共查询到20条相似文献,搜索用时 46 毫秒
1.
The Indian summer monsoon rainfall (ISMR) plays an important role in the climate system of South Asia. Recently, studies about ISMR variations have been going into more depth. In this present paper, we mainly use the Scargle periodogram and wavelet transform methods to study the periodicity of ISMR changes between 1871 and 2004 and review the possible influence of solar activity on the rainfall. Analysis results show complicated ISMR variations have periodicities with remarkable time-variable characteristics. Investigating a possible connection between the rainfall and solar variations, we believe that solar activity affects the ISMR variations to some extent. 相似文献
2.
Warren M. Washington Robert M. Chervin G. V. Rao 《Pure and Applied Geophysics》1977,115(5-6):1335-1356
The time mean response of the summer monsoon circulation, as simulated by the 2.5° latitude-longitude resolution, July version of the National Center for Atmospheric Research (NCAR) General Circulation Model (GCM), to a variety of Indian Ocean surface temperature anomaly patterns is examined. In separate experiments, prescribed changes in surface temperature are imposed in the Western Arabian Sea, the Eastern Arbian Sea or the Central Indian Ocean. The influence of these anomaly patterns on the simulated summer monsoon circulation is evaluated in terms of the geographical distribution of the prescribed change response for any field of interest. This response is defined as the grid point difference between a 30-day mean from a prescribed change experiment and the ensemble average of the 30-day means from the control population for which the same set of climatological ocean surface temperatures are used in each simulation. The statistical significance of such a prescribed change response is estimated by relating the normalized response (defined as the ratio of the prescribed change response to the standard deviation of 30-day means as estimated from the finite sample of control cases) to the classical Student'st-statistic. Using this methodology, the most prominent and statistically significant features of the model's response are increased vertical velocity and precipitation over warm anomalies and typically decreased vertical velocity and precipitation in some preferred region adjacent to the prescribed change region. In the case of cold anomalies, these changes are of opposite sign. However, none of the imposed anomaly patterns produces substantial or statistically significant precipitation changes over large areas of the Indian sub-continent. The only evidence of a major nonlocal effect is found in the experiment with a large positive anomaly (+3°C) in the Central Indian Ocean. In this instance, vertical velocity and precipitation are reduced over Malaysia and a large area of the Equatorial Western Pacific Ocean. Thus, while these anomaly experiments produce only a local response (for the most part), it is hoped, as one of the purposes of the planned Monsoon Experiment (MONEX), that the necessary data will be provided to produce detailed empirical evidence on the extent to which Indian Ocean surface temperature anomalies correlate with precipitation anomalies over the Indian subcontinent—a correlation which generally does not appear in these GCM results.The National Center for Atmospheric Research is sponsored by the National Science Foundation 相似文献
3.
The paper deals with an application of a stochastic model to the frequency and duration of precipitation events. With the aid of the model, the magnitudes ofmth highest rainfall amount in 24 hours' duration with 97.5% probability are obtained for various climatic regimes over a tropical monsoon region. There is good agreement between them-day minimum rainfall estimated through the model and the observed value. The model satisfactorily explains the frequency of the extreme rainfall event. 相似文献
4.
Heating status of the Tibetan Plateau from April to June and rainfall and atmospheric circulation anomaly over East Asia in midsummer 总被引:20,自引:0,他引:20
DUAN Anmin LIU Yimin & WU Guoxiong State Key Laboratory of Numerical Modeling for Atmospheric Sciences Geophysical Fluid Dynamics Institute of Atmospheric Physics Chinese Academy of Sciences Beijing China 《中国科学D辑(英文版)》2005,48(2):250-257
Based on the 1958-1999 monthly averaged reanalysis data of the National Center for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) and the rainfall data of 160 Chinese surface stations, the relationship between rainfall and the atmospheric circulation anomaly over East Asia (EA) in July and the sensible heating (SH) over the Tibetan Plateau (TP) from April to June (AMJ) is investigated by using the rotational experimental orthogonal function (REOF) method. The results show that the TP is an isolated heating source in this period. The lagged correlation analysis between the first rotational principal component (RPC) of SH over the TP in May and rainfall of EA in July demonstrates that strong SH over the TP before July leads to a positive rainfall anomaly over the TP, the valley between the Yangtze River and Huaihe River, and the regions south and southeast of the TP, and the Sichuan Basin and Yunnan-Guizhou Plateau, but less rainfall anomaly over the regions north, northeas 相似文献
5.
