首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the increased importance of water resources in the western United States and many areas worldwide, the remediation of impacts from historical mining becomes ever more important. A possible process of making decisions about remediation for a catchment might include identification of principal sources of metals in the catchment, classification of the sources as natural or anthropogenic, and simulations to evaluate different options for removal of anthropogenic sources. The application of this process is based on understanding the pre-mining conditions in the catchment, so that remediation goals appropriately correct for the impacts of mining. A field experiment in Redwell Basin, Colorado, provided a setting to demonstrate this process and to evaluate pre-mining concentrations through reactive solute-transport modeling. The field experiment provided spatially detailed stream and inflow samples that were the basis for model calibration. Only two inflows along the study reach were affected by mining or mine exploration. To simulate pre-mining conditions, these inflows were removed from the model calibration; the result was a simulation of the stream with all the non-mining inputs. At a point downstream from the two mining inflows, the simulated pre-mining pH would have been 5.1, up from the measured 3.8. At the higher pH, the streambed likely would have been coated with Al precipitate. Simulated pre-mining Zn and Cu would have been 1300 µg/L and 18 µg/L, lower than the measured concentrations of 3340 and 93 µg/L. Despite these changes, the pre-mining conditions would not have met aquatic-life standards.  相似文献   

2.
The historical (1932–1971) Bralorne mine produced over 87 million grams of Au from an archetypal orogenic lode gold deposit in southwest British Columbia. High concentrations of As in mine drainage, however, represent an on-going environmental concern prompting a detailed study of effluent chemistry. The discharge rate at the mine portal was monitored continuously over a fourteen-month period during which effluent samples were collected on a quasi-weekly basis. Water samples were also collected on synoptic surveys of the adit between the portal and the main source of flow in the flooded workings. Total concentrations of As in the mildly alkaline (pH = 8.7) portal drainage average 3034 μg/L whereas at the source they average 5898 μg/L. As emergent waters from the flooded workings flow toward the portal, their dissolved oxygen content and pH increase from 0 to 10 mg/L and from 7.7 to 9, respectively. Near the emergence point, dissolved Fe precipitates rapidly, sorbing both As(III) and As(V). With increasing distance from the emergence point, dissolved As(III) concentrations drop to detection limits through sorption on hydrous ferric oxide and through oxidation to As(V). Concentrations of dissolved As(V), on the other hand, increase and stabilize, reflecting lower sorption at higher pH and the lack of available sorbent. Nonetheless, based on synoptic surveys, approximately 35% of the source As load is sequestered in the adit resulting in As sediment concentrations averaging 8.5 wt%. The remaining average As load of 1.34 kg/d is discharged from the portal. Partitioning of As(V) between dissolved and particulate phases in portal effluent is characterized by a sorption density of 0.37 mol As (mol Fe)−1 and by a distribution coefficient (Kd) of 130 L/g HFO. The relatively high sorption density may reflect co-precipitation of As with Fe oxyhydroxides rather than a purely adsorption-controlled process. Results of this study show that the As self-mitigating capacity of drainage from orogenic lode gold deposits may be poor in high-pH and Fe-limited settings.  相似文献   

3.
《Applied Geochemistry》2005,20(11):1985-2002
Elevated levels of dissolved arsenic (∼300 μg L−1) have been detected beneath and in groundwater plumes extending away from a closed landfill in southern Maine. This study sought to determine the source of arsenic to the aquifer, the processes responsible for arsenic mobilization, and to evaluate the effectiveness of remediation efforts that have occurred at this site. The As appears to originate in the natural (glacial) aquifer solids, which contain ∼5 mg kg−1 As on a dry weight basis. This conclusion is supported by the relatively uniform distribution of As in sediment samples, results of laboratory batch incubation experiments, and comparisons with groundwaters in nearby wetlands, which also have high levels of dissolved As that do not appear to originate within the landfill. The As is mobilized in the subsurface by strongly reducing conditions beneath the landfill and in nearby wetlands. In the aquifer beneath the landfill, the average oxidation–reduction potential (ORP) is −95 mV (Eh + 105 mV), and these reducing conditions were primarily induced by landfill leachate. Remediation efforts at this site have included installation of a low permeability clay cap; groundwater extraction, oxidation, and re-injection; and subsurface oxidation by injection of magnesium peroxide. The natural source of arsenic within the aquifer solids, coupled with widespread reducing conditions, has severely limited the effectiveness of these interventions on groundwater arsenic concentrations.  相似文献   

