首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Narraguinnep Reservoir in southwestern Colorado is one of several water bodies in Colorado with a mercury (Hg) advisory as Hg in fish tissue exceed the 0.3 μg/g guideline to protect human health recommended by the State of Colorado. Concentrations of Hg and methyl-Hg were measured in reservoir bottom sediment and pore water extracted from this sediment. Rates of Hg methylation and methyl-Hg demethylation were also measured in reservoir bottom sediment. The objective of this study was to evaluate potential sources of Hg in the region and evaluate the potential of reservoir sediment to generate methyl-Hg, a human neurotoxin and the dominant form of Hg in fish. Concentrations of Hg (ranged from 1.1 to 5.8 ng/L, n = 15) and methyl-Hg (ranged from 0.05 to 0.14 ng/L, n = 15) in pore water generally were highest at the sediment/water interface, and overall, Hg correlated with methyl-Hg in pore water (R2 = 0.60, p = 0007, n = 15). Net Hg methylation flux in the top 3 cm of reservoir bottom sediment varied from 0.08 to 0.56 ng/m2/day (mean = 0.28 ng/m2/day, n = 5), which corresponded to an overall methyl-Hg production for the entire reservoir of 0.53 g/year. No significant point sources of Hg contamination are known to this reservoir or its supply waters, although several coal-fired power plants in the region emit Hg-bearing particulates. Narraguinnep Reservoir is located about 80 km downwind from two of the largest power plants, which together emit about 950 kg-Hg/year. Magnetic minerals separated from reservoir sediment contained spherical magnetite-bearing particles characteristic of coal-fired electric power plant fly ash. The presence of fly-ash magnetite in post-1970 sediment from Narraguinnep Reservoir indicates that the likely source of Hg to the catchment basin for this reservoir has been from airborne emissions from power plants, most of which began operation in the late-1960s and early 1970s in this region.  相似文献   

2.
《Applied Geochemistry》2006,21(3):515-527
Dissolved and particulate Hg fluxes in the Lot–Garonne–Gironde fluvial-estuarine system were obtained from observation of daily discharge and suspended particulate matter (SPM) concentrations. In addition to the measurements of the total dissolved (<0.45 μm) and particulate Hg (>0.45 μm), called HgTD and HgTP respectively, the dissolved inorganic Hg species (HgRD) were determined monthly. Geochemical background values for HgTP in sediments and SPM were similar to crustal values and to typical concentrations in SPM of non-contaminated river systems, respectively. The Riou Mort watershed already known as the origin of important historical polymetallic (e.g., Cd, Zn) pollution was identified as an important Hg point source. In the downstream Lot River, Hg concentrations were clearly higher than those in other moderately contaminated systems. The mean relative contribution of HgRD to HgTD in the Lot River and in the Garonne River was close to 25% and 50%, respectively, and showed no correlation with water discharge or SPM concentration. Depending on the origin and nature of SPM, HgTP concentrations were correlated or not with particulate organic C (POC). Maximum HgTP concentrations were measured in samples containing low POC concentrations and were attributed to sediment resuspension. In contrast, high POC concentrations (6–17%) during algal blooms were associated with low/moderate HgTP concentrations (<0.5 mg kg−1) at different sites, suggesting that Hg concentrations in fluvial phytoplankton may be limited by bioavailability of dissolved Hg and/or physiologically controlled Hg accumulation. Mercury was mostly (up to 98%) transported in the particulate phase with estimated annual Hg fluxes at the outlet of the Lot River system ranging from 35 to 530 kg a−1 for the past decade. The minimum anthropogenic component (58–84% of total Hg fluxes) could not be explained by present Riou Mort point source contributions, suggesting important Hg release from contaminated sediment as a major source and from downstream point sources (e.g., coal-fired power plants and/or metal processing industries). HgTP concentrations and fluxes were strongly related to hydrologic variations and were clearly increased by riverbed dredging during lock construction. Therefore, the estimated Hg stocks in the Lot River sediment (5–13 tons) represent an important potential Hg source for the downstream fluvial-estuarine system.  相似文献   