Radon-222 activity levels have been measured at deck level in regions of the Arabian Sea, Indian Ocean, and Bay of Bengal during the summer monsoon periods of 1973, 1977, and 1979, as part of the Monex programme. The aim of the measurements was to find the source regions of the monsoon air and the variations in its composition under different synoptic conditions. The radon data confirm that the monsoon air is predominantly of southern-hemisphere origin, with a small continental component. The continental component, as indicated by radon values, increases at higher latitudes and seems to vary with different circulation patterns in the synoptic scale. The use of radon as a tracer in monsoon studies is thus demonstrated. 相似文献
6.
A kinetic energy budget over the Indian region is computed for the period 4–9 July 1973, when a twin monsoon depression-one in the Bay of Bengal and another in the Arabian sea were the dominant synoptic features. The generation term caused by the cross-contour flow is a dominant source to the kinetic energy. The dissipation term is computed as a residual and is a major sink for the kinetic energy. The horizontal flux divergence is also a sink term but is much smaller in magnitude than other major source and sink terms. From the results it may be inferred that the generation term is the most important for the maintenance of monsoon disturbances. 相似文献
7.
Abstract Currently there is much discussion regarding the impact of climate change and the vagaries of the weather, in particular extreme weather events. The Himalayas form the main natural water resource of the major river systems of the Indian region. We present a brief review of the available information and data for extreme rainfall events that were experienced in different sectors of the Himalayas during the last 137 years (1871–2007). Across the entire Himalayas, from east to west, there are now 822 rainfall stations. There was an increase in the rainfall station network from 1947 onwards, especially in the Nepal and Bhutan Himalayas. Extreme one-day rainfall has been picked out for each station irrespective of the period for which data are available. The decadal distribution of these extreme one-day rainfalls shows that there is a considerable increase in the frequencies during the decades 1951–1960 to 1991–2000, whereas there is a sudden decrease in the frequencies in the present decade during 2001–2007, indicating the need to understand the response of the systems to global change and the associated physical and climatological changes. This is essential in terms of preserving this natural resource and to encourage environmental management and sustainable development of mountain regions. Citation Nandargi, S. & Dhar, O. N. (2011) Extreme rainfall events over the Himalayas between 1871 and 2007. Hydrol. Sci. J. 56(6), 930–945. 相似文献
8.
Andreas Schiller 《Continental Shelf Research》2011,31(10):1087-1095
The ocean circulation on Australia's Northern Shelf is dominated by the Monsoon and influenced by large-scale interannual variability. These driving forces exert an ocean circulation that influences the deep Timor Sea Passage of the Indonesian Throughflow, the circulation on the Timor and Arafura Shelves and, further downstream, the Leeuwin Current. Seasonal maxima of northeastward (southwestward) volume transports on the shelf are almost symmetric and exceed 106 m3/s in February (June). The associated seasonal cycle of vertical upwelling from June to August south of 8.5°S and between 124°E and 137.5°E exceeds 1.5×106 m3/s across 40 m depth. During El Niño events, combined anomalies from the seasonal means of high regional wind stresses and low inter-ocean pressure gradients double the northeastward volume transport on the North Australian Shelf to 1.5×106 m3/s which accounts for 20% of the total depth-integrated transport across 124°E and reduce the total transport of the Indonesian Throughflow. Variability of heat content on the shelf is largely determined by Pacific and Indian Ocean equatorial wind stress anomalies with some contribution from local wind stress forcing. 相似文献
9.