4.
The old Senhora das Fontes uranium mine, in central Portugal, consists of quartz veins which penetrated along fracture shear zones at the contact between graphite schist and orthogneiss. The mine was exploited underground until a depth of 90 m and was closed down in 1971. The ores from this mine and two others were treated in the mine area by the heap-leach process which ended in 1982. Seven dumps containing a total of about 33,800 m3 of material and partially covered by natural vegetation were left in the mine area. A remediation process took place from May 2010 to January 2011. The material deposited in dumps was relocated and covered with erosion resisting covers. Surface water and groundwater were collected in the wet season just before the remediation, in the following season at the beginning of the remediation and also after the remediation in the following dry season. Before, at the beginning and after the remediation, surface water and groundwater have an acid-to-alkaline pH, which decreased with the remediation, whereas Eh increased. In general, before the remediation, uranium concentration was up to 83 μg/L in surface water and up to 116 μg/L in groundwater, whereas at the beginning of the remediation it increases up to 183 μg/L and 272 μg/L in the former and the latter, respectively, due to the remobilization of mine dumps and pyrite and chalcopyrite exposures, responsible for the pH decrease. In general, after the remediation, the U concentration decreased significantly in surface water and groundwater at the north part of the mine area, but increased in both, particularly in the latter up to 774 μg/L in the south and southwest parts of this area, attributed to the remobilization of sulphides that caused mobilization of metals and arsenic which migrated to the groundwater flow. Uranium is adsorbed in clay minerals, but also in goethite as indicated by the geochemical modelling. After the remediation, the saturation indices of oxyhydroxides decrease as pH decreases. The remediation also caused decrease in Cd, Co, Cr, Ni, Pb, Zn, Cu, As, Sr and Mn concentrations of surface water and groundwater, particularly in the north part of the mine area, which is supported by the speciation modelling that shows the decrease of most dissolved bivalent species. However, in general, after the remediation, Th, Cd, Al, Li, Pb, Sr and As concentrations increased in groundwater and surface water at south and southwest of the mine area. Before and after the remediation, surface water and groundwater are contaminated in U, Cd, Cr, Al, Mn, Ni, Pb, Cu and As. Remediation caused only some improvement at north of the mine area, because at south and southwest part, after the remediation, the groundwater is more contaminated than before the remediation.  相似文献   

5.
We explore the possibility of building a continuous glacier reconstruction by analyzing the integrated sedimentary response of a large (440 km2) glacierized catchment in western Norway, as recorded in the downstream lake Nerfloen (N61°56’, E6°52’). A multi-proxy numerical analysis demonstrates that it is possible to distinguish a glacier component in the ~ 8000-yr-long record, based on distinct changes in grain size, geochemistry, and magnetic composition. Principal Component Analysis (PCA) reveals a strong common signal in the 15 investigated sedimentary parameters, with the first principal component explaining 77% of the total variability. This signal is interpreted to reflect glacier activity in the upstream catchment, an interpretation that is independently tested through a mineral magnetic provenance analysis of catchment samples. Minimum glacier input is indicated between 6700–5700 cal yr BP, probably reflecting a situation when most glaciers in the catchment had melted away, whereas the highest glacier activity is observed around 600 and 200 cal yr BP. During the local Neoglacial interval (~ 4200 cal yr BP until present), five individual periods of significantly reduced glacier extent are identified at ~ 3400, 3000–2700, 2100–2000, 1700–1500, and ~ 900 cal yr BP.  相似文献   