3.
Agricultural (Ap, Ap-horizon, 0–20 cm) and grazing land soil samples (Gr, 0–10 cm) were collected from a large part of Europe (33 countries, 5.6 million km2) at an average density of 1 sample site/2500 km2. The resulting more than 2 × 2000 soil samples were air dried, sieved to <2 mm and analysed for their Hg concentrations following an aqua regia extraction. Median concentrations for Hg are 0.030 mg/kg (range: <0.003–1.56 mg/kg) for the Ap samples and 0.035 mg/kg (range: <0.003–3.12 mg/kg) for the Gr samples. Only 5 Ap and 10 Gr samples returned Hg concentrations above 1 mg/kg. In the geochemical maps the continental-scale distribution of the element is clearly dominated by geology. Climate exerts an important influence. Mercury accumulates in those areas of northern Europe where a wet and cold climate favours the build-up of soil organic material. Typical anthropogenic sources like coal-fired power plants, waste incinerators, chlor-alkali plants, metal smelters and urban agglomerations are hardly visible at continental scales but can have a major impact at the local-scale.  相似文献   

4.
《Applied Geochemistry》2006,21(11):1955-1968
Elemental Hg–Au amalgamation mining practices are used widely in many developing countries resulting in significant Hg contamination of surrounding ecosystems. The authors examined for the first time Hg contamination in air, water, sediment, soil and crops in the Tongguan Au mining area, China, where elemental Hg has been used to extract Au for many years. Total gaseous Hg (TGM) concentrations in ambient air in the Tongguan area were significantly elevated compared to regional background concentrations. The average TGM concentrations in ambient air in a Au mill reached 18,000 ng m−3, which exceeds the maximum allowable occupational standard for TGM of 10,000 ng m−3 in China. Both total and methyl-Hg concentrations in stream water, stream sediment, and soil samples collected in the Tongguan area were elevated compared to methyl-Hg reported in artisanal Au mining areas in Suriname and the Amazon River basin. Total Hg concentrations in vegetable and wheat samples ranged from 42 to 640 μg kg−1, all of which significantly exceed the Chinese guidance limit for vegetables (10 μg kg−1) and foodstuffs other than fish (20 μg kg−1). Fortunately, methyl-Hg was not significantly accumulated in the crops sampled in this study, where concentrations varied from 0.2 to 7.7 μg kg−1.  相似文献   

5.
《Applied Geochemistry》2006,21(11):1837-1854
Total dissolved and total particulate Hg mass balances were estimated during one hydrological period (July 2001–June 2002) in the Thur River basin, which is heavily polluted by chlor-alkali industrial activity. The seasonal variations of the Hg dynamics in the aquatic environment were assessed using total Hg concentrations in bottom sediment and suspended matter, and total and reactive dissolved Hg concentrations in the water. The impact of the chlor-alkali plant (CAP) remains the largest concern for Hg contamination of this river system. Upstream from the CAP, the Hg partitioning between dissolved and particulate phases was principally controlled by the dissolved fraction due to snow melting during spring high flow, while during low flow, Hg was primarily adsorbed onto particulates. Downstream from the CAP, the Hg partitioning is controlled by the concentration of dissolved organic and inorganic ligands and by the total suspended sediment (TSS) concentrations. Nevertheless, the particulate fluxes were five times higher than the dissolved ones. Most of the total annual flux of Hg supplied by the CAP to the river is transported to the outlet of the catchment (total Hg flux: 70 μg m−2 a−1). Downstream from the CAP, the bottom sediment, mainly composed of coarse sediment (>63 μm) and depleted in organic matter, has a weak capacity to trap Hg in the river channel and the stock of Hg is low (4 mg m−2) showing that the residence time of Hg in this river is short.  相似文献   