Feed forward Artificial Neural Network model to predict the average summer-monsoon rainfall in India
Surajit Chattopadhyay 《Acta Geophysica》2007,55(3):369-382
In the present research, possibility of predicting average summer-monsoon rainfall over India has been analyzed through Artificial
Neural Network model. In formulating the ANN — based predictive model, three-layer network has been constructed with sigmoid
non-linearity. The monthly summer monsoon rainfall totals, tropical rainfall indices and sea surface temperature anomalies
have been considered as predictors while generating the input matrix for the ANN. The data pertaining to the years 1950–1995
have been explored to develop the predictive model. Finally, the prediction performance of neural net has been compared with
persistence forecast and Multiple Linear Regression forecast and the supremacy of the ANN has been established over the other
processes. 相似文献
10.
Wavelet analysis of rainfall variation in the Hebei Plain 总被引:5,自引:0,他引:5
XU Yueqing LI Shuangcheng & CAI Yunlong Key Laboratory for Earth Surface Process Ministry of Education Department of Resources Environmental Geosciences College of Environmental Sciences Peking University Beijing China 《中国科学D辑(英文版)》2005,48(12):2241-2250
Rainfall is an important climate factor, which has significant impacts on agricultural production and na-tional economic development[1]. Being part of the North China Plain, the Hebei Plain is an agricultural region. Under the continental monsoon climate, it is cold and dry in winter, hot and rainy in summer, and its variable rainfall is concentrated in summer. Droughts and floods occur frequently and impose sig-nificant impacts on agricultural production. Studies on the characteristics and … 相似文献
11.
Chih-Pei Chang 《Pure and Applied Geophysics》1977,115(5-6):1089-1109
Summary Some important theoretical problems of the planetary-scale monsoons which have arisen from recent advances of observational studies are reviewed. These include: (1) the requirement of a strong damping mechanism in the planetary scale vorticity budget of summer monsoon and a similar but weaker requirement for the winter monsoon; (2) the localized barotropic instability of the summer monsoon which is a result of the strong zonal asymmetry of the planetary-scale flow and causes significant nonlinear energy conversions; and (3) the oscillations of the planetary-scale monsoons. It is pointed out that these problems are inter-related and their understanding is also important for the proper simulation of other scales of motion of the monsoon circulation. 相似文献
12.
Water vapour transport of the pre-monsoon period and the general performance of the Indian summer monsoon 总被引:1,自引:0,他引:1
S. N. Bavadekar 《Pure and Applied Geophysics》1982,120(1):67-78
The advective monthly mean transfer of water vapour in the layer below 700 mbar is investigated for India for the years 1962 to 1972 and for the months January to September. The average zonal and meridional components of the transfer of water vapour for India are obtained. They are further averaged for different combinations of the pre-monsoon months from January to May and are correlated with the summer monsoon rainfall. The correlation coefficients for zonal transfer of water vapour are either negative or small positive for different combinations of the months mentioned above. The correlation coefficients for the meridional transfer of water vapour are positive. The maximum value is 0.74 for the March to May combination and is statistically significant at the 1% level.An extensive investigation is, therefore, made for the March to May averages of water vapour transfer for four broad regions of India. The parameters of water vapour transfer for these regions are compared with the threshold values and the prediction category, normal or drought, for the subsequent summer monsoon season is determined for all years. The correlation coefficient between the index of drought, as determined from parameters of water vapour transport and rainfall departure, is statistically significant at the 2% level. 相似文献
13.
Analytic expressions are derived for the minimum easterly and westerly jet strengths necessary for baroclinic instability, in terms of their half-widths and location. For this purpose the necessary condition for an internal jet is utilized and the jets and static stability are represented by simple mathematical functions. Dependency of the minimum jet strengths to their half-width and location are discussed. 相似文献
14.
D. Subrahmanyam M. K. Tandon L. George S. K. Mishra 《Pure and Applied Geophysics》1981,119(5):901-912
The role of barotropic processes in the development of a monsoon depression, formed on 5 July 1979 during MONEX observational period, is studied by considering it as a quasi-geostrophic divergent barotropic instability problem of zonal flow of 3 July 1979 at 700 mb level. Numerical solutions are obtained by initial value approach. The preferred wave has a wavelength of 2750 km, an e-folding time of 4.3 days, a period of 6.5 days and an eastward phase speed of 4.9 ms–1. Structure of preferred wave is found to be in good agreement with the observed horizontal structure of the depression at 700 mb. Poleward momentum transports are found to predominate over equatorward transports.Parts of this paper were presented at the National Symposium on Early Results of MONEX-1979. 9–12 March 1981, in New Delhi, India. 相似文献
15.
