首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Wave generation, propagation, and transformation from deep ocean over complex bathymetric terrains to coastal waters around Potter Cove (King George Island, South Shetland Islands, Antarctica) have been simulated for an austral summer month using the Simulating Waves Nearshore (SWAN) wave model. This study aims to examine and understand the wave patterns, energy fluxes, and dissipations in Potter Cove. Bed shear stress due to waves is also calculated to provide a general insight on the bed sediment erosion characteristics in Potter Cove.A nesting approach has been implemented from an oceanic scale to a high-resolution coastal scale around Potter Cove. The results of the simulations were compared with buoy observations obtained from the National Data Buoy Center, the WAVEWATCH III model results, and GlobWave altimeter data. The quality of the modelling results has been assessed using two statistical parameters, namely the Willmott’s index of agreement D and the bias index. Under various wave conditions, the significant wave heights at the inner cove were found to be about 40–50 % smaller than the ones near the mouth of Potter Cove. The wave power in Potter Cove is generally low. The spatial distributions of the wave-induced bed shear stress and active energy dissipation were found to be following the pattern of the bathymetry, and waves were identified as a potential major driving force for bed sediment erosion in Potter Cove, especially in shallow water regions. This study also gives some results on global ocean applications of SWAN.  相似文献   

2.

Excessive usage of fossil fuels and high emission of greenhouse gases have increased the earth’s temperature and consequently have led to changes in wind and wave regimes. The main effects of climate change on oceans are warming of the ocean water, melting of ice, acidification of ocean water, and change in the ocean currents. The main effects of climate change on coastal regions are change in the coast hydrodynamics, sea level rise, change in wave height, coastal erosion, coastal structure damage, food shortage, and storms. Due to the importance of waves in the coastal zone and its effect on erosion and sedimentation, it is necessary to study wave changes. In this study, the effect of climate change on wave specifications was evaluated in the southern coast of the Caspian Sea in Noshahr Port. To simulate wave parameters, the third generation spectral Simulating WAves Nearshore (SWAN) model was used. Wave modeling was carried out using the SWAN numerical model for two 30-yearly periods, including the control period (1984 to 2014) and the future period (2051 to 2080). For wave modeling in the control period, the European Center for Average Weather Forecast wind field was used, and for the future period, a downscaled wind field from Coordinated Regional Downscaling Experiment projection, which was sponsored by World Climate Research Programme, based on the most recent emission scenarios RCP2.6, RCP4.5, and RCP8.5, was used. The model results were calibrated and verified with buoy-recorded data. The effect of the climate change on the wave parameters was evaluated by studying the differences between the patterns in three scenarios and the control period. Results showed that the 30-year maximum significant wave height will increase because of climate change, and the wave direction will not change. In addition, the intensity of storms will increase in the future.

  相似文献   

3.

In order to simulate the dynamics of fine sediments in short tidal basins, like the Wadden Sea basins, a 1D cross-sectional averaged model is constructed to simulate tidal flow, depth-limited waves, and fine sediment transport. The key for this 1D model lies in the definition of the geometry (width and depth as function of the streamwise coordinate). The geometry is computed by implementing the water level and flow data, from a 2D flow simulation, and the hypsometric curve in the continuity equation. By means of a finite volume method, the shallow-water equations and sediment transport equations are solved. The bed shear stress consists of the sum of shear stresses by waves and flow, in which the waves are computed with a depth-limited growth equation for wave height and wave frequency. A new formulation for erosion of fines from a sandy bed is proposed in the transport equation for fine sediment. It is shown by comparison with 2D simulations and field measurements that a 1D schematization gives a proper representation of the dynamics in short tidal basins.

  相似文献   

4.
The role of mud erosion under waves in governing cohesive sediment transport in estuarial and coastal waters is well known. A laboratory study was conducted in order to elucidate the mechanism by which soft muds erode under progressive waves in a flume. Two types of cohesive sediment were used, a commercial kaolinite and an estuarial mud. Beds were formed by pouring in a pre-prepared sediment-water slurry and allowing the deposit to consolidate for a period ranging from 2 to 14 days. A multi-layered hydrodynamic model, which considers the mud to be viscoelastic, has been developed and used to evaluate the bed shear stress at the oscillating mud-water interface. The viscoelastic property of the mud has been confirmed by rheological measurements, and model results on velocity, pressure and wave attenuation verified against flume data. Concentration profiles indicate a distinct evolutionary pattern resulting in a highly stratified suspension. Just above the bed, a thin layer of fluid mud is generated. Above this layer, the suspension concentration is significantly lower. This two-layered feature of the concentration profile is related to the oscillatory response of the mud and water layers, and the associated momentum exchange and mass diffusion characteristics. An expression relating the rate of erosion to the bed shear stress in excess of bed shear resistance has been developed. Generation of fluid mud during erosion is a significant feature of the role of waves over mud.  相似文献   