6.
Remediation of 56 ML of acidic, contaminant-laden Baal Gammon mine pit water was undertaken using in situ hydrotalcite formation. The pit water composition was modified via the addition of MgCl2·6H2O to form a 2.5:1 M2+:M3+ metal ion ratio followed by the addition of NaOH to increase the pH 10 to induce spontaneous hydrotalcite precipitation. As a result of the in situ hydrotalcite precipitation a broad spectrum of elements of environmental concern including Al, Cd, Co, Cr, Cu, Fe, In, Mn, Mo, Ni, V and Zn were removed from solution. Significantly, an ore grade hydrotalcite precipitate containing Cu (8.0 ± 1.0%) and Zn (3.9 ± 0.5%) was produced directly from the mine pit water column allowing for potential recovery of valuable metals to offset remediation costs. The final water quality produced after in situ remediation was of a simple Na–Cl–SO4 type.  相似文献   

7.
《Applied Geochemistry》2005,20(8):1533-1545
Spring waters were analysed in the field by anodic stripping voltammetry, using equipment which is sufficiently portable to be useful in a remote heavily forested area accessible by foot only. The equipment and techniques are capable of producing analyses on site to the μg/L level for labile metals. Field analysis avoids issues of sample storage and transport protocols that limit confidence in laboratory measurements of labile elements. Samples were taken as a feedback to immediate analysis resulting in a fine grid map of the geological site. Acid rock drainage emanates from a New Zealand historic mine site, with elevated concentrations of metals. However, ground water and surface water discharging naturally from mineralised rocks in the same area also have elevated levels of metals. This study quantifies natural metalliferous discharges from a single site, and compares this to the overall metal flux from the mine area. Acid (pH 3) metalliferous springs emanate from colluvium and bedrock in a young (months-old) landslide. Labile Cu, Pb, Zn and Cd are the environmentally most significant metals in the studied area. Labile metal concentrations observed in the natural springs are up to 24 μg/L Cu, up to 50 μg/L Pb, up to 5 μg/L Cd and up to 9 mg/L Zn. Labile Cu and Zn concentrations are similar to laboratory-determined total concentrations, whereas labile Pb and Cd concentrations are generally distinctly lower than total Pb and Cd concentrations. Four different spring water compositions occur within metres of each other: acid metalliferous water with high Pb, acid metalliferous water with low Pb, high Cu, Pb, Zn acid water and high pH water with elevated Cu. High metal concentrations in these waters are readily attenuated by adsorption to Fe oxyhydroxides (HFO), especially when rain raises spring water pH at the surface. Copper, Pb and Cd are >99% adsorbed, and Zn >95% adsorbed, during this rainfall dilution. Natural spring waters have potential to contribute up to 10% of the total Zn flux from the catchment, but negligible proportions of Cu, Pb and Cd.  相似文献   

8.
The Pantanal is the world's largest tropical wetland and a biodiversity hotspot, yet its response to Quaternary environmental change is unclear. To address this problem, sediment cores from shallow lakes connected to the Upper Paraguay River (PR) were analyzed and radiocarbon dated to track changes in sedimentary environments. Stratal relations, detrital particle size, multiple biogeochemical indicators, and sponge spicules suggest fluctuating lake-level lowstand conditions between ~ 11,000 and 5300 cal yr BP, punctuated by sporadic and in some cases erosive flood flows. A hiatus has been recorded from ~ 5300 to 2600 cal yr BP, spurred by confinement of the PR within its channel during an episode of profound regional drought. Sustained PR flooding caused a transgression after ~ 2600 cal yr BP, with lake-level highstand conditions appearing during the Little Ice Age. Holocene PR flood pulse dynamics are best explained by variability in effective precipitation, likely driven by insolation and tropical sea-surface temperature gradients. Our results provide novel support for hypotheses on: (1) stratigraphic discontinuity of floodplain sedimentary archives; (2) late Holocene methane flux from Southern Hemisphere wetlands; and (3) pre-colonial indigenous ceramics traditions in western Brazil.  相似文献   