6.
The sources and historical deposition of 16 polycyclic aromatic hydrocarbons (PAHs) were investigated in dated sediment cores from the Pichavaram mangrove–estuarine complex. The ΣPAH flux in mangrove and estuarine sediments was 0.064 ± 0.031 μg/cm2/yr and 0.043 ± 0.020 μg/cm2/yr, respectively. The PAH flux in sediments increased up-core, coinciding with rapid urbanization since the 1970s. The flux showed a decrease in recent years (since 1990), coinciding with less riverine discharge, and perhaps more effective implementation of environmental regulations. The sediments were dominated by low molecular weight PAHs, suggesting anthropogenic input. Ratios of specific PAH isomer pairs suggested a greater input of petrogenic vs. pyrogenic derived PAHs. Notably, the deposition of high molecular weight PAHs increase in mangrove surface sediments was due to lignite and firewood combustion. Because of their overall low concentration in sediments it is unlikely these PAHs pose an immediate ecological hazard.  相似文献   

7.
《Applied Geochemistry》2005,20(3):627-638
Concentrations of total Hg and methylmercury (MMHg) in riparian soil, mine-waste calcine, sediment, and moss samples collected from abandoned Hg mines in Wanshan district, Guizhou province, China, were measured to show regional dispersion of Hg-contamination. High total Hg and MMHg concentrations obtained in riparian soils from mined areas, ranged from 5.1 to 790 mg kg−1 and 0.13 to 15 ng g−1, respectively. However, total Hg and MMHg concentrations in the soils collected from control sites were significantly lower varying from 0.1 to 1.2 mg kg−1 and 0.10 to 1.6 ng g−1, respectively. Total Hg and MMHg concentrations in sediments varied from 90 to 930 mg kg−1 and 3.0 to 20 ng g−1, respectively. Total Hg concentrations in mine-waste calcines were highly elevated ranging from 5.7 to 4400 mg kg−1, but MMHg concentrations were generally low ranging from 0.17 to 1.1 ng g−1. Similar to the high Hg concentrations in soil and sediments, moss samples collected from rocks ranged from 1.0 to 95 mg kg−1 in total Hg and from 0.21 to 20 ng g−1 in MMHg. Elevated Hg concentrations in mosses suggest that atmospheric deposition might be an important pathway of Hg to the local terrestrial system. Moreover, the spatial distribution patterns of Hg contamination in the local environment suggest derivation from historic Hg mining sites in the Wanshan area.  相似文献   

8.
Concentrations and isotopic compositions of Hg and Pb were measured in a sediment core collected from Lake Ballinger, near Seattle, Washington, USA. Lake Ballinger has been affected by input of metal contaminants emitted from the Tacoma smelter, which operated from 1887 to 1986 and was located about 53 km south of the lake. Concentrations and loadings of Hg and Pb in Lake Ballinger increased by as much as three orders of magnitude during the period of smelting as compared to the pre-smelting period. Concentrations and loadings of Hg and Pb then decreased by about 55% and 75%, respectively, after smelting ended. Isotopic compositions of Hg changed considerably during the period of smelting (δ202Hg = −2.29‰ to −0.38‰, mean −1.23‰, n = 9) compared to the pre-smelting period (δ202Hg = −2.91‰ to −2.50‰, mean −2.75‰, n = 4). Variations were also observed in 206Pb/207Pb and 208Pb/207Pb isotopic compositions during these periods. Data for Δ199Hg and Δ201Hg indicate mass independent fractionation (MIF) of Hg isotopes in Lake Ballinger sediment during the smelting and post-smelting period and suggest MIF in the ore smelted, during the smelting process, or chemical modification at some point in the past. Negative values for Δ199Hg and Δ201Hg for the pre-smelting period are similar to those previously reported for soil, peat, and lichen, likely suggesting some component of atmospheric Hg. Variations in the concentrations and isotopic compositions of Hg and Pb were useful in tracing contaminant sources and the understanding of the depositional history of sedimentation in Lake Ballinger.  相似文献   