ABSTRACT Rainfall events largely control hydrological processes occurring on and in the ground, but the performance of climate models in reproducing rainfall events has not been investigated enough to guide selection among the models when making hydrological projections. We proposed to compare the durations, intensities, and pause periods, as well as depths of rainfall events when assessing the accuracy of general circulation models (GCMs) in reproducing the hydrological characteristics of observed rainfall. We also compared the sizes of design storm events and the frequency and severity of drought to demonstrate the consequences of GCM selection. The results show that rainfall and extreme hydrological event projections could significantly vary depending on climate model selection and weather stations, suggesting the need for a careful and comprehensive evaluation of GCM in the hydrological analysis of climate change. The proposed methods are expected to help to improve the accuracy of future hydrological projections for water resources planning. 相似文献
16.
High resolution aicraft observations of temperature were made in cloud-air and clear-air at different heights in the lower atmosphere over the Deccan Plateu, India, during the summer monsoon season (June–September) of 1976. Temperature fluctuations in the horizontal at each flight level were utilised for computing the temperature structure parameter (C
T
2
) at that level for studying the hieght dependence ofC
T
2
. The results were found to be in agreement with those obtained by other investigators. Also, the height variations ofC
T
2
in cloud-air and clear-air during active and weak monsoon conditions are studied. Marked differences were noticed in the behaviour ofC
T
2
during active and weak monsoon conditions. 相似文献
17.
The leading empirical orthogonal function (EOF) of the June-Sept. mean, rotational horizontal wind at 850 hPa and 200 hPa
(over the region 12.5°S–42.5°N, 50°E–100°E) from 56 years (1948–2003) of reanalysis (from the National Centers for Environmental
Prediction) shows strong anti-cyclonic circulation at upper levels, strong Indian Ocean cross-equatorial flow and on-shore
flow over western India at lower levels . The associated principal component (PC) is correlated at the 0.75 level with the
seasonal mean observed Indian Monsoon rainfall (IMR). Composite differences of vertically integrated divergence (surface to
800 hPa) and vorticity (surface to 500 hPa) between ``strong' years (PC-1 exceeds one standard deviation σ) and ``weak' years (PC-1 less than − σ) suggest increased rising motion and storminess over the Bay of Bengal and central India. Composite difference maps of station
rainfall from the India Meteorological Department (IMD) between strong years and normal years (weak years and normal years)
are statistically significant over central India, with strong (weak) years associated with increased (decreased) precipitation.
In both cases the maps of rainfall anomalies are of one sign throughout India. The correlation of PC-1 with global seasonal
mean SST is strong and negative over the eastern equatorial Pacific, but positive in a surrounding horse-shoe like region.
Significant negative correlation occurs in the northwestern Indian Ocean. The lag/lead correlation between the NINO3 SST index
and PC-1 is similar to but stronger than the NINO3/IMR correlation. Modest (but significant) negative correlation is seen
when NINO3 leads PC-1 (or IMR) by one-two months. Strong negative correlation is seen when PC-1 (or IMR) leads NINO3. The
projections of running five-day means of horizontal rotational winds at 850 and 200 hPa onto EOF-1 (after removing the seasonal
mean for each year) were pooled for strong, normal and weak years. The strong and normal year probability distribution functions
(pdfs) are nearly indistinguishable, but the weak year pdf has more weight for moderate negative values and in both extreme
tails and shows some hint of bi-modality. 相似文献
18.