9.
Black carbon (BC), especially biochar, is a potential material for the remediation of hydrophobic organic compounds (HOCs) pollution in soils and sediments. Recent studies have reported that the adsorption capability of BC in sediment was reduced as time increased. It was hypothesised that this behaviour was caused by the presence of natural organic matter (NOM), but few systematic studies have examined the influence of NOM on the sorption ability of BC in sediment (S). The results of this study revealed that a humic acid (HA) coating changed the surface properties, blocked the micropores, and decreased the sorption capacity of rice-straw biochar (RBC) towards pentachlorophenol. With increasing aging time, the reductions in the sorption capacity of the S + RBC and S + HA + RBC systems occurred more rapidly than in the S + HA/RBC (HA-coated RBC) system, and the sorption curves became closer to that of the S + HA/RBC system, indicating that HA may play a primary role in reducing the sorption capacity of RBC in the sediment. With higher HA contents, the sorption capacity of the complex sediments was lower and decreased more rapidly.  相似文献   

10.
《Applied Geochemistry》2006,21(2):377-403
Predictions of mine-related water pollution are often based on laboratory assays of mine-site material. However, many of the factors that control the rate of element release from a site, such as pH, water–rock ratio, the presence of secondary minerals, particle size, and the relative roles of surface-kinetic and mineral equilibria processes can exhibit considerable variation between small-scale laboratory experiments and large-scale field sites.Monthly monitoring of mine effluent and analysis of natural geological material from four very different mine sites have been used to determine the factors that control the rate of element release and mineral sources and sinks for major elements and for the contaminant metals Zn, Pb, and Cu. The sites are: a coal spoil tip; a limestone-hosted Pb mine, abandoned for the last 200 a; a coal mine; and a slate-hosted Cu mine that was abandoned 150 a ago. Hydrogeological analysis of these sites has been performed to allow field fluxes of elements suitable for comparison with laboratory results to be calculated. Hydrogeological and mineral equilibrium control of element fluxes are common at the field sites, far more so than in laboratory studies. This is attributed to long residence times and low water–rock ratios at the field sites. The high water storativity at many mine sites, and the formation of soluble secondary minerals that can efficiently adsorb metals onto their surfaces provides a large potential source of pollution. This can be released rapidly if conditions change significantly, as in, for example, the case of flooding or disturbance.  相似文献   

11.
The bio-diversity (vegetation and fauna) of peatlands, like all wetland ecosystems, is very fragile as it requires specific wet conditions. Over the past 20 years, increasing efforts have been made to restore degraded wetlands, to re-create new wetlands where they were lost, and to sustainably manage for multiple benefits. However, actions to restore and preserve wetlands require an in-depth knowledge of the water cycle in the system. We used chemical and multi-isotopic approaches, combined with hydrological tools (measuring potentiometric levels and spring discharge), for tracing the water and dissolved-element fluxes in the Narces de la Sauvetat peatland (Central France) and for better understanding of water budget components involved in this ecosystem. This multi-pronged approach clearly demonstrated its effectiveness for improving our understanding of the hydrological functioning of this wetland ecosystem. The two main results are that: (1) The water volume flowing out of the peatland through the Fouragettes stream is often negligible; and (2) At least three strong groundwater fluxes with distinct chemical and isotopic signatures supply water to the peatland. This new understanding will help decision makers maintain the water balance of the peatland, which is essential for the preservation of this fragile ecosystem.  相似文献   