9.
《Applied Geochemistry》2006,21(11):1986-1998
Elevated concentrations of Hg are present (averaging 36 μg/g), mainly as cinnabar, in the Murray Brook Au deposit, located in northern New Brunswick, Canada. After the mined ore was subjected to CN leaching, the tailings were deposited in an unsaturated pile, and 10 a after mine closure an estimated 4.7 × 103 kg of CN and 1.1 × 104 kg of Hg remain in the pile. Elevated Hg concentrations have been measured in the groundwater (up to 11,500 μg/L) and surface water (up to 32 μg/L) down-gradient of the tailings. To investigate the controls on Hg mobility and leaching persistence, laboratory experiments were conducted using unsaturated columns filled with tailings. Within the first 0.2 pore volumes (PV) eluted, the concentrations of Hg and CN increased to peak concentrations of 12,900 μg Hg/L and 16 mg CN/L, respectively. In the subsequent 0.9 PV, concentrations decreased to approximately 1300 μg Hg/L and 2.8 mg CN/L. Thermodynamic calculations demonstrate that >99.8% of the mobilized Hg in the tailings pore water is in the form of Hg–CN complexes, indicating that Hg mobility to the surrounding aquatic environment is directly dependent on the rate of CN leaching. One-dimensional transport simulations suggest that leached CN can be partitioned into conservative (24%) and non-conservative (76%) fractions. Extrapolation of simulation results to the field scale suggests that CN, and by extension Hg, will continue to elute from the tailings for at least an additional 130 a.  相似文献   

10.
In total 27 short and one long sediment core, and 278 surface sediment samples from the Baltic Sea were analyzed for mercury (Hg), and organic carbon contents. Thirteen short cores and the long core were dated by radionuclide methods (210Pb, 137Cs, AMS14C). The dataset allows discriminating between natural and human induced changes on the Hg levels in Baltic Sea sediments. Preindustrial Holocene background concentrations vary between 20 and 50 μg Hg per kg dry sediment and are positively correlated with organic carbon changes. Strong human induced pollution is recorded for the second half of the past century and caused high Hg concentrations of up to several hundred μg Hg per kg dry sediment even in Baltic Sea basins. Maximum concentrations are found at industrial and war waste dumping sites (local hot spots). An Hg concentration decreasing trend toward the present day is observed at most coring sites, a result of environmental measures undertaken during the last two decades. At sites where it is possible to calculate Hg fluxes, the natural accumulation rates vary between 2.1 and 5.4 μg Hg per m2 per year. Anthropogenically sourced Hg accumulation rates vary in a wide range of 30 and 300 μg Hg per m2 per year for the time span of maximum pollution. In areas characterized by discontinuous sedimentation only “inventories” of human sourced Hg expressed as the total amount of deposited Hg (above the natural background) per m2 can be calculated. The inventories of the investigated cores vary in the range of 1 and 8 mg Hg per m2. Additionally, influences of sediment dynamics on spatial distribution pattern of Hg concentrations in surface and subsurface sediments are discussed.  相似文献   

