首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 211 毫秒
1.
《Applied Geochemistry》2006,21(11):1969-1985
Gossan Creek, a headwater stream in the SE Upsalquitch River watershed in New Brunswick, Canada, contains elevated concentrations of total Hg (HgT up to 60 μg/L). Aqueous geochemical investigations of the shallow groundwater at the headwaters of the creek confirm that the source of Hg is a contaminated groundwater plume (neutral pH with Hg and Cl concentrations up to 150 μg/L and 20 mg/L, respectively), originating from the Murray Brook mine tailings, that discharges at the headwaters of the creek. The discharge area of the contaminant plume was partially delineated based on elevated pH and Cl concentrations in the groundwater. The local groundwater outside of the plume contains much lower concentrations of Hg and Cl (<0.1 μg/L and 3.8 mg/L, respectively) and displays the chemical characteristics of an acid-sulfate weathering system, with low pH (4.1–5.5) and elevated concentrations of Cu, Zn, Pb and SO4 (up to 5400 μg Cu/L, 8700 μg Zn/L, 70 μg Pb/L and 330 mg SO4/L), derived from oxidation of sulfide minerals in the Murray Brook volcanogenic massive sulfide deposit and surrounding bedrock. The HgT mass loads measured at various hydrologic control points along the stream system indicate that 95–99% of the dissolved HgT is attenuated in the first 3–4 km from the source. Analyses of creek bed sediments for Au, Ag, Cu, Zn, Pb and Hg indicate that these metals have partitioned strongly to the sediments. Mineralogical investigations of the contaminated sediments using analytical scanning electron microscopy (SEM), transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM), reveal discrete particles (<1–2 μm) of metacinnabar (HgS), mixed Au–Ag–Hg amalgam, Cu sulfide and Ag sulfide.  相似文献   

2.
《Applied Geochemistry》2006,21(11):1986-1998
Elevated concentrations of Hg are present (averaging 36 μg/g), mainly as cinnabar, in the Murray Brook Au deposit, located in northern New Brunswick, Canada. After the mined ore was subjected to CN leaching, the tailings were deposited in an unsaturated pile, and 10 a after mine closure an estimated 4.7 × 103 kg of CN and 1.1 × 104 kg of Hg remain in the pile. Elevated Hg concentrations have been measured in the groundwater (up to 11,500 μg/L) and surface water (up to 32 μg/L) down-gradient of the tailings. To investigate the controls on Hg mobility and leaching persistence, laboratory experiments were conducted using unsaturated columns filled with tailings. Within the first 0.2 pore volumes (PV) eluted, the concentrations of Hg and CN increased to peak concentrations of 12,900 μg Hg/L and 16 mg CN/L, respectively. In the subsequent 0.9 PV, concentrations decreased to approximately 1300 μg Hg/L and 2.8 mg CN/L. Thermodynamic calculations demonstrate that >99.8% of the mobilized Hg in the tailings pore water is in the form of Hg–CN complexes, indicating that Hg mobility to the surrounding aquatic environment is directly dependent on the rate of CN leaching. One-dimensional transport simulations suggest that leached CN can be partitioned into conservative (24%) and non-conservative (76%) fractions. Extrapolation of simulation results to the field scale suggests that CN, and by extension Hg, will continue to elute from the tailings for at least an additional 130 a.  相似文献   

3.
The present study investigates the bioavailability, soil to plant transfer and health risks of arsenic (As) in the coastal part of Chianan Plain in southwestern Taiwan. Groundwater used for irrigation, surface soils from agricultural lands and locally grown foodstuffs were collected from eight locations and analyzed for As to assess the risks associated with consuming these items. The concentration of As in groundwater ranged from 13.8 to 881 μg/L, whereas surface soil showed total As content in the range of 7.92–12.7 mg/kg. The available As content in surface soil accounted for 0.06–6.71% of the total As content, and was significantly correlated with it (R2 = 0.65, p < 0.05). Among the leachable fraction, the organic matter (3.23–54.8%) and exchangeable portions of oxides (6.03–38.4%) appear to be the major binding phases of As. The average As content in fourteen studied crops and vegetables varied from 10.3 to 151 μg/kg with maximum in mustard and minimum in radish. All the plants showed considerably higher As content (21.5 ± 3.64–262 ± 36.2 μg/kg) in their roots compared to the edible parts (9.15 ± 1.44–75.8 ± 22.9 μg/kg). The bioaccumulation factor (BAF) based on total As (ranging from 0.0009 to 0.144) and available As in soil (ranging from 0.039 to 0.571) indicate that mustard, rice, amaranth and spinach are the highest accumulators of As. Although the health risk index (HRI) of the studied crops and vegetables ranged from only 0.0068–0.454, with the maximum in rice, the combined HRI indicates an alarming value of 0.88. Therefore, the possible health risks due to long-term consumption of rice and other As-rich foodstuffs could be overcome by controlling the contamination pathways in the water–soil–plant system.  相似文献   