12.
Redox buffering is one important factor to be considered when assessing the barrier function of potential host rocks for a deep geological repository for long-lived radioactive waste. If such a repository is to be sited in fractured crystalline host rock it must be demonstrated that waste will be emplaced deeper than the maximum depth to which oxidizing waters can penetrate from the earth’s surface via fractures, during the assessment timeframe (typically 1 Ma). An analogue for penetration of such oxidizing water occurs in the Cretaceous Toki Granite of central Japan. Here, a deep redox front is developed along water-conducting fractures at a depth of 210 m below the ground surface. Detailed petrographical studies and geochemical analyses were carried out on drill core specimens of this redox front. The aim was to determine the buffering processes and behavior of major and minor elements, including rare earth elements (REEs), during redox front development. The results are compared with analytical data from an oxidized zone found along shallow fractures (up to 20 m from the surface) in the same granitic rock, in order to understand differences in elemental migration according to the depth below the ground surface of redox-front formation. Geochemical analyses by XRF and ICP-MS of the oxidized zone at 210 m depth reveal clear changes in Fe(III)/Fe(II) ratios and Ca depletion across the front, while Fe concentrations vary little. In contrast, the redox front identified along shallow fractures shows strong enrichments of Fe, Mn and trace elements in the oxidized zone compared with the fresh rock matrix. The difference can be ascribed to the changing Eh and pH of groundwater as it flows downwards in the granite, due to reactions with rock forming minerals, in particular feldspar dissolution. These observations give important insights into the processes that control the rates of redox front penetration in fractured crystalline rock. The findings of the study can be used to help build confidence among stakeholders that radioactive waste would be emplaced in such rocks at greater depth than that to which oxidizing water is likely to penetrate in future.  相似文献   

13.
The Congo River basin drains the second largest area of tropical rainforest in the world, including a large proportion of pristine wetlands. We present the bacteriohopanepolyol (BHP) inventory of a suite of tropical soils and, from comparison with published data, propose some initial ideas on BHP distribution controls. Strong taxonomic controls on BHP production are evident in wetland sediments. Dominant within the suite were 35-aminobacteriohopane-31,32,33,34-tetrol (aminotetrol) and 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol), indicating aerobic methanotrophy. A narrow range and low mean relative abundance of 30-(5′-adenosyl)hopane (adenosylhopane) and related compounds, collectively termed “soil marker” BHPs, were observed in Congo soils (mean 17%, range 7.9–36% of total BHPs, n = 22) compared with literature data from temperate surface soils and Arctic surface soils (mean 36%, range 0–66% of total BHPs, n = 28) suggesting a greater rate of conversion of these BHP precursors to other structures.  相似文献   

14.
The physicochemical processes that affect acid mine drainage (AMD) in unsaturated waste rock piles and the capabilities of small-scale laboratory experiments to predict AMD from waste rock are not well understood. An integrated laboratory and field study to measure and compare low sulfide waste rock and drainage characteristics at various scales has been initiated. This paper describes the design, construction and instrumentation of three field-scale experimental waste rock piles (test piles), and six active zone lysimeters at the Diavik diamond mine in the Northwest Territories, Canada. The test piles are comprised of granitic and sulfide-bearing metasedimentary waste rock excavated during open pit mining operations. One test pile contains waste rock with a target S content of <0.04 wt.% S; the second test pile contains waste rock with a target S content of >0.08 wt.% S; and the third test pile contains the higher sulfide waste rock (>0.08 wt.% S) and was re-sloped and capped with a low permeability till layer and a low sulfide waste rock cover. The first two test piles are approximately 15 m high with bases of 50 m by 60 m, and the re-sloped test pile has a larger base of 80 m by 125 m. Instrumentation was selected to measure matrix flow, geochemistry of pore water and drainage, gas-phase O2 concentration, temperature evolution, microbiological populations, waste rock permeability to air, and thermal conductivity, as well as to resolve mass and flow balances. Instrument locations were selected to characterize coupled physicochemical processes at multiple scales and the evolution of those processes over time. Instruments were installed at a density such that the number of instruments that survived construction (40% to >80% by instrument type) was sufficient to allow adequate characterization of the physicochemical processes occurring at various scales in the test piles.  相似文献   