11.
《Applied Geochemistry》2006,21(11):1940-1954
Speciation and microbial transformation of Hg was studied in mine waste from abandoned Hg mines in SW Texas to evaluate the potential for methyl-Hg production and degradation in mine wastes. In mine waste samples, total Hg, ionic Hg2+, Hg0, methyl-Hg, organic C, and total S concentrations were measured, various Hg compounds were identified using thermal desorption pyrolysis, and potential rates of Hg methylation and methyl-Hg demethylation were determined using isotopic-tracer methods. These data are the first reported for Hg mines in this region. Total Hg and methyl-Hg concentrations were also determined in stream sediment collected downstream from two of the mines to evaluate transport of Hg and methylation in surrounding ecosystems. Mine waste contains total Hg and methyl-Hg concentrations as high as 19,000 μg/g and 1500 ng/g, respectively, which are among the highest concentrations reported at Hg mines worldwide. Pyrolysis analyses show that mine waste contains variable amounts of cinnabar, metacinnabar, Hg0, and Hg sorbed onto particles. Methyl-Hg concentrations in mine waste correlate positively with ionic Hg2+, organic C, and total S, which are geochemical parameters that influence processes of Hg cycling and methylation. Net methylation rates were as high as 11,000 ng/g/day, indicating significant microbial Hg methylation at some sites, especially in samples collected inside retorts. Microbially-mediated methyl-Hg demethylation was also observed in many samples, but where both methylation and demethylation were found, the potential rate of methylation was faster. Total Hg concentrations in stream sediment samples were generally below the probable effect concentration of 1.06 μg/g, the Hg concentration above which harmful effects are likely to be observed in sediment dwelling organisms; whereas total Hg concentrations in mine waste samples were found to exceed this concentration, although this is a sediment quality guideline and is not directly applicable to mine waste. Although total Hg and methyl-Hg concentrations are locally high in some mine waste samples, little Hg appears to be exported from these Hg mines in stream sediment primarily due to the arid climate and lack of precipitation and mine runoff in this region.  相似文献   

12.
Two sampling campaigns were carried out in March and August 2005 representing dry and wet seasons, respectively, to investigate the distribution patterns of Hg species in the water column and sediment profiles at two sampling stations in Aha Reservoir located in Guiyang, Southwestern China. Aha Reservoir has been contaminated by Hg due to small scale coal mining activities. Mercury concentrations in both water and sediment were elevated. A clearly seasonal variation of dissolved Hg (DHg), particulate Hg (PHg) and total Hg (THg) concentrations in the water column was observed. The concentrations of these Hg species in the wet season were significantly higher than in the dry season. Runoff input and diffusion of Hg from sediments could be the reasons for elevated concentrations of these Hg species in the wet season. The contaminated sediment is acting as a secondary contamination source for both inorganic Hg (IHg) and methylmercury (MeHg) to the overlying water. The cycling of Mn in the sediment governs the diffusion process of IHg to the water column. In the dry season (winter and spring), Mn occurs as MnO2 because the uppermost part of sediment is in an oxic condition and Hg ions are absorbed by MnO2. In the wet season (summer and fall), the uppermost part of the sediment profile is in a reduced condition because of stratification of the water column and MnO2 is reduced to Mn2+, which results in transformation of Hg2+ into porewater as Mn2+ became soluble. This causes a higher diffusive flux of IHg from sediment to overlying water in the wet season. Both sampling stations showed a consistent trend that THg concentrations decreased in the uppermost part of sediment cores. This demonstrated that the measures taken to reduce ADM contamination to Aha Reservoir also reduced Hg input to the reservoir. Methyl Hg diffusive fluxes from sediment to overlying water were higher in the wet season than the dry season demonstrating that high temperatures favor Hg methylation processes in sediment.  相似文献   

13.
The Yangbajain geothermal field located in central Tibet is characterized by the highest measured reservoir temperature among all hydrothermal systems in China. The high-temperature geothermal fluid extracted from Yangbajain has been used for electricity generation for over 30 years. The geothermal wastewater generated by the Yangbajain power plants, with arsenic (As) concentrations up to 3.18 mg/L, drains directly into the Zangbo River, the major surface water at Yangbajain, which has elevated arsenic concentrations in the segments downstream of wastewater discharges. However, along the flow direction of the river, the arsenic concentration decreases sharply. Further inspection reveals that the concentrations of weakly bound arsenic, strongly adsorbed arsenic and total arsenic in riverbed sediment were affected by the drainage of geothermal wastewater, indicating that the sediment serves as a sink for geothermal arsenic. A logarithmic relationship between the integrated attenuation coefficients (IAC) for three river segments and the corresponding adsorption distribution coefficients of riverbed sediment samples also suggests that besides the dilution of geothermal arsenic in the Zangbo River, natural attenuation of arsenic may be caused by sorption to riverbed sediment, thereby reducing its health threat to local residents using the Zangbo River as a drinking water source.  相似文献   