4.
《Precambrian Research》2007,152(3-4):149-169
U–Pb zircon and baddeleyite ages, and geochemical and Nd isotopic data, are reported for a ultramafic–mafic-carbonatite complex and granites in Quruqtagh of northeastern Tarim Block, NW China. The carbonatite and plagioclase-bearing pyroxenite from the Qiganbulake mafic–ultramafic-carbonatite ring complex (QMC), the Xingdi granodiorite and the Taiyangdao granite were emplaced at 810 ± 6, 818 ± 11, 820 ± 10 and 795 ± 10 Ma (95% confidence level), respectively. The QMC is composed of dunite, apatite- and/or feldspar-bearing pyroxenite, pyroxenite, phlogopitelite and carbonatite. Petrography, geochemistry and mineral chemistry suggest that the QMC rocks were generated by partial melting of a CO2-metasomatized mantle in a rifting environment. The Xingdi and Taiyangdao granitoids possess high LREE, Na2O/K2O, Sr/Y, (La/Yb)N ratios and low HREE and HFSE contents, similar to modern adakites. However, they have lower MgO (or Mg#), Cr and Ni contents and unradiogenic Nd isotopes (pronounced negative ɛNd(t) value of −12.7 to −17.3 and Neoarchaean Nd model ages) than slab-derived adakites. Thus, they were likely formed by partial melting of Neoarchaean mafic protoliths in the lower crust, leaving behind a granulite residue. The QMC and the granitoids in Quruqtagh constitute a bimodal intrusive suite in a Neoproterozoic continental rift setting, possibly related to mantle plume activities beneath the Rodinian supercontinent.  相似文献   

5.
The Wenjiaping and Wulaxi granite plutons are located in the Jianglang dome, which is a key domain for providing deep insight into the tectonic evolution of the Songpan-Ganzi Orogen. Two granites are composed chiefly of K-feldspar, quartz, biotite with minor plagioclase and hornblende. This study presents zircon U-Pb chronology, geochemistry and Hf isotope data to explore their petrogenesis and metallogenic implications. Zircon U-Pb dating provides crystallization ages of 164.5 ± 0.9 Ma and 163.4 ± 0.9 Ma for the Wenjiaping granite, and 164.3 ± 1.7 Ma for the Wulaxi granite. This indicates that they were formed synchronously. They also contain inherited zircons related to the Rodinia and Gondwana supercontinents and the Emeishan large igneous province. Their mineral assemblages lack peraluminous (e.g., garnet and cordierite) and high-temperature (e.g., pyroxene and fayalite) minerals. They are characterized by low A/CNK (1.10–0.99), FeOT/MgO (8.55–2.83) and K2O/N2O ratios (1.34–0.51) with low Zr + Nb + Ce + Y concentrations (average 258 ppm) and zircon saturation temperatures (781–651 °C). Their Al2O3, P2O5 and SiO2 contents show negative correlations, and they thus fit the I-type granite definition. Some major and trace elements exhibit strong correlations, implying extensive fractional crystallization (e.g., hornblende and ilmenite) during the magma evolution. Two granites show enrichment in light rare earth elements and large ion lithophile elements, and depletion in high field strength elements. They have low Mg# values (38.7–17.3) and Y/Nb ratios (0.45–0.16), and yield dominantly negative εHf(t) values (1.4–−13.9), indicating a heterogeneous source and their derivation from remelting of ancient continental crust (e.g., Mesoproterozoic Liwu Group in this region) with minor juvenile crust. Combined with prior studies, we conclude that the Wenjiaping and Wulaxi granites were formed in a post-collisional extensional regime, and were responsible for the 163.7–151.1 Ma magmatic hydrothermal Cu-W mineralization in the Jianglang dome. In addition, two granite plutons intrude this dome and they are undeformed, implying that the doming was during the Early to Middle Jurassic.  相似文献   