Zonal propagation of kinetic energy and convection in the South China Sea and Indian monsoon regions in boreal summer 总被引:7,自引:0,他引:7
CHEN Longxun GAO Hui HE Jinhai TAO Shiyan & JIN Zuhui .Chinese Academy of Meteorological Sciences Beijing China .Nanjing Institute of Meteorology Nanjing China .Institute of Atmospheric Physics Chinese Academy of Sciences Beijing China 《中国科学D辑(英文版)》2004,47(12):1076-1084
As early as in the 1980s, Chinese scientists hadfirst proposed that there exits two summer monsoonsystems in Asia, namely the East Asian summer mon-soon (EASM) and the Indian summer monsoon(ISM)[1-4]. The two monsoon systems are quite dif-ferent in characteristics. Since then, such issue andconclusion had been documented and approved by alot of studies in the past two decades, and was appliedin the guideline of the South China Sea summer mon-soon experiment (SCSMEX), which was undertak… 相似文献
19.
Arabian Peninsula-North Pacific Oscillation and its association with the Asian summer monsoon 总被引:2,自引:0,他引:2
Using correlation and EOF analyses on sea level pressure from 57-year NCEP-NCAR reanalysis data, the Arabian Peninsula-North Pacific Oscillation (APNPO) is identified. The APNPO reflects the co-variability between the North Pacific high and South Asian summer monsoon low. This teleconnec- tion pattern is closely related to the Asian summer monsoon. On interannual timescale, it co-varies with both the East Asian summer monsoon (EASM) and South Asian summer monsoon (SASM); on decadal timescale, it co-varies with the EASM: both exhibit two abrupt climate changes in the middle 1960s and the late 1970s respectively. The possible physical process for the connections between the APNPO and Asian summer monsoon is then explored by analyzing the APNPO-related atmospheric circulations. The results show that with a strong APNPO, the Somali Jet, SASM flow, EASM flow, and South Asian high are all enhanced, and an anomalous anticyclone is produced at the upper level over northeast China via a zonal wave train. Meanwhile, the moisture transportation to the Asian monsoon regions is also strengthened in a strong APNPO year, leading to a strong moisture convergence over India and northern China. All these changes of circulations and moisture conditions finally result in an anoma- lous Asian summer monsoon and monsoon rainfall over India and northern China. In addition, the APNPO has a good persistence from spring to summer. The spring APNPO is also significantly corre- lated with Asian summer monsoon variability. The spring APNPO might therefore provide valuable in- formation for the prediction of Asian summer monsoon. 相似文献
20.
An inverse model is applied for the analysis of hydrographic and current meter data collected on the repeat WOCE section SR4 in the Weddell Sea in 1989–1992. The section crosses the Weddell Sea cyclonic gyre from Kapp Norvegia to the northern end of the Antarctic Peninsula. The concepts of geostrophy, conservation of planetary vorticity and hydrostatics are combined with advective balances of active and passive properties to provide a dynamically consistent circulation pattern. Our variational assimilation scheme allows the calculation of three-dimensional velocities in the section plane. Current speeds are small except along the coasts where they reach up to 12 cm/s. We diagnose a gyre transport of 34 Sverdrup which is associated with a poleward heat transport of 28 × 1012 W corresponding to an average heat flux of 15 Wm–2 in the Weddell Sea south of the transect. This exceeds the estimated local flux on the transect of 2 Wm–2. As the transect is located mostly in the open ocean, we conclude that the shelf areas contribute significantly to the ocean-atmosphere exchange and are consequently key areas for the contribution of the Weddell Sea to global ocean ventilation. Conversion of water masses occuring south of the section transform 6.6 ± 1.1 Sv of the inflowing warm deep water into approximately equal amounts of Weddell Sea deep water and Weddell Sea bottom water. The volume transport of surface water equals in the in-and outflow. This means that almost all newly formed surface water is involved in the deep and bottom water formation. Comparison with the results obtained by pure velocity interpolation combined with a hydrographic data subset indicates major differences in the derived salt transports and the water mass conversion of the surface water. The differences can be explained by deviations in the structure of the upper ocean currents to which shelf areas contribute significantly. Additionally a rigorous variance analysis is performed. When only hydrographic data are used for the inversion both the gyre transport and the poleward heat transport are substantially lower. They amount to less than 40% of our best estimate while the standard deviations of both quantities are 6.5 Sv and 37 × 1012 W, respectively. With the help of long-term current meter measurements these errors can be reduced to 2 Sv and 8 × 1012 W. Our result underlines the importance of velocity data or equivalent information that helps to estimate the absolute velocities. 相似文献