14.
Mercury concentrations were determined in stream sediments from the Camaquã River Basin, located in the shield region of the state of Rio Grande do Sul, southern Brazil. The resulting geochemical data show that overbank floodplain deposits exhibit higher concentrations than sediments collected from the active channel bed. In addition, higher Hg concentrations were measured in the fine(<63 μm) sediment fraction of the samples. Total Hg concentrations in the fine fraction of active stream sediments from Lavras do Sul County, which have been influenced by past gold mining activities, have decreased during the last five years to values ≤142 ng g−1. However, in a settling pond containing abandoned mine wastes, the Hg concentration of a bulk sample remained exceptionally high (5220 ng g−1). Preliminary speciation results show that Hg0 is the predominant species in most of the samples. This was the form of Hg released by the gold amalgamation activities in the area, and appears to be relatively stable under the existing Eh and pH conditions.  相似文献   

15.
Active and abandoned mine activities constitute the sources of deterioration of water and soil quality in many parts of the world, particularly in the African Copperbelt regions. The accumulation in soils and the release of toxic substances into the aquatic ecosystem can lead to water resources pollution and may place aquatic organisms and human health at risk. In this study, the impact of past mining activity (i.e., abandoned mine) on aquatic ecosystems has been studied using ICP-MS analysis for trace metals and Rare Earth Elements (REE) in sediment samples from Lubumbashi River (RL) and Tshamilemba Canal (CT), Katanga, Democratic Republic of the Congo (DRC). Soil samples from surrounding CT were collected to evaluate trace metal and REE concentrations and their spatial distribution. The extent of trace metal contamination compared to the background area was assessed by Enrichment Factor (EF) and Geoaccumulation Index (Igeo). Additionally, the trace metal concentrations probable effect levels (PELs) for their potential environmental impact was achieved by comparing the trace metal concentrations in the sediment/soil samples with the Sediment Quality Guidelines (SQGs). Spearman's Rank-order correlation was used to identify the source and origin of contaminants. The results highlighted high concentrations of trace metals in surface sediments of CT reaching the values of 40152, 15586, 610, 10322, 60704 and 15152 mg kg−1 for Cu, Co, Zn, Pb, Fe and Mn, respectively. In the RL, the concentrations reached the values of 24093, 2046, 5463, 3340, 68290 and 769 mg kg−1 for Cu, Co, Zn, Pb, Fe and Mn, respectively. The ΣREE varied from 66 to 218 and 142–331 mg kg−1 for CT and RL, respectively. The soil samples are characterized by variable levels of trace metals. The EF analysis showed “extremely severe enrichment” for Cu and Co. However, no enrichment was observed for REE. Except for Mo, Th, U, Eu, Mo, Ho and Tm for which Igeo is classified as “moderately polluted and/or unpolluted”, all elements in different sites are classified in the class 6, “extremely polluted”. The trace metal concentrations in all sampling sites largely exceeded the SQGs and the PELs for the Protection of Aquatic Life recommendation. Cu and Co had positive correlation coefficient values (r = 0.741, P < 0.05, n = 14). This research presents useful tools for the evaluation of water contamination in abandoned and active mining areas.  相似文献   