6.
Kahoolawe volcano (~10×17 km) forms one of the eight major Hawaiian islands. Access for geologic sampling has long been restricted due to military and preservation policies. However, limited visits to Kahoolawe in the 1980s yielded >200 samples, many of which have since been used to study the volcano within the framework of Hawaiian shield and mantle source geochemistry, petrology, mineralogy, and igneous processes.Kahoolawe is a tholeiitic shield with tholeiitic caldera-filling lavas, and at least seven postshield vents that erupted tholeiitic and (sparse) alkalic lavas. On smaller scales are a gabbro intrusion and ultramafic and gabbroic xenoliths in some postshield lavas. There is no evidence for rejuvenated volcanism. In its structural setting, Kahoolawe lies along the “Loa” trend of Hawaiian shields.Major element compositions of shield and caldera-filling lavas are similar and cluster at ~6–7 wt% MgO, range from ~5.5 to 16 wt% MgO, and include ~9 wt% MgO examples that can be modeled as parental to the evolved lavas. For example, least squares mass balancing demonstrates that from ~15% to 30% crystallization of olivine (±orthopyroxene), clinopyroxene, and plagioclase accounts for the ~5.5–6 wt% MgO range of tholeiitic lavas. Greater differentiation occurred in the gabbro (diabasic) intrusive body as a segregation vein with ~2.9 wt% MgO, and extreme differentiation produced local, small-volume rhyolitic melts that segregated into lava vesicles. Postshield lavas are mainly tholeiitic, have ~5–7 wt% MgO, and overlap shield compositions. Some are alkalic, as low as ~3.9 wt% MgO (hawaiite), and can be modeled as liquids after a ~9 wt% MgO alkalic magma crystallized ~30% olivine, clinopyroxene, plagioclase, and magnetite.Important aspects of Sr, Nd, Hf, and Pb isotopic ratios in Kahoolawe shield and caldera-filling lavas are slightly higher 87Sr/86Sr than in Koolau shield lavas (Oahu island; Makapuu-stage; e.g., Koolau mantle ‘endmember’) when compared at a given 143Nd/144Nd (e.g., ~0.7042 at 0.5128), 206Pb/204Pb largely at the low end of the range for Hawaiian shields (e.g., ~18), and εHf generally comparable to the values of other Hawaiian shields and ocean islands (e.g., εHf 8 at εNd 4). The isotopic ratios overall suggest small-scale source heterogeneity, considering the island size, and that Kahoolawe shield and caldera lavas were derived from a Hawaiian plume source containing recycled oceanic crust of gabbro and sediments. Based on certain geochemical indicators, however, such as Ce/Sr and La/Nb vs. 87Sr/86Sr, the source contained slightly less gabbro component than other shield sources (e.g., Koolau). Isotopic data for Kahoolawe postshield lavas are scarce, but those available generally overlap the shield data. However, ratios among certain alteration-resistant incompatible trace elements (e.g., Zr/Nb) discriminate some postshield alkalic from shield lavas. But because the different ratios for those postshield lavas can be explained by smaller partial-melting percentages of the shield source and by differentiation, neither isotopes nor trace elements identify postshield magmas as originating in a source unlike that for the shield lavas.  相似文献   

7.
Mountain soils store huge amounts of carbon which may be highly vulnerable to the strong land use and climate changes that mountain areas currently experience worldwide. Here, we tested the Rock–Eval (RE) pyrolysis as a proxy technique to (i) quantify soil organic carbon (SOC) stocks, (ii) bring insights into SOC bulk chemistry and (iii) investigate biogeochemical stability at the landscape scale in a mountain area of the French calcareous Prealps. A total of 109 soils from 11 eco-units representing the variety of ecosystems of the study area were analyzed with RE pyrolysis. RE pyrolysis showed an excellent predictive performance (R2 = 0.99) for SOC content even in calcareous soils. The technique revealed specific chemical fingerprints for some eco-units and soil types, with decreasing hydrogen index values from Anthroposols (425 ± 62 mg HC/g SOC) to Umbrisols, Leptosols (311 ± 49 mg HC/g SOC) and to Cambisols (278 ± 35 mg HC/g SOC), associated with an increase in SOC maturation. Newly developed RE pyrolysis indices revealed the high stability of SOC in most eco-units developed on Cambisols (acidic grasslands, alpine meadows, bushy facies) and a significantly lower stability of SOC in mountain ridges, sheepfold areas and coniferous forest soils. The persistence of SOC in this mosaic of ecosystems may depend not only on its chemistry or thermal stability, but also on local environmental factors such as climatic conditions or pH, especially for high altitude soils. Overall, RE pyrolysis appears as an appropriate tool for landscape scale carbon inventories and could become a standardized proxy for assessing the vulnerability of SOC stocks.  相似文献   