15.
《Applied Geochemistry》2006,21(10):1799-1817
Release of acid drainage from mine-waste disposal areas is a problem of international scale. Contaminated surface water, derived from mine wastes, orginates both as direct surface runoff and, indirectly, as subsurface groundwater flow. At Camp Lake, a small Canadian Shield lake that is in northern Manitoba and is ice-covered 6 months of the year, direct and indirect release of drainage from an adjacent sulfide-rich tailings impoundment has severely affected the quality of the lake water. Concentrations of the products from sulfide oxidation are extremely high in the pore waters of the tailings impoundment. Groundwater and surface water derived from the impoundment discharge into a semi-isolated shallow bay in Camp Lake. The incorporation of this aqueous effluent has altered the composition of the lake water, which in turn has modified the physical limnology of the lake. Geochemical profiles of the water column indicate that, despite its shallow depth (6 m), the bay is stratified throughout the year. The greatest accumulation of dissolved metals and SO4 is in the lower portion of the water column, with concentrations up to 8500 mg L−1 Fe, 20,000 mg L−1 SO4, 30 mg L−1 Zn, 100 mg L−1 Al, and elevated concentrations of Cu, Cd, Pb and Ni. Meromictic conditions and very high solute concentrations are limited to the bay. Outside the bay, solute concentrations are lower and some stratification of the water column exists. Identification of locations and composition of groundwater discharge relative to lake bathymetry is a fundamental aspect of understanding chemical evolution and physical stability of mine-impacted lakes.  相似文献   

16.
Adsorption onto Fe-containing minerals is a well-known remediation method for As-contaminated water and soil. In this study, the use of acid mine drainage sludge (AMDS) to adsorb As was investigated. AMDS is composed of amorphous particles and so has a large surface area (251.2 m2 g−1). Here, adsorption of both arsenite and arsenate was found to be almost 100%, under various initial AMDS dosages, with the arsenate adsorption rate being faster. The optimum pH for As adsorption onto AMDS was pH 7.0 and the maximum adsorption capacities for arsenite and arsenate were 58.5 mg g−1 and 19.7 mg g−1 AMDS, respectively. In addition, experiments revealed that AMDS dosages decreased As release from contaminated soil. Therefore, the AMDS used in this study was confirmed to be a suitable candidate for immobilizing both arsenite and arsenate in contaminated soils.  相似文献   

17.
《Applied Geochemistry》2006,21(7):1093-1108
Peña del Hierro is an abandoned mine site located in the catchment area of the Tinto river (Pyrite Belt, SW Spain). As leaching from the spoils affect the quality of the stream water, the waste dumps have been characterized for mineralogy, geochemistry and granulometry to obtain an estimate of the potential pollution. Waste rock dumps in Peña del Hierro are very heterogeneous and are mainly composed of acid volcanic tuffs > gossan > shales > roasted pyrite ashes > floated pyrite. The volcanic tuffs, the gossan and the shales coexist in the same piles. The roasted pyrite ashes and the floated pyrite form more homogeneous dumps. The dissolution of pyrite concentrated in pyrite ashes and floated pyrite units can generate acid mine drainage. Nevertheless, acid volcanic tuffs, which are rich in pyrite and have no neutralizing minerals, are the main source of these acidic effluents. Only muscovite might partially neutralize the acidity, but the dissolution of this mineral is too slow to compensate for acidity. The occurrence of jarosite in the <2 mm fraction indicates that extreme acid mine drainage occurs. The gossan and roasted pyrite ashes have high contents of trace elements. According to their concentration, As (46–1710 ppm), Pb (113–3455 ppm) and Hg (0–53) are some of the most important toxic trace elements in these wastes. In dumps mainly composed of volcanic tuffs most of the trace elements derive from the gossan mixed in the piles. Gossan is stable in an oxidizing environment, but acidic effluents (pH < 2) can dissolve Fe oxyhydroxides from them and release high amounts of trace elements to the stream water. This research contributes to estimating the production of acid mine drainage and the actual contamination risk of potentially toxic elements in soils and waters of this area, and could be the base for possible future mitigation actions in other areas affected by mining wastes.  相似文献   