16.
《Applied Geochemistry》2005,20(8):1546-1559
Total Hg concentrations and Hg speciation were determined in bottom sediments of Marano lagoon to investigate the consequences of Hg phases on fish farms and shellfish cultivation areas. Mercury phases were separated into cinnabar (HgS) and non-cinnabar compounds, via a thermo-desorption technique, in surface and core sediments; both of which had been contaminated by industrial wastes and mining activity residues. The former are due to an industrial complex, which has been producing cellulose, chlor-alkali and textile artificial fibres since 1940. Processing and seepage wastewaters, which were historically discharged into the Aussa-Corno river system and therefore into the lagoon, have been significantly reduced since 1984 due to the construction of wastewater treatment facilities. The second source is the Isonzo River, which has been the largest contributor of Hg into the northern Adriatic Sea since the 16th century due to Hg mining at the Idrija mine (western Slovenia). Red cinnabar (HgS) derived from the mining area is mostly stable and insoluble under current environmental conditions. In contrast, organically bound Hg, such as Hg bound to humic acids, has the potential to be transformed into bioavailable Hg compounds (for example, methylmercury). The presence of the two Hg forms permitted each Hg source to be quantified. It also allowed the areas with the highest risk of Hg contamination from Hg-rich sediment to be identified; thus potentially avoiding the transfer of Hg from the sediment into the water column and eventually into living biota. The results show that Hg Enrichment Factors in bottom sediments exceed values of 10 and cinnabar dominates the central sector near the main tidal channel where tidal flux is more effective. Non-cinnabar compounds were found to be enriched in fine grained material and organic matter. In fact, up to 98% of total Hg at the Aussa-Corno river mouth and in the inner margin of the basin occurred in an organic form. This evidence, combined with the high contents of total Hg (4.1–6.6 μg g−1 and EF > 10) measured in surface sediments, suggest that Hg in Marano lagoon is involved in biogeochemical transformations (e.g., methylation).  相似文献   

17.
《Applied Geochemistry》2006,21(3):419-436
Geochemical maps expressing areal distributions of chemical elements in the earth’s land surface have been published in several countries in relation to various global environment issues. The authors have applied a radiogenic isotope ratio, 87Sr/86Sr, to geochemical mapping in order to understand the geological origin, transportation and dispersion system of chemical elements in the earth’s land surface. The Sr isotope ratio is a useful tracer for distinguishing the geological origin of surficial deposits, especially in areas where surface exposure of bedrocks is low, because it is not significantly altered by the processes of weathering and transportation. Most bedrocks in the Japanese islands are covered by plants, soils and urban areas. In this study, 142 of 1219 stream sediments (<180 μm) collected from the northeastern part of Aichi Prefecture, in the central part of Japan (75 km × 30 km), were analyzed. Their Sr isotope ratios range from 0.7086 to 0.7315 with an average of 0.7129, except for one sample. This average is higher than the mean of the upper crust of the Japan Arc (the Japanese Island Crustal Composite, JICC), 0.7077. This difference can be attributed to the below-average presence of young volcanic rocks, generally having lower 87Sr/86Sr values, and the above-average presence of granitic rocks, in the study area compared with the surface exposure of the Japan Arc. The first factor controlling the distribution of Sr isotope ratios is the bedrock distributed around the sampling points. Regional variation in the 87Sr/86Sr value shows that it is higher in the western and southeastern parts, where sedimentary rocks and metamorphic rocks are distributed, and that it is lower mainly in the central part, where granitic rocks are distributed. The 87Rb/86Sr–87Sr/86Sr plot for stream sediments more clearly reveals the differences and similarities of bedrocks. In some locations, the distribution of Sr isotope ratios does not correspond to that of bedrocks on the geological map. One reason is the existence of unmapped bedrock, for example, small intrusive masses of granite. The other is fluvial transportation and dispersion. The distribution of the isotope ratios suggests that some stream sediments include surficial deposits from a few km upstream. Application of the Sr isotope ratio to geochemical mapping is useful for revealing both the distribution of unexposed bedrocks and the transportation of surficial deposits. Information on unexposed bedrocks will be expected to contribute to the improvement of geological mapping.  相似文献   