8.
This study investigates the concentration and spatial distribution of Cu, Zn, Hg and Pb in the surface (0–2 cm) soils of a regional city in Australia. Surface soils were collected from road sides and analysed for their total Cu, Zn, Hg and Pb concentrations in the <180 μm and <2 mm grain size fractions. The average metal concentration of surface soils, relative to local background soils at 40–50 cm depth, are twice as enriched in Hg, more than three times enriched in Cu and Zn, and nearly six times as enriched in Pb. Median surface soil metal concentration values were Cu – 39 mg/kg (682 mg/kg max), Zn – 120 mg/kg (4950 mg/kg max), Hg – 44 μg/kg (14,900 μg/kg max) and Pb – 46 mg/kg (3490 mg/kg max). Five sites exceeded the Australian NEPC (1999) 300 mg/kg guideline for Pb in residential soils. Strong positive correlations between Cu, Zn and Pb, coupled with the spatial distribution of elevated soil concentrations towards the city centre and main roads suggest traffic and older housing as major sources of contamination. No spatial relationships were identified between elevated metal loadings and locations of past or present industries.  相似文献   

9.
Rock magnetic and palaeomagnetic studies were performed on Mesozoic redbeds collected from the central and southern Laos, the northeastern and the eastern parts of the Khorat Plateau on the Indochina Block. Totally 606 samples from 56 sites were sampled and standard palaeomagnetic experiments were made on them. Positive fold tests are demonstrated for redbeds of Lower and Upper Cretaceous, while insignificant fold test is resulted for Lower Jurassic redbeds. The remanence carrying minerals defined from thermomagnetic measurement, AF and Thermal demagnetizations and back-field IRM measurements are both magnetite and hematite. The positive fold test argues that the remanent magnetization of magnetite or titanomagnetite and hematite in the redbeds is the primary and occurred before folding. The mean palaeomagnetic poles for Lower Jurassic, Lower Cretaceous, and Upper Cretaceous are defined at Plat./Plon. = 56.0°N/178.5°E (A95 = 2.6°), 63. 3°N/170.2°E (A95 = 6.9°), and 67.0°N/180.8°E (A95 = 4.9°), respectively. Our palaeomagnetic results indicate a latitudinal translations (clockwise rotations) of the Indochina Block with respect to the South China Block of −10.8 ± 8.8° (16.4 ± 9.0°); −11.1 ± 6.2° (17.8 ± 6.8°); and −5.3 ± 4.7° (13.3 ± 5.0°), for Lower Jurassic, Lower Cretaceous, and Upper Cretaceous, respectively. These results indicate a latitudinal movement of the Indochina Block of about 5–11° (translation of about 750–1700 km in the southeastward direction along the Red River Fault) and clockwise rotation of 13–18° with respect to the South China Block. The estimated palaeoposition of the Khorat Plateau at ca. 21–26°N during Jurassic to Cretaceous argues for a close relation to the Sichuan Basin in the southwest of South China Block. These results confirm that the central part of the Indochina Block has acted like a rigid plate since Jurassic time and the results also support an earlier extrusion model for Indochina.  相似文献   

10.
Black carbon (BC), especially biochar, is a potential material for the remediation of hydrophobic organic compounds (HOCs) pollution in soils and sediments. Recent studies have reported that the adsorption capability of BC in sediment was reduced as time increased. It was hypothesised that this behaviour was caused by the presence of natural organic matter (NOM), but few systematic studies have examined the influence of NOM on the sorption ability of BC in sediment (S). The results of this study revealed that a humic acid (HA) coating changed the surface properties, blocked the micropores, and decreased the sorption capacity of rice-straw biochar (RBC) towards pentachlorophenol. With increasing aging time, the reductions in the sorption capacity of the S + RBC and S + HA + RBC systems occurred more rapidly than in the S + HA/RBC (HA-coated RBC) system, and the sorption curves became closer to that of the S + HA/RBC system, indicating that HA may play a primary role in reducing the sorption capacity of RBC in the sediment. With higher HA contents, the sorption capacity of the complex sediments was lower and decreased more rapidly.  相似文献   

11.
The large-scale Duobaoshan porphyry Cu–Mo–(Au) deposit is located at the north segment of the Da Hinggan Mountains, northeast China. Six molybdenite samples from the Duobaoshan deposit were selected for Re–Os isotope measurement to define the mineralization age of the deposit, yieldings a Re–Os isochron age of 475.9 ± 7.9 Ma (2σ), which is accordant with the Re–Os model ages of 476.6 ± 6.9–480.2 ± 6.9 Ma. This age is consistent with the age of the related granodiorite porphyry, which was dated as 477.2 ± 4 Ma by zircon U–Pb analysis using LA-ICP-MS. These ages disagree with the previous K–Ar age determinations that suggest a correlation of intrusive rocks of the Duobaoshan area with the Hercynian intrusive rocks of Carboniferous–Permian age. These ages demonstrate that the Duobaoshan granodiorite porphyry and related Cu–Mo deposit occurred in the Early Ordovician. The rhenium content of molybdenite varies from 290.9 to 728.2 μg/g, with an average content of 634.8 μg/g. The high rhenium content in molybdenite of the Duobaoshan deposit suggests that the ore-forming materials may be mainly of mantle source.  相似文献   

