首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By reacting chromium metal with appropriate oxides in a neutral atmosphere at high temperature it is possible to prepare Mg2SiO4 with the olivine structure containing Cr++ and also Cr2SiO4. X-ray powder diffraction data for chromous orthosilicate may be indexed on an orthorhombic cell with a=5.690, b=11.262, and c=9.584 Å. The compound is not isotructural with olivine. Optical absorption spectra of Cr2+ in both hosts have been obtained and also indicate large differences between the two structures.  相似文献   

2.
In order to explore possible quantitative relations between crystal field stabilization energy, CFSE, and partitioning behaviour of the 3d6-configured Fe2+ ion, a suite of 29 paragenetic rock-forming minerals from 12 high-grade metamorphic rock samples of the Ukrainian shield, including the parageneses garnet/orthopyroxene/clinopyroxene (2x), orthopyroxene/clinopyroxene, garnet/clinopyroxene, garnet/orthopyroxene/biotite, garnet/biotite, garnet/cordierite, garnet/cordierite/biotite, garnet/orthopyroxene/clinopyroxene/Ca-amphibole, Ca-amphibole/biotite (retrograde), was studied by electron microprobe analysis to obtain the respective K D Fe2+ (Ph1/Ph2) values and by polarized single crystal electronic absorption spectroscopy to evaluate the respective CFSEFe2+ values. Other than in the case of Cr3+, a clear quantitative relation between K D (Ph1/Ph2) and the ΔCFSE(Ph1/Ph2) was only observed when geometrical factors, mainly the volume of crystallographic sites and ionic radii of ions competing in the partitioning process, are similar in the respective two paragenetic phases to within 15–20%. In such cases, the ΔCFSEFe2+ contribution to K D (Ph1/Ph2) amounts to 0.1 to 0.2 log K D per 100 cm−1ΔCFSE. The conclusion is that ΔCFSEFe2+ plays only a secondary role after geometrical factors, in the partitioning behaviour of Fe2+. The reason for this is seen in the facts that, compared to the 3d  3-configured Cr3+ ion, CFSE of the 3d6-configured Fe2+ amounts only to 20–25%, and that the former ion enters only octahedral sites with similar geometrical properties in the paragenetic mineral phases. Received: 17 November 1998 / Accepted: 28 June 1999  相似文献   

3.
The dissolution of H2O and CO2 in structurally dense, nominally anhydrous and non-carbonate oxide matrices such as MgO and CaO is reviewed. H2O and CO2 are treated as gaseous oxide components which enter into solid solution with the refractory oxide hosts. They form anion complexes associated with cation vacancy sites. Evidence is presented that OH? pairs which derive from the dissolution of H2O are subject to a charge transfer (CT) conversion into peroxy moieties and molecular hydrogen, O 2 2? ... H2. Because the O 2 2? moiety is small (O?-O? distance ≈ 1.5 Å) high pressure probably favors the CT conversion. Mass spectroscopic studies show that molecular H2 may be lost from the solid which retains excess oxygen in the form of O 2 2? , leading to the release of atomic O. The dissociation of O 2 2? moieties into a vacancy-bound O? state and an unbound O? state can be followed by measuring the internal redox reactions involving transition metal impurities, the transient paramagnetism of the O? and their effect on the d.c. conductivity. Evidence is presented that CO2 molecules dissolve dissociatively in the structurally dense oxide matrix, as if they were first to dissociate into CO+O and then to form separate solute moieties CO 2 2? and O 2 2? , both associated with cation vacancy sites. In the CO 2 2? moiety (C-O? distance 1.2–1.3 Å, OCO angle ≈ 130°) the C atom probably sits off center. The transition of the C atom into interstitial sites is accompanied by dissociation of the CO 2 2? moiety into CO? and O?. This transition can be followed by infrared spectroscopy, using OH? as local probes. Further support derives from magnetic susceptibility, thermal expansion, low frequency dielectric loss and low temperature deformation measurements. The recently observed emission of O and Mg atoms besides a variety of molecules such as CO, CO2, CH4, HCN and other hydrocarbons during impact fracture of MgO single crystals is presented and discussed in the light of the other experimental data.  相似文献   