5.
This paper addresses the spatial and temporal patterns of drivers for sediment dynamics in coastal areas. The basic assumption is that local processes are dominating. The focus is put on the bed shear stress in the southern part of North Sea giving the basic control for deposition–sedimentation and resuspension–erosion. The wave-induced bed shear stress is formulated using a model based on the concept that the turbulent kinetic energy associated with surface waves is a function of orbital velocity, the latter depending on the wave height and period, as well as on the water depth. Parameters of surface waves are taken from simulations with the wave spectrum model WAM (wave model). Bed shear stress associated with currents is simulated with a 3D primitive equation model, Hamburg Shelf Ocean Model. Significant wave height, bed shear stress due to waves and currents, is subjected to empirical orthogonal functions (EOF) analysis. It has been found that the EOF-1 of significant wave height represents the decrease of significant wave height over the shallows and, due to fetch limitation, along the coastlines. Higher order modes are seesaw-like and, in combination, display a basin-scale rotational pattern centred approximately in the middle of the basin. Similar types of variability is also observed in the second and third EOF of bed shear stress. Surface concentrations of suspended matter derived from MERIS satellite data are analysed and compared against statistical characteristics of bed shear stress. The results show convincingly that the horizontal distribution of sediment can, to a larger extent, be explained by the local shear stress. However, availability of resuspendable sediments on the bottom is quite important in some areas like the Dogger Bank.  相似文献   

6.
The transition zone separating estuarine environments from the coastal ocean is characterized not only by distinctive morphological and sedimentary trends but by unique hydrodynamic forces as well. Lower Chesapeake Bay, a large coastal estuary within the Mid-Atlantic Bight of the U.S. East Coast, experiences complex wave and current-induced forces produced during winter storms. Wave and current measurements made near Thimble Shoal Light over five winter seasons show that most storms simultaneously produce both ocean and bay-generated wave trains that appear as distinct bimodal peaks in directional spectra. Analysis of selected storm wave records reveal that lower-frequency ocean waves, although nominally lower in amplitude than higher-frequency bay waves, are roughly equivalent to bay waves in terms of energy expended on beds of fine- to medium-grained sand at either end of the Thimble Shoal Channel. Grain-friction energy dissipation estimates calculated for waves and currents suggest that waves provide more net energy capable of transporting bottom sediment than currents, although strong barotropic flows briefly encountered during a major storm on 13–14 March 1993, exceeded wave energy expended at the bed by almost an order of magnitude. From analyses of wave orbital velocity spectra, it is shown that dual wave trains characterized by differences in peak frequency and direction may assist each other through interactions that increase their combined contribution to frictional energy dissipation and inferred sediment transport at the bed.  相似文献   

7.
The paper addresses the individual and collective contribution of different forcing factors (tides, wind waves, and sea-level rise) to the dynamics of sediment in coastal areas. The results are obtained from simulations with the General Estuarine Transport Model coupled with a sediment transport model. The wave-induced bed shear stress is formulated using a simple model based on the concept that the turbulent kinetic energy (TKE) associated with wind waves is a function of orbital velocity, the latter depending on the wave height and water depth. A theory is presented explaining the controls of sediment dynamics by the TKE produced by tides and wind waves. Several scenarios were developed aiming at revealing possible trends resulting from realistic (observed or expected) changes in sea level and wave magnitude. The simulations demonstrate that these changes not only influence the concentration of sediment, which is very sensitive to the magnitude of the external forcing, but also the temporal variability patterns. The joint effect of tides and wave-induced bed shear stress revealed by the comparison between theoretical results and simulations is well pronounced. The intercomparison between different scenarios demonstrates that the spatial patterns of erosion and deposition are very sensitive to the magnitude of wind waves and sea-level rise. Under a changing climate, forcing the horizontal distribution of sediments adjusts mainly through a change in the balance of export and import of sediment from the intertidal basins. The strongest signal associated with this adjustment is simulated North of the barrier islands where the evolution of sedimentation gives an integrated picture of the processes in tidal basins.  相似文献   