18.
This study investigates the concentration and spatial distribution of Cu, Zn, Hg and Pb in the surface (0–2 cm) soils of a regional city in Australia. Surface soils were collected from road sides and analysed for their total Cu, Zn, Hg and Pb concentrations in the <180 μm and <2 mm grain size fractions. The average metal concentration of surface soils, relative to local background soils at 40–50 cm depth, are twice as enriched in Hg, more than three times enriched in Cu and Zn, and nearly six times as enriched in Pb. Median surface soil metal concentration values were Cu – 39 mg/kg (682 mg/kg max), Zn – 120 mg/kg (4950 mg/kg max), Hg – 44 μg/kg (14,900 μg/kg max) and Pb – 46 mg/kg (3490 mg/kg max). Five sites exceeded the Australian NEPC (1999) 300 mg/kg guideline for Pb in residential soils. Strong positive correlations between Cu, Zn and Pb, coupled with the spatial distribution of elevated soil concentrations towards the city centre and main roads suggest traffic and older housing as major sources of contamination. No spatial relationships were identified between elevated metal loadings and locations of past or present industries.  相似文献   

19.
The Yellow, Yangtze and Pearl Rivers supply over 90% of the sediment flux from China to the western Pacific Ocean. Trends and abrupt changes in the water discharge and sediment load of the three rivers were examined and compared based on data updated to the year 2011 at the seasonal and annual scales. The total water discharge from the three rivers shows a statistically insignificant decreasing trend with a rate of 0.62 × 109 m3/a, and the total sediment load shows a statistically significant decreasing trend at a rate of 31.12 × 106 t/a from the 1950s to 2011. The water discharge of the entire Yellow River and the upstream portion of the Yangtze River shows significant decreasing trends, and that of the mid-lower stream of Yangtze River and the entire Pearl River shows insignificant trends. The sediment loads in the three river basins all show significant decreasing trends at the annual and seasonal scales, and a dramatic decrease in the 2000s resulted in a more obvious decreasing trend over the studied period. From the 1950s to the 2000s, the contribution of sediment flux from the Yellow River to the ocean decreased from 71.8% to 37.0%, and the contributions of the Yangtze and Pearl Rivers increased from 24.2% and 4.0% to 53.0% and 10.0%, respectively. Inter-annual variations in water discharge and sediment load were affected by climate oscillations, such as the El Niño/Southern Oscillation, and the long-term decreasing trend in sediment load was primarily caused by human activities. Dam constructions and soil conservation projects were the major causes of sediment reduction. From the 1970s to the 2000s, the decrease in total sediment load from the three rivers caused by climate change and human activities was 2.24 × 108 t/a (23.0%) and 7.5 × 108 t/a (77.0%), respectively. In the coming decades, the sediment flux from the three rivers into the sea will decrease further with intensifying human activities, resulting in many challenges for the management of river basins and river deltas.  相似文献   

20.
The Water–Sediment Regulation Scheme (WSRS) is an important water conservancy project in the Yellow River basin, which is usually operated annually from June to July to control water and sediment release from the Xiaolangdi Reservoir in the middle reaches. As a greatly concentrated period of delivering terrigenous materials from the Yellow River to the sea, the WSRS can serve as a natural laboratory to examine the geochemical behavior of elements during their transport along the river. Uranium isotopes (234U and 238U) were measured in Yellow River waters at stations Xiaolangdi (located in the middle reaches of the Yellow River) and Lijin (the last hydrologic station near the Yellow River estuary) during the WSRS 2012. Compared with station Xiaolangdi, dissolved uranium concentration at station Lijin was markedly higher, showing a significant impact from the WSRS. Budget calculation for dissolved uranium during the WSRS indicated that two major sources of new added dissolved uranium in the section of the Yellow River between Xiaolangdi and Lijin: suspended particles (46%) and porewater of bottom sediment (45%). The flux of dissolved uranium from the Yellow River to the sea was estimated to be 2.40 × 107 g during the WSRS 2012.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号