4.
Second-order zero-field splitting (ZFS) parameters from the literature for Fe3+ in twelve and for Cr3+ in seven minerals substituting for Al were evaluated by application of the superposition model. For Fe3+ in monoclinic site symmetries a fair agreement of the observed splitting patterns with those calculated from the crystal structure data was observed in most cases, but the distortions for Fe3+ appear to be usually larger than those of the unrelaxed Al sites. In cases of not too large local relaxation the unknown sign of the axialZFS parameterb 0 2 could be predicted, in two cases a different sign than that reported was postulated. In cordierite and scolecite the reportedEPR spectra could thus be assigned to the sites with larger average bond distances. For Fe3+ in beryl the relaxation of the axial site can be deduced within narrow limits. For Cr3+ significantly larger differences between observed and calculatedZFS patterns are found suggesting additional relaxations due to the non-spherical electron distribution in the ground state of this ion.  相似文献   

5.
Fe2+-F avoidance, reported in the literature in micas and amphiboles, can be accounted for by crystal field theory. The crystal field splitting parameter, ΔO, of Fe2+ octahedrally coordinated to F? is significantly smaller than its value when (OH)? is the coordinating anion. Thus, the presence of Fe2+ is not favored at sites where F? substitutes for (OH)? due to smaller crystal field stabilization energy.  相似文献   

6.
Comparison of the patterns of fracture under tensile stress, indentation, and scratching of periclase. quartz, and corundum indicates that the properties relevant to dissolution of rock-forming oxides and of rock-forming non-layer silicates should be changed by mechanical comminution in essentially the same way as those of quartz. The changes are accomplished by brittle fracture under the tensile component of the stress field, which does not generate subsurface damage, and by microplastic behavior under local stresses with high net compressive and shear components, which does.Mechanical comminution should therefore affect the apparent rates of dissolution (rates calculated with respect to the initial interface area) of rock-forming oxides and of rock-forming non-layer silicates in essentially the same way in which it affects the apparent rate of dissolution of quartz. This is supported by the available evidence on the effect of dry grinding on the kinetics of dissolution of feldspars, pyroxenes, and olivines in aqueous solutions.Different effects of mechanical comminution on solubilities and dissolution rate constants can be related to certain measured or calculated properties of the considered minerals. Notably, the effect of grain size on the dissolution rate constant can be rigorously related to the Kelvin effect.The available evidence on the mechanical comminution at the bases of dry-based glaciers in highgradient segments of streams, in certain high-energy coastal and epeiric environments, and in sandy deserts indicates that such mechanical comminution should significantly affect the simultaneous or subsequent dissolution of the comminuted material.  相似文献   

7.
Heterogeneous solid-state reactions in quasibinary oxide systems are analyzed. As long as local thermodynamic equilibrium prevails, diffusion processes through the reaction product are rate-controlling. The diffusion coefficients are governed by point-defect concentrations. Point-defect thermodynamics allow calculation of relative point-defect concentrations as a function of the relevant thermodynamic variables, if the disorder type of the crystalline product is known. Disorder types in ternary ionic crystals are introduced. On this basis, several reactions leading to simple silicates of the form A 2 BO 4 are discussed in terms of ion mobilities and Gibbs energies of formation, and the possible reaction mechanisms are analyzed. Finally some remarks are included on the influence of the gas atmosphere on the reaction rate, on powder reactions and on phase boundary-controlled reaction rates.  相似文献   

8.
The crystal structure of a synthetic CaFe3+Al-SiO6 pyroxene (20 kb, 1,375° C) with unit cell dimensions a=9.7797(16), b=8.7819(14), c=5.3685(5) Å, =105.78(1), space group C2/c has been refined by the method of least squares to an R-factor of 0.025 based on 812 reflections measured on an automatic single crystal diffractometer. The octahedral M1 site is occupied by 0.82 Fe3+ and 0.18 Al3+. Within the tetrahedral T site, Si4+ (0.50), Al3+ (0.41) and Fe3+ (0.09) ions are completely disordered, although submicroscopic domains with short-range order are very likely. The octahedral site preference energy of the Fe3+ ions with respect to Al3+ ions in CaFe3+AlSiO6 is about 10 kcal/mole, which is much higher than that found in Y3Al x Fe5–2O12 garnets. Topologically the structure of CaFe3+AlSiO6 is intermediate between that of diopside and calcium Tschermak's pyroxene, CaAlAlSiO6. For CaM3+ AlSiO6 clinopyroxenes an increase in the size of the M1 octahedron is accompanied by an increase in the average M2-0, bridging T-0 and 03-03 distances and kinking of the tetrahedral chain.  相似文献   