8.
Measurements of near-bed shear stress were undertaken in the shallow subtidal zone at Durras Beach, NSW, Australia using a sideways-looking acoustic velocity meter installed within the wave boundary layer. The wave climate was swell-dominated and wave conditions comprised shoaling and breaking waves as well as surf bores. The sediment at the field site was medium-grained sand, and observations of bedform geometry were conducted using a pencilbeam-sonar system. Using frequency-filtering techniques, the measured stresses were partitioned into terms representing turbulent (Reynolds) stress, stresses due to gravity and infragravity-scale oscillatory motions, and wave-turbulence-mean current cross-terms. Gravity wave-orbital scale motions contributed the largest fraction of the stresses, comprising 24% on average, followed by long-wave advection of vertical orbital motion (16%). The presence of wave orbital-scale motions near or at the water/sediment interface was likely due to the porous nature of the seabed, facilitating interfacial flow. Shear stresses did not scale with bed roughness but exhibited a linear relationship with the relative wave height. This indicates that for the experimental conditions, surf zone processes overwhelmed bed roughness effects on shear stress and friction. Calculations of the wave friction factor, fw, showed that in a natural surf zone, this was a factor 3–4 larger than conventional predictions. © 2020 John Wiley & Sons, Ltd.  相似文献   

9.
Sediment transport models require appropriate representation of near-bed processes. We aim here to explore the parameterizations of bed shear stress, bed load transport rate and near-bed sediment erosion rate under the sheet flow regime. To that end, we employ a one-dimensional two-phase sheet flow model which is able to resolve the intrawave boundary layer and sediment dynamics at a length scale on the order of the sediment grain. We have conducted 79 numerical simulations to cover a range of collinear wave and current conditions and sediment diameters in the range 210–460 μmμm. The numerical results confirm that the intrawave bed shear stress leads the free stream velocity, and we assess an explicit expression relating the phase lead to the maximum velocity, wave period and bed roughness. The numerical sheet flow model is also used to provide estimates for the bed load transport rate and to inspect the near-bed sediment erosion. A common bed load transport rate formulation and two typical reference concentration approaches are assessed. A dependence of the bed load transport rate on the sediment grain diameter is observed and parameterized. Finally, the intrawave near-bed vertical sediment flux is further investigated and related to the time derivative of the bed shear stress.  相似文献   

10.
The majority of water and sediment discharge from the small, mountainous watersheds of the US West Coast occurs during and immediately following winter storms. The physical conditions (waves, currents, and winds) within and acting upon the proximal coastal ocean during these winter storms strongly influence dispersal patterns. We examined this river–ocean temporal coherence for four coastal river–shelf systems of the US West Coast (Umpqua, Eel, Salinas, and Santa Clara) to evaluate whether specific ocean conditions occur during floods that may influence coastal dispersal of sediment. Eleven years of corresponding river discharge, wind, and wave data were obtained for each river–shelf system from USGS and NOAA historical records, and each record was evaluated for seasonal and event-based patterns. Because near-bed shear stresses due to waves influence sediment resuspension and transport, we used spectral wave data to compute and evaluate wave-generated bottom-orbital velocities. The highest values of wave energy and discharge for all four systems were consistently observed between October 15 and March 15, and there were strong latitudinal patterns observed in these data with lower discharge and wave energies in the southernmost systems. During floods we observed patterns of river–ocean coherence that differed from the overall seasonal patterns. For example, downwelling winds generally prevailed during floods in the northern two systems (Umpqua and Eel), whereas winds in the southern systems (Salinas and Santa Clara) were generally downwelling before peak discharge and upwelling after peak discharge. Winds not associated with floods were generally upwelling on all four river–shelf systems. Although there are seasonal variations in river–ocean coherence, waves generally led floods in the three northern systems, while they lagged floods in the Santa Clara. Combined, these observations suggest that there are consistent river–ocean coherence patterns along the US West Coast during winter storms and that these patterns vary substantially with latitude. These results should assist with future evaluations of flood plume formation and sediment fate along this coast.  相似文献   