12.
A combined study of zircon U–Pb ages and Lu–Hf isotopes, mineral O isotopes, whole-rock elements and Sr–Nd isotopes was carried out for Mesozoic granitoids from the Shandong Peninsula in east-central China, which tectonically corresponds to the eastern part of the Sulu orogen that formed by the Triassic continental collision between the South and North China Blocks. Four plutons were investigated in this region, with the Linglong and Guojialing plutons from the northwestern part (Jiaobei) and the Kunyushan and Sanfoshan plutons from the southeastern part (Jiaodong). The results show that these granitoids mostly have high Sr, low Yb and Y contents, high (La/Yb)N and Sr/Y ratios with negligible to positive Eu anomalies (Eu/Eu* = 0.69–1.58), which are similar to common adakites. On the other hand, they have relatively low MgO, Cr, Ni contents and thus low Mg#. Zircon U–Pb dating yields Late Jurassic ages of 141 ± 3 to 157 ± 2 Ma for the Linglong and Kunyushan plutons, but Early Cretaceous ages of 111 ± 2 to 133 ± 3 Ma for the Guojialing and Sanfoshan plutons. Some zircon cores from the Linglong and Kunyushan granitoids have Neoproterozoic U–Pb ages. All the granitoids have variably negative zircon εHf(t) values of ?39.6 to ?5.4, with Mesoproterozoic to Paleoproterozoic Hf model ages of 1515 ± 66 to 2511 ± 97 Ma for the Sanfoshan pluton, but Paleoproterozoic to Paleoarchean Hf model ages of 2125 ± 124 to 3310 ± 96 Ma for the other three plutons. These indicate that the Mesozoic granitoids formed in the postcollisional stage and were derived mainly from partial melting of the subducted South China Block that is characterized by Paleoproterozoic juvenile crust and Neoproterozoic magmatic rocks along its northern edge. However, there are some differences between the Jiaobei and Jiaodong plutons. Compared to the Jiaodong granitoids, the Jiaobei granitoids have very old zircon Hf model ages of 3310 ± 96 Ma suggesting the possible involvement of a Paleoarchean crust that may be derived from the North China Block. Therefore, the continental collision between the two blocks would bring crustal materials from both sides into the subduction zone in the Triassic, yielding subduction-thickened crust as the magma source for the adakite-like granitoids. While lithospheric extension and orogenic collapse are considered a major cause for postcollisional magmatism, anatexis of the subducted mafic crust is proposed as a mechanism for chemical differentiation of the continental crust towards felsic composition.  相似文献   

13.
Phosphorite from the Meade Peak Phosphatic Shale member of the Permian Phosphoria Formation has been mined in southeastern Idaho since 1906. Dumps of waste rock from mining operations contain high concentrations of Se which readily leach into nearby streams and wetlands. While the most common mineralogical residence of Se in the phosphatic shale is elemental Se, Se(0), Se is also an integral component of sulfide phases (pyrite, sphalerite and vaesite–pyritess) in the waste rock. It may also be present as adsorbed selenate and/or selenite, and FeSe2 and organo-selenides.Se release from the waste rock has been observed in field and laboratory experiments. Release rates calculated from waste rock dump and column leachate solutions describe the net, overall Se release from all of the possible sources of Se listed above. In field studies, Se concentration in seepage water (pH 7.4–7.8) from the Wooley Valley Unit 4 dump ranges from 3600 µg/L in May to 10 µg/L by Sept. Surface water flow, Q, from the seep also declines over the summer, from 2 L/s in May to 0.03 L/s in Sept. Se flux ([Se] ? Q) reaches a steady-state of < 150 mg/day in 1–4 months, depending upon the volume of Q. Se release (mg/L) follows a first order reaction with a rate constant, k, = 1.35  6.35e?3 h? 1 (11.8–55.6 yr? 1).Laboratory experiments were performed with the waste shale in packed bed reactors; residence time varied from 0.09 to 400 h and outlet pH  7.5. Here, Se concentration increased with increasing residence time and release was modeled with a first order reaction with k = 2.19e?3 h? 1 (19.2 yr? 1).Rate constants reported here fall within an order of magnitude of reported rate constants for oxidation of Se(0) formed by bacterial precipitation. This similarity among rate constants from both field and laboratory studies combined with the direct observation of Se(0) in waste shales of the Phosphoria Formation suggests that oxidation of Se(0) may control steady-state Se concentration in water draining the Wooley Valley waste dump.  相似文献   