18.
Few sites on the eastern Great Plains contain paleobotanical records for the mid-Wisconsin. We report on four sites, two stream cutbanks and two quarry exposures, ranging in age from >50 to ~23.4 ka. The oldest site at >50 ka contains a suite of macrofossils from prairie and disturbed ground habitats, with no representation of trees, indicating an open prairie. By ~38 ka the assemblages include aquatic, wetland, mudflat, and prairie elements with rare specimens of Populus, Betula cf. papyrifera, Salix and at the most northerly site, Picea. This assemblage suggests a prairie/parkland with interspersed marshes, cooler temperatures and increased moisture. Populus and Salix continued to be represented from ~36 to ~29 ka, but the only other taxon was Carex. A hiatus may be present at some time during this interval. After ~29 ka, Picea became dominant on the uplands and it was joined by sedges in local wetlands. At sites near riverine loess sources, loess accumulation began to fill in the wetlands and organic deposition ceased some time after 29 ka.  相似文献   

19.
Titratable actual acidity (TAA) is a technique commonly used to estimate the existing pool of exchangeable H+ in acid sulfate soils (ASS). A widely adopted version of the TAA method involves titrating a 1M KCl suspension of oven-dry soil (1:40) with NaOH to a known pH endpoint. However, when ASS are subject to long term re-flooding during wetland remediation, former sulfuric horizons can develop substantial quantities of porewater Fe2+, non-sulfidic solid-phase Fe(II) and a variety of reduced inorganic sulfur (RIS) species (e.g. pyrite, mackinawite, greigite and elemental sulfur). For these sediments, an oven-drying approach may induce oxidation of the abundant Fe(II) and/or reactive RIS species, thereby generating H+ and leading to overestimation of existing in situ exchangeable H+. In this study, we compare TAA via the standard approach (1M KCl; 1:40; oven-dry soil, 4 hr extract; TAAD) with an identical O2-free extraction approach using wet-sediment (TAAW). We apply both methods to former sulfuric horizon sediments from freshwater re-flooded ASS wetlands. There are significant (α = 0.01) differences (up to 12×) between TAA measured by the two methods, with the oven-dried standard approach overestimating TAA relative to the wet, O2-free approach in 85% of cases. Despite the fact that all AVS-S and some S(0) was oxidised during the oven-drying process, the increases in TAA (TAAD–TAAW) show very weak correlation(s) with corresponding losses in RIS species or increases in water soluble sulfate and KCl extractable sulfate. However, oven-drying caused substantial loss of 1M KCl exchangeable Fe(II) and 1 M HCl-extractable Fe(II) and led to large increases in 1 M HCl-extractable Fe(III). These changes in Fe fractions displayed strong positive linear correlation (α = 0.01) with increases in TAA. Although this is not evidence of causality, it suggests that oxidation of Fe(II) species are playing an important role in the development of additional exchangeable H+ and may be largely responsible for the contrasting TAA derived by the two methods. The differences in TAA between the two methods are greatest in organic-rich surface sediments and are significantly positively correlated with total organic carbon content. These findings have major implications for accurately assessing TAA in re-flooded ASS wetlands.  相似文献   

20.
Documenting whether surface water catchments are in net chemical mass balance is important to understanding hydrological systems. Catchments that export significantly greater volumes of solutes than are delivered via rainfall are not in hydrologic equilibrium and indicate a changing hydrological system. Here an assessment is made of whether a saline catchment in southeast Australia is in chemical mass balance based on Cl. The upper reaches of the Barwon River, southeast Australia, has total dissolved solids, TDS, concentrations of up to 5860 mg/L and Cl concentrations of up to 3370 mg/L. The high river TDS concentrations are due to the influxes of groundwater with TDS concentrations of up to 68,000 mg/L. Between 1989 and 2011, the median annual Cl flux from the upper Barwon catchment was 17.8 × 106 kg (∼140 kg/a/ha). This represents 340–2230% of the annual Cl input by rainfall to the catchment. Major ion and stable isotope geochemistry indicate that the dominant source of solutes in the catchment is evapotranspiration of rainfall, precluding mineral dissolution as a source of excess Cl. The upper Barwon catchment is not in chemical mass balance and is a net exporter of solutes. The chemical imbalance may reflect the transition within the last 100 ka from an endorheic lake system where solutes were recycled producing shallow groundwater with high TDS concentrations to a better drained catchment. Alternatively, a rise in the regional water table following land clearing may have increased the input of groundwater with high TDS concentrations to the river system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号