11.
This paper describes delta development processes with particular reference to Cimanuk Delta in Indonesia. Cimanuk river delta, the most rapidly growing river delta in Indonesia, is located on the northern coast of Java Island. The delta is subject to ocean waves of less than 1 m height due to its position in the semi‐enclosed Java Sea in the Indonesian archipelago. The study has been carried out using a hydrodynamic model that accounts for sediment movement through the rivers and estuaries. As an advanced approach to management of river deltas, a numerical model, namely MIKE‐21, is used as a tool in the management of Cimanuk river delta. From calibration and verification of hydrodynamic model, it was found that the best value of bed roughness was 0·1 m. For the sediment‐transport model, the calibration parameters were adjusted to obtain the most satisfactory results of suspended sediment concentration and volume of deposition. By comparing the computed and observed data in the calibration, the best values of critical bed shear stress for deposition, critical bed shear stress for erosion and erosion coefficient were 0·05 N m?2, 0·15 N m?2, and 0·00001 kg m?2 s?1, respectively. The calibrated model was then used to analyse sensitivity of model parameters and to simulate delta development during the periods 1945–1963 and 1981–1997. It was found that the sensitive model parameters were bed shear stresses for deposition and erosion, while the important model inputs were river suspended sediment concentration, sediment characteristics and hydrodynamic. The model result showed reasonable agreement with the observed data. As evidenced by field data, the mathematical model proves that the Cimanuk river delta is a river‐dominated delta because of its protrusion pattern and very high sediment loads from the Cimanuk river. It was concluded that 86% of sediment load from the Cimanuk river was deposited in the Cimanuk delta. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Tidal sand waves are dynamic bedforms found in coastal shelf seas. Moreover, these areas are inhabited by numerous benthic species, of which the spatial distribution is linked to the morphological structure of sand waves. In particular, the tube-building worm Lanice conchilegais of interest as this organism forms small mounds on the seabed, which provide shelter to other organisms. We investigate how the interactions between small-scale mounds (height ∼dm) and large-scale sand waves (height ∼m) shape the bed of the marine environment. To this end, we present a two-way coupled process-based model of sand waves and tube-building worm patches in Delft3D. The population density evolves according to a general law of logistic growth, with the bed shear stress controlling the carrying capacity. Worm patches are randomly seeded and the tubes are mimicked by small cylinders that influence flow and turbulence, thereby altering sediment dynamics. Model results relate the patches with the highest worm densities to the sand wave troughs, which qualitatively agrees with field observations. Furthermore, the L. conchilegatubes trigger the formation of sandy mounds on the seabed. Because of the population density distribution, the mounds in the troughs can be several centimetres higher than on the crests. Regarding sand wave morphology, the combination of patches and mounds are found to shorten the time-to-equilibrium. Also, if the initial bed comprised small sinusoidal sand waves, the equilibrium wave height decreased with a few decimetres compared to the situation without worm patches. As the timescale of mound formation (years) is shorter than that of sand wave evolution (decades), the mounds induce (and accelerate) sand wave growth on a similar spatial scale to the mounds. Initially, this leads to shorter sand waves than they would be in an abiotic environment. However, near equilibrium the wavelengths tend towards their abiotic counterparts again. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

13.
Point measurement-based estimation of bedload transport in the coastal zone is very difficult. The only way to assess the magnitude and direction of bedload transport in larger areas, particularly those characterized by complex bottom topography and hydrodynamics, is to use a holistic approach. This requires modeling of waves, currents, and the critical bed shear stress and bedload transport magnitude, with a due consideration to the realistic bathymetry and distribution of surface sediment types. Such a holistic approach is presented in this paper which describes modeling of bedload transport in the Gulf of Gdańsk. Extreme storm conditions defined based on 138-year NOAA data were assumed. The SWAN model (Booij et al. 1999) was used to define wind–wave fields, whereas wave-induced currents were calculated using the Ko?odko and Gic-Grusza (2015) model, and the magnitude of bedload transport was estimated using the modified Meyer-Peter and Müller (1948) formula. The calculations were performed using a GIS model. The results obtained are innovative. The approach presented appears to be a valuable source of information on bedload transport in the coastal zone.  相似文献   

14.
A strong low‐pressure system traveled along the Japanese main island Honshu in October 2006. High waves and storm surge attacked the Kashima Coast resulting in huge erosion over the area. Airborne laser data measured in October 2005 and November 2006 were analyzed to estimate cross‐sectional changes within the subaerial zone. The results of the alongshore distribution of the changes of cross‐sectional area indicate that the amount of erosion of the 38 km‐long northern and 15 km‐long southern parts decreased toward the south in each part and that the amount of erosion was smaller in protected areas with artificial headlands than in unprotected areas. The local alongshore variation of the erosion and accretion patterns showed wavy fluctuations of several hundreds of meters. The total amounts of the estimated eroded volume of the subaerial zone over the northern and southern parts were 620 000 m3 and 600 000 m3, respectively. The Simulating Waves Nearshore (SWAN) wave model was applied to estimate wave conditions along the coast during the storm. The computational results were verified, and then the alongshore distribution of wave energies, expressed as the alongshore and cross‐shore components of the wave energy flux, was compared with the alongshore distribution of cross‐sectional change. The results show that the distribution of energy flux explains the distribution of erosion well: The alongshore variability in the cross‐shore energy flux is responsible for the large‐scale variability in erosion, and shorter‐scale variability is due to gradients in the alongshore energy fluxes, especially for the areas without coastal works. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
In order to simulate the dynamics of fine sediments in short tidal basins, like the Wadden Sea basins, a 1D cross-sectional averaged model is constructed to simulate tidal flow, depth-limited waves, and fine sediment transport. The key for this 1D model lies in the definition of the geometry (width and depth as function of the streamwise coordinate). The geometry is computed by implementing the water level and flow data, from a 2D flow simulation, and the hypsometric curve in the continuity