14.
The goal of this study is to identify the type of projectile responsible for the formation of the late Precambrian Gardnos impact structure in Norway. Fifteen impactite samples, predominantly impact breccias and suevites from the central and northeastern part of the structure, were analyzed for platinum group elements (PGE) and Au using nickel-sulfide fire assay combined with inductively coupled plasma mass spectrometry (ICP-MS). Major and trace elements were measured in the same samples using X-ray fluorescence (XRF). In addition, the concentrations of siderophile elements Ni, Cr, and Co were determined by ICP-MS after acid digestion. The samples collected at the contact between suevite and the sedimentary infill yielded the highest PGE concentrations (Ir = 1.926 ng/g, Ru = 3.494 ng/g, Pt = 4.716 ng/g, Rh = 0.766 ng/g, Pd = 2.842 ng/g for GC6). The CI-normalized PGE patterns are characterized by Ru and Rh enrichments suggesting a non-chondritic impactor. Concentration plots of the different PGE display an excellent correlation (R > 0.99), indicative of a single source for the PGE enrichment. The Ni/Cr ratio of the Gardnos impactor (2.56 ± 0.20) agrees with that of chondrites (2 to 7), whereas Ir is depleted relative to Ni in this projectile (Ni/Ir ratio of 92 000 ± 8000 compared to an average Ni/Ir ratio of 23 150 ± 4250 for chondrites). There is no clear indication of selective post-depositional remobilization of the characteristic highly siderophile elements. The Ni/Ir and Cr/Ir data combined with the non-chondritic PGE ratios probably indicate a differentiated projectile. Based on (1) the similarity of the inter-element ratios of the impactor with the iron phase of non-magmatic iron meteorites and (2) the presence of characteristics of both chondrites and iron meteorites (Ni/Cr and Ni/Ir ratios), an IA or IIIC non-magmatic iron meteorite is a very plausible impactor.  相似文献   

15.
It is generally accepted that the low-Mg adakitic rocks were derived from the partial melting of metabasalts/eclogites. In this study, we demonstrate that the early Cretaceous low-Mg adakitic granites in the North Dabie Complex (NDC) were generated by the partial melting of the NDC orthogneisses. Here we present in-situ U–Pb and Lu–Hf isotopes in zircon with whole-rock geochemical and Sr–Nd isotopic compositions were carried out for the Tiantangzhai porphyritic monzogranites from the Dabie orogen, eastern China. The monzogranites are characterized by high Sr (576–988 ppm), low Y (7.3–19.0 ppm), and depletion in HREE (Yb: 0.50–1.78 ppm) (thus resulting in high Sr/Y (34.3–135.2) and (La/Yb)N (17.0–105.2) ratios) without a negative Eu anomaly. They also exhibit high SiO2 (66.5–73.5 wt.%) and K2O (2.7–4.7 wt.%), and low MgO (0.4–1.6 wt.%) or Mg# (28.2–45.3, mostly < 40) values. Whole-rock geochemical compositions suggest that the monzogranites represent low-Mg adakitic rock with high-Si and rich-K features equilibrated with residues rich in garnet. Sr–Nd isotopic compositions (εNd (t) = ? 16.2 to ? 20.3, (87Sr/86Sr)i = 0.707798–0.708804, tDM2(Nd) = 2.3–2.6 Ga) of the monzogranites are distinct from that of the eclogites and amphibolites in the Dabie orogen, but similar to that of the Neoproterozoic (700–800 Ma) gneisses in the NDC. U–Pb dating of zircons gives a consistent age of 130.0 ± 3.4 Ma with discordia upper intercept age of 716 ± 34 Ma for inherited cores identified by CL imaging. Correspondingly, in-situ Lu–Hf analyses of early Cretaceous young age-spots from zircons yield initial 176Hf/177Hf ratios from 0.281898 to 0.282361, εHf(t) values from ? 28.1 to ? 17.6 and two-stage “crust” Hf model ages (tDM2) from 2293 ± 89 to 2949 ± 108 Ma, which are generally in agreement with values of 0.281891 to 0.282218, ? 28.2 to ? 11.7 and 1927 ± 87 to 2963 ± 92 Ma for the pre-Mesozoic inherited cores, respectively. As for individual core-rim pairs in zircon, Th/U ratios increase from the inherited cores to the young growth rims possibly due to variable degrees of partial melting, whereas 176Lu/177Hf ratios greatly decrease because of the garnet effect in residues. Thus, we suggest that the early Cretaceous low-Mg adakitic granites were derived from the partial melting of the NDC Neoproterozoic (700–800 Ma) gneisses, and the foundering of the garnet-bearing residues could have caused the destruction of the over-thickened lower continental crust.  相似文献   