9.
The co-existing microphenocrysts of magnetite and ilmenite together with the ferromagnesian silicates in salic volcanic rocks have been analysed with the electron microprobe. The temperatures and oxygen fugacities of the oxide equilibration have been estimated from the curves of Buddington and Lindsley (1965). The co-existing ferromagnesian silicate phenocrysts are either iron-rich olivine, or orthopyroxene or biotite and amphibole; for each of these groups of phenocrysts, the oxide equilibration data are specific and fall on three distinct curves, parallel to experimental oxygen buffer curves. Many of the investigated rhyolites were quenched at temperatures near 900°C, which may represent liquidus temperatures for those with sparse phenocrysts, and also the intrusion temperature of water-undersaturated granites. The composition of the biotite phenocrysts, which are Al-poor and Ti-rich, taken in conjunction with the oxide data, suggest that two Lassen dacites precipitated biotite at a water fugacity of approximately 400 bars. The composition of the later crystallizing ferromagnesian silicates, particularly the pyroxenes which show a wide range in Fe/Mg ratio, is strongly influenced by the prior crystallization of the oxide phases. If the biotite phenocrysts are typical of acid liquids, then they are incapable of generating by fractionation a peraluminous residual liquid; rather they would tend to make a liquid peralkaline.  相似文献   

10.
Dense hydrous magnesium silicates (DHMS) are supposed to be key phases in planetary water cycles because of their ability to carry water to deep mantle regions in subduction slab environments. In order to understand water cycles in iron-enriched planetary systems such as Mars knowledge of the water content and stability of iron-bearing DHMS is required. Iron-bearing DHMS were synthesized based on two starting compositions, MgFeSiO4 + 9.5 wt% H2O system and a simple hydrous Martian mantle composition containing Fe, Mg, Al and Si + 12.35 wt% H2O (hydrous FMAS system). Compared to literature data on phase D, iron-bearing phase D shows analogous variations in water contents as Mg-phase D but appears to be stable at higher temperatures than Mg-phase D for both starting compositions used in this study. Iron-bearing superhydrous phase B contains up to 7 wt% H2O and shows an extended thermal stability in the hydrous FMAS system. The high-temperature stability of iron-bearing DHMS with a Mars-like bulk composition indicates that these hydrous phases could host significant amounts of water at core-mantle boundary conditions (1500 °C and 23 GPa) in a hydrous Martian mantle.  相似文献   

11.
The electron paramagnetic resonance (EPR) spectrum of Cr3+ in synthetic crystals of forsterite consists primarily of lines of Cr3+ “isolated” at the M1 and M2 positions in a “perfect” crystal environment without local charge compensation. In addition it shows two nonequivalent superhyperfine-split sextets with different intensities which are due to strong interaction of the Cr3+ electron spin S (S=3/2) with an adjacent nuclear spin I(I=5/2). Electron nuclear double resonance (ENDOR) experiments revealed that the sextets result from Cr3+ (M1) - Al3+ and Cr3+ (M2) - Al3+ pairs, Al being located at adjacent tetrahedral Si sites. The g, D, A, and A′ tensor components of the Cr3+ - Al3+ pairs have been determined at room temperature. The values of the pairs are distinct although they are not very different from the corresponding data of “isolated” Cr3+. From the intensities of the EPR spectra the relative concentration of the Cr3+ - Al3+ pairs with respect to “isolated” Cr3+ has been estimated.  相似文献   

12.
Results of SCF-Xα-SW molecular orbital calculations on (FeO4(OH)2)7? and (FeO6)9? clusters are used to investigate the differences between Fe-O and Fe-OH bonding in hydroxyl-bearing iron oxides and silicates. The Fe3+-OH? bond is more ionic, and has a smaller spinpolarization, then the Fe3+-O2? bond. The smaller spinpolarizability of OH? ligands explains why superexchange interactions between hydroxo-bridged Fe3+ cations are much weaker than those between oxo-bridged Fe3+ cations. Replacement of oxygens in the Fe3+ coordination environment by OH? ligands appears to promote the covalency between Fe3+ centers and O2? oxygens. The increased covalency lowers the effective spin of the Fe atom. This, in turn, explains the decreased magnetic hyperfine fields at the Fe nucleus in FeOOH polymorphs relative to those found in Fe3+ oxides.  相似文献   

