15.
Abstract

In the present study, the multi-temporal satellite images of IRS P6 LISS III were used to map waterlogging dynamics over different seasons. An area of 594.36 km2 (6.75%) and 4.17 km2 (0.04%) was affected by surface waterlogging during pre and postmonsoon season, respectively. The average annual groundwater level fluctuations were calculated using 18 years (1990–2007) pre and postmonsoon groundwater level data to identify the areas which are under groundwater induced waterlogging conditions. The soil map clearly indicates that salinity and sodicity exhibit the highest severity and occur in areas with shallow groundwater levels. The hydrogeomorphical units mapped using IRS P6 LISS III satellite images are flood plain, alluvial plain, paleochannels, and oxbow lakes. The study revealed that 44.65% areas have very good to excellent groundwater resources. The litholog data clearly indicate an alternating sequence of clay and sand in which deep aquifers made up of coarse sand would be best suited for adequate water supply and good groundwater quality. The integrated study utilizing digital spatial data pertaining to waterlogging, soil salinity, water level fluctuation, and lithological variation proved that planning of any surface and subsurface water resources development activity should be taken up after assessments of said parameters.  相似文献   

16.
A study on land degradation in the upper catchment of river Tons, a tributary of Yamuna river, in Uttarkashi district of the Uttarakhand state, was carried out using on-screen visual interpretation of IRS LISS-III + PAN merged data. The study area, which is largely mountainous, includes Govind Wildlife Sanctuary and National Park. Vegetation cover, slope and erosion status were used as criteria for the delineation of four major land degradation categories viz., undegraded, moderately degraded, degraded and severely degraded. More than 50 per cent of the study area is reported to be covered with snow and grassland. The moderate to severely degraded area worked out to be 42.4 per cent of the total area. The 32.8 per cent of area was found to be moderately degraded, followed by degraded (6.63%) and severely degraded (2.88%) areas. The depletion of vegetation cover on mountainous terrain and subsequent cultivation without proper protection measures is the reason for severe soil erosion and land degradation. In view of the existing land degradation situation, the catchment requires immediate treatment on priority for the sustenance of agriculture and wild life. It is expected that these measures will reduce the silt load in the river Tons and eventually, in river Yamuna.  相似文献   

17.
Orange orchards of Meghalaya are small in size and are found together with other plants on the slopes of hills. It is also reported that the productivity of orchards is declining in some parts of the state. Therefore in this study, we have attempted to map areas prone to citrus productivity decline based on the integrated effect of soil erosion, vegetation condition and moisture stress. It is difficult to identify orchards on hilly terrain using standard FCC of IRS-P6 LISS III data. Hence, an enhanced color composite image was prepared from three images generated from indices namely SBI, NDWI and NDVI. This enhanced color image was classified using the maximum likelihood classification method and enabled identifying villages prone to citrus decline. The study shows that orchards of 29 villages which are suffering from moisture stress and mostly located on steep slopes that cause heavy soil loss leading to nutrient imbalances are prone to citrus decline. These data will be useful in mapping potential citrus decline areas over zones having similar climatic conditions so that the concerned state horticulture/agriculture departments and citrus growers can take necessary remedial actions.  相似文献   

18.
LANDSAT-TM has been evaluated for forest cover type and landuse classification in subtropical forests of Kumaon Himalaya (U.P.) Comparative evaluation of false colour composite generated by using various band combinations has been made. Digital image processing of Landsat-TM data on VIPS-32 RRSSC computer system has been carried out to stratify vegetation types. Conventional band combination in false colour composite is Bands 2, 3 and 4 in Red/Green/Blue sequence of Landsat TM for landuse classification. The present study however suggests that false colour combination using Landsat TM bands viz., 4, 5 and 3 in Red/Green/Blue sequence is the most suitable for visual interpretation of various forest cover types and landuse classes. It is felt that to extract full information from increased spatial and spectral resolution of Landsat TM, it is necessary to process the data digitally to classify land cover features like vegetation. Supervised classification using maximum likelihood algorithm has been attemped to stratify the forest vegetation. Only four bands are sufficient enough to classify vegetaton types. These bands are 2,3,4 and 5. The classification results were smoothed digitaly to increase the readiability of the map. Finally, the classification carred out using digital technique were evaluated using systematic sampling design. It is observed that forest cover type mapping can be achieved upto 80% overall mapping accuracy. Monospecies stand Chirpine can be mapped in two density classes viz., dense pine (<40%) with more than 90% accuracy. Poor accuracy (66%) was observed while mapping pine medium dense areas. The digital smoothening reduced the overall mapping accuracy. Conclusively, Landsat-TM can be used as operatonal sensor for forest cover type mapping even in complex landuse-terrain of Kumaon Himalaya (U.P.)  相似文献   

19.
Human activities have great influence on fragile coastal ecosystem. For sustainable use of coastal resources it is very important to understand land use/land cover changes and its implications on coastal systems. Remote sensing data because of its synoptic, multispectral and multi temporal nature can be a very good source for mapping, monitoring and understanding these changes. IRS LISS III sensor data were used to find out the rate of land use/land cover changes in Hazira area near Surat, Gujarat. Because of major industrial activities it has become a hot spot area which requires regular monitoring. In the present study, land cover information of the period 1970–1972 from the Survey of India topographical maps, and satellite data of the year 1989 and 1999–2002 have been used and visual analysis has been carried out to measure the land use/land cover changes. Erosion and deposition has been observed around the newly constructed jetty. Forest area and agriculture area is found to decreased, whereas built-up area has increased.  相似文献   

20.
Conservation of wetland is considered paramount in view of its ecological significance. The availability of reliable and up-to-date data on seasonal water spread, tropic state of wetland and bio-physical parameters besides the landuse/cover of the catchment area is a prerequisite for ‘wise use’ of any wetland ecosystem. The present study is carried out to identify the above parameters of Loktak notified wetland through visual interpretation of 1RS IA/IB LISS II FCC of 1990 and 1994/95. It indicates that the water spread of the lake is showing a declining trend and an increasing trend for aquatic vegetation. In 1990 post-monsoon data water spread was 15441 ha which become 11166 ha in October 1994. The extent of water spread further decreases by pre-monsoon season and was found to be 7875 ha in the IRS LISS II data of March 1995. Like-wise area under aquatic vegetation and associated marshy/ swamps was 10499 ha in October 1990 and 13506 ha in October 1994. Catchment of Loktak lake (104872 ha) is highly degraded and forest covers only 7205 ha area. Agriculture is the main land use (35576 ha) in the catchment and substantial area is also under land with or without scrub. Thus, there is a need to rehabilitate the catchment by way of planting trees for reducing silt load in the Loktak lake and ensuring its ‘wise use’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号