16.
The fate of harmful metals in the Earth crust is importantly affected by sorption processes on mineral surfaces. Here, a study of the ability of anhydrite surfaces to uptake dissolved Pb is presented. Experiments were conducted at room temperature using initial Pb concentration ([Pbaq]0) ranging between 10 and 1000 mg/L and a batch type set-up. Inductively coupled plasma optical emission spectrometry analyses showed that [Pbaq] progressively decreased as the time of interaction increased, to reach a final steady state value of ∼3.0 mg/L, irrespectively of [Pbaq]0. However, the time elapsed before the steady state value was reached strongly depended on [Pbaq]0, with the drop to this final value occurring in less than 1 day interaction when [Pbaq]0  50 mg/L and after 20 days when [Pbaq]0 < 50 mg/L. Scanning Electron Microscopy and X-ray diffraction analyses confirmed the epitactic growth of anglesite (PbSO4) crystals on anhydrite surfaces when [Pbaq]0  50 mg/L. X-ray Absorption Near Edge Structure spectroscopy points to a different sorption mechanisms when [Pbaq]0 < 50 mg/L. The results show that the epitactic growth of anglesite on anhydrite has no significant impact on the ability of anhydrite surfaces to remove Pbaq, which show equal effectiveness as that of gypsum surfaces. The high reactivity of anhydrite surfaces renders this phase potentially important in the control of the fate of dissolved metals in nature.  相似文献   

17.
The Danubian domain basement of the South Carpathians, Romania, comprises two Neoproterozoic continental crustal fragments, the Dr?g?an and Lainici-P?iu? terranes, which were sutured by the closure of an intervening oceanic domain, the Ti?ovi?a terrane. Magmatic and detrital zircons extracted from an orthogneiss, four granitoid plutons, two metasedimentary units, and a Liassic sandstone were dated by zircon U/Pb LA-ICP-MS. The F?ge?el augen gneiss from the Dr?g?an terrane basement yielded an age of 803.2 ± 4.4 Ma, the oldest well-constrained crystallization age reported from the Romanian Carpathians basement. The Tismana, ?u?i?a, Novaci and Olte? granitoid plutons, which intrude the Lainici-P?iu? terrane basement, yielded ages of 600.5 ± 4.4, 591.0 ± 3.5, 592.7 ± 4.9, and 588 ± 2.9 Ma, respectively. The Tismana granitoid age of 600 Ma and the youngest detrital zircon ages of 637–622 Ma from a metaquartzite within the Lainici-Paiu? terrane, constrain the deposition of the metaquartzite protolith to ca. 620–600 Ma. The 803 Ma age represents an old Pan-African age, whereas the younger Neoproterozoic ages suggest Pan-African/Cadomian thermotectonic events. Detrital and inherited zircon ages within the Dr?g?an and Lainici-Paiu? terranes attest to a peri-Amazonian, Avalonian-type provenance for the Dr?g?an terrane and possibly a Ganderian-type provenance for the Lainici-P?iu? terrane. The Lainici-P?iu? terrane rifted off Gondwana before the Dr?g?an terrane. Both terranes were attached to Moesia during the Early Paleozoic.  相似文献   

18.
The Tonglushan ore district in the Middle–Lower Yangtze River Valley metallogenic belt includes the Tonglushan Cu–Fe, the Jiguanzui Au–Cu, and the Taohuazui Au–Cu skarn deposits. They are characterized by NE-striking ore bodies and hosted at the contact of Triassic carbonate rocks and Late Mesozoic granitoid deposits. New Sensitive High-Resolution Ion Microprobe (SHRIMP) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA–ICP-MS) zircon U–Pb, molybdenite Re–Os, and phlogopite 40Ar–39Ar ages indicate that these skarn deposits formed between 140.3 ± 1.1 and 137.3 ± 2.4 Ma. These dates are identical to the zircon U–Pb ages for host quartz diorites ranging from 140 ± 2 to 139 ± 1 Ma. These results confirm that both skarn mineralization and related intrusions were initiated during the Early Cretaceous. The high rhenium contents (261.4–1152 μg/g) of molybdenites indicate that a metasomatic mantle fluid was involved in the ore-forming process of these skarn ore systems. This conclusion is consistent with previously published constraints from sulfur, deuterium, and oxygen isotope compositions, and the geochemical signatures, and Sr–Nd isotopic data of the mineralization-hosting intrusions. Geological and geochronological evidence demonstrates that there were two igneous events in the Tonglushan ore district. The first resulted in the emplacement of quartz diorite during the Early Cretaceous (140 ± 2 to 139 ± 1 Ma), and the second is characterized by the eruption of volcanic rocks during the mid-Early Cretaceous (130 ± 2 to 124 ± 2 Ma). The former is spatially, temporally and genetically associated with skarn gold-bearing mineralization (140.3 ± 1.1 to 137.3 ± 2.4 Ma). The recognition of these two igneous events invalidates previous models that proposed continuous magmatism and associated mineral deposits in the Middle–Lower Yangtze River Valley metallogenic belt.  相似文献   