13.
The true third-law entropies of many minerals are frequently quite different from those values derived from calorimetric measurements. The discrepancy can usually be attributed to neglected residual or unextracted entropies related either to site-mixing and molecular disorders or to the lack of significant magnetic ordering at those temperatures reached by the heat capacity measurements. A literature review indicates that many silicates present site-mixing and vacancies in one or several of their crystallographic sites. The effect on entropy is well known in feldspars, but residual entropies of similar or greater magnitudes are also present in many amphiboles, micas, chlorites, zeolites, scapolites, feldspathoids, and other silicates. Less conspicuously, disorder in water molecules or hydrogen bonding may be responsible for yet another frequently overlooked entropy contribution. Unextracted entropy results from limited heat capacity measurements so that magnetic ordering effects to be expected in minerals with transition metals are either not registered or only incompletely recorded. In some cases, significant magnetic ordering probably only takes place at temperatures well below 15 K.The discussion in this paper centers on the causes resulting in discrepancies between calorimetric and third-law entropies. A set of tables reproduces the crystallographic information for most important rock-forming silicates and indicates the entropy contribution arising from site-mixing and vacancies, and possible magnetic ordering in those substances with transition metals. In addition, most elements appear in several isotopic forms, and it is this effect that gives rise to isotopic site-mixing and thus to another configurational entropy. It can on the whole be neglected. A discussion centered on the system fayalite-iron oxides (wüstite, hematite, magnetite) indicates the uncertainties involved in deriving third-law entropies from either equilibrium data or calorimetric investigations, which is especially relevant when dealing with substances presenting vacancies (wüstite), transition metals, and the possibility of magnetic ordering. The published entropies of many minerals are probably only approximations to true third-law values and should be checked against structural and magnetic information.  相似文献   

14.
15.
The occurrence of Cr-Al pairs in Mg2SiO4 has been detected by EPR spectroscopy. In the case where Cr3+ replaces Mg at the M2 position three different neighboring Si sites may be substituted by Al3+, which should yield different superhyperfine interactions. A new spectrum is presented which shows the presence of two of these possible pair configurations. An assignment of the spectral features to a specific Cr-Al pair with Cr at M2 from the experimental data alone was not possible, therefore, MSX α cluster calculations have been performed from which the differences in the superhyperfine interaction for the various pair configurations could be obtained. Best agreement with the data of the Cr3+(M2)-Al pair exhibiting the most intense group of lines in the EPR spectrum was obtained for the situation where Al3+ is at the Si position with the shortest distance to M2. The second observed Cr3+(M2)-Al pair, which is significantly weaker in intensity, could not yet be assigned.  相似文献   

16.
The polarized (Ea′, Eb and Ec) electronic absorption spectra of five natural chromium-containing clinopyroxenes with compositions close to chromdiopside, omphacite, ureyite-jadeite (12.8% Cr2O3), jadeite, and spodumene (hiddenite) were studied. The polarization dependence of the intensities of the Cr3+ bands in the clinopyroxene spectra cannot be explained by the selection rules for the point groups C 2 or C 2v but can be accounted for satisfactorily with the help of the higher order pseudosymmetry model, i.e. with selection rules for the point symmetry group C 3v. The trigonal axis of the pseudosymmetry crystal field forms an angle of 20.5° with the crystallographic direction c in the (010) plane. D q increases from diopside (1542 cm?1) through omphacite (1552 cm?1), jadeite (1574 cm?1) to spodumene (1592 cm?1). The parameter B which is a measure of covalency for Cr3+-O bonds at M1 sites in clinopyroxene depends on the Cr3+ concentration and the cations at M2 sites.  相似文献   

17.
A discussion of the transition from the ideal hexagonal mica structure to the ideal ditrigonal one, leads to the conclusion that the single mica layer may have two different structures (labelled A and B). The recent literature data show that both the A and B structures have been detected in some triocahedral layer lattice silicates found in nature. An examination of the structural stability of the A and B structures suggests that the last one may not be realized by dioctahedral layer lattice silicates. The concept of two structurally different mica layers, which however have the same lattice constants, greatly improves the understanding of polymorphism and twin laws in layer lattice silicates.The structural features of the tetrahedral sheet, octahedral sheet and interlayer region are carefully examined. Thus we can reach the following conclusions: the tetrahedal sheet is not entirely free to reduce its lateral dimensions by the mechanism of tetrahedal rotation owing to the repulsion among Obas atoms; the octahedral sheet in layer lattice silicates, may increase or reduce its lateral dimensions as compared to the lateral dimensions it has in the hydroxide minerals; the interlayer region is characterized by a regular octahedral coordination of the Obas around the interlayer cation. On the ground of these conclusions, new structural models for some selected layer lattice silicates are proposed.Notations Obas basal oxygen atoms of the (Al, Si)O4 tetrahedra - Oap apical oxygen atoms of the (Al, Si)O4 tetrahedra - b tetr b dimension which the tetrahedral sheet would assume if unconstrained - b oct b dimension which the octahedral sheet has in the hydroxide minerals - b obs observed value of b - c oct * thickness of the octahedral sheet - d o distance between an octahedral cation and an Oap atom - d int distance between an interlayer cation and an Obas atom - average tetrahedral rotation from ideal hexagonal symmetry  相似文献   

18.
The dissolution of water does not stop at the OH stage but may proceed further towards H2 plus O formation. The discovery of atomic carbon dissolved in minerals suggests that, if CO2 enters oxides and silicates at high pressures and temperatures, not only [CO3]2– ions but also [CO 4 . ]4– complexes are formed via a charge transfer which produces O and essentially zero-valent, atomic carbon. Under P —T-conditions of the mantle, where the solubility for water and CO2 is high, the silicate phases formed may therefore consist to a large volume fraction of O ions which are much smaller than O2–ions and strongly cova-lently bonding. The implications for the crystal chemistry of high pressure phases, for the petrology of mantle rocks are outlined.  相似文献   

19.
Lithian ferrian enstatite with Li2O = 1.39 wt% and Fe2O3 7.54 wt% was synthesised in the (MgO–Li2O–FeO–SiO2–H2O) system at P = 0.3 GPa, T = 1,000°C, fO2 = +2 Pbca, and a = 18.2113(7), b = 8.8172(3), c = 5.2050(2) Å, V = 835.79(9) Å3. The composition of the orthopyroxene was determined combining EMP, LA-ICP-MS and single-crystal XRD analysis, yielding the unit formula M2(Mg0.59Fe 0.21 2+ Li0.20) M1(Mg0.74Fe 0.20 3+ Fe 0.06 2+ ) Si2O6. Structure refinements done on crystals obtained from synthesis runs with variable Mg-content show that the orthopyroxene is virtually constant in composition and hence in structure, whereas coexisting clinopyroxenes occurring both as individual grains or thin rims around the orthopyroxene crystals have variable amounts of Li, Fe3+ and Mg contents. Structure refinement shows that Li is ordered at the M2 site and Fe3+ is ordered at the M1 site of the orthopyroxene, whereas Mg (and Fe2+) distributes over both octahedral sites. The main geometrical variations observed for Li-rich samples are actually due to the presence of Fe3+, which affects significantly the geometry of the M1 site; changes in the geometry of the M2 site due to the lower coordination of Li are likely to affect both the degree and the kinetics of the non-convergent Fe2+-Mg ordering process in octahedral sites.  相似文献   

20.
Sorptive stabilization of organic matter in soils by hydrous iron oxides   总被引:5,自引:0,他引:5  
Strong correlations between iron oxides (FeOx) and organic matter (OM) in soils have implied the importance of the former in stabilizing the latter. One mechanism thought to be important in this stabilization is sorption. We tested this possibility by reductively dissolving FeOx in a wide variety of soils and measuring the organic carbon (OC) that was solubilized. The OC dissolved from non-FeOx phases via anion exchange was corrected for by parallel control extractions. The resultant pool, reductively soluble OC, made up a minor amount of total soil OC in all but one of these soils, indicating that simple sorption reactions do not stabilize the bulk of soil OC in most mineral soils. OC:Fe ratios in the extracts from 2/3 of these soils were less than 0.22 (wt/wt), consistent with a sorbed state for this OC and showing that OC sorption by FeOx in these soils is limited by the amount of FeOx. The remaining soils had low pH and high OM concentrations; their higher OC:Fe ratios indicate inclusion of precipitated organo-Fe complexes in the extracts, which are likely only partially extracted by our method. The high volumetric ratios of OM to FeOx found in correlations between them from the literature are inconsistent with a dominant sorption control and point instead to stabilization to other mechanisms such as organo-Fe complexes or ternary associations among FeOx, OM and other minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号