19.
The Taoxikeng tungsten deposit is located in the Jiangxi Province in the southern part of China, and is one of the largest wolframite quartz-vein type tungsten deposits in the country. The deposit is situated in Sinian (Neoproterozoic) to Permian strata at the contact with the buried Taoxikeng Granite. Sensitive High Mass Resolution Ion Microprobe (SHRIMP) zircon U–Pb analysis of the granite has yielded dates of 158.7 ± 3.9 and 157.6 ± 3.5 Ma, which are interpreted as the emplacement age of the granite. Molybdenite separated from ore-bearing quartz-veins yields a Re–Os isochron age of 154.4 ± 3.8 Ma, and muscovite separated from greisen between the granite and country rocks yields 40Ar/39Ar plateau ages of 153.4 ± 1.3 and 152.7 ± 1.5 Ma. These dates obtained from three independent geochronological techniques constrain the ore-forming age of the Taoxikeng deposit and link the ore genesis to that of the underlying granite. The Taoxikeng deposit is an example of a Jurassic regional-scale tungsten–tin ore-forming event between 160 and 150 Ma in the Nanling region of the South China Block. The deposit's strikingly low rhenium contents (4.9 to 13.0 × 10? 3 μg/g) in molybdenite suggests that the ore was derived from a crustal source. This conclusion is consistent with previously published constraints from S, D and O stable isotopes, Sr–Nd systematics, and petrogenetic interpretations of spatially related granites.  相似文献   

20.
Continental subduction and its interaction with overlying mantle wedge are recognized as fundamental solid earth processes, yet the dynamics of this system remains ambiguous. In order to get an insight into crust–mantle interaction triggered by partial melting of subudcted continental crust during its exhumation, we carried out a combined study of the Shidao alkaline complex from the Sulu ultrahigh pressure (UHP) terrane. The alkaline complex is composed of shoshonitic to ultrapotassic (K2O: 3.4–9.3 wt.%) gabbro, pyroxene syenite, amphibole syenite, quartz syenite, and granite. Field studies suggest that the mafic rocks are earlier than the felsic ones in sequence. LA-ICPMS zircon U–Pb dating on them gives Late Triassic ages of 214 ± 2 to 200 ± 3 Ma from mafic to felsic rocks. These ages are slightly younger than the Late Triassic ages (225–210 Ma) of the felsic melts from partial melting of the Sulu UHP terrane during exhumation. The alkaline rocks have wide ranges of SiO2 (49.7–76.7 wt.%), MgO (8.25–0.03 wt.%), Ni (126.0–0.07 ppm), and Cr (182.0–0.45 ppm) contents. The contents of MgO, total Fe2O3, CaO, TiO2 and P2O5 decrease with increasing SiO2 contents. The contents of Na2O, K2O, and Al2O3 increase from gabbro to amphibole syenite, and decrease from amphibole syenite to granite, respectively. The alkaline rocks have characteristics of an arc-like pattern in trace element distribution, e.g., enrichment of LREE, LILE (Rb and Ba), Th and U, depletion of HFSE (Nb, Ta, P and Ti), and positive Pb anomalies. From the mafic rocks to the felsic rocks, the (La/Yb)N ratios and the contents of the total REE, Sr and Ba decrease but the Rb contents increase. The alkaline rocks with high SiO2 contents also display features of an A2-type granitoids, e.g., high contents of total alkalis, Zr and Nb and high ratios of Fe2O3T/MgO, Ga/Al, Yb/Ta and Y/Nb, suggesting a post-collisional magmatism during exhumation of the Sulu UHP terrane. The alkaline rocks have homogeneous initial 87Sr/86Sr ratios (0.7058–0.7093) and negative εNd(t) values (− 18.6 to − 15.0) for whole-rock. The Sr–Nd isotopic data remain almost unchanged with varying SiO2 and MgO contents, suggesting a fractional crystallization (FC) process from the same parental magma. Our studies suggest a crust–mantle interaction in continental subduction interface as follows: (1) hydrous felsic melts from partial melting of subducted continental crust during its exhumation metasomatized the overlying mantle wedge to form a K-rich and amphibole-bearing mantle; (2) partial melting of the enriched lithospheric mantle generated the Late Triassic alkaline complex under a post-collisional setting; and (3) the alkaline magma experienced subsequent fractionational crystallization mainly dominated by olivine, clinopyroxene, plagioclase and alkali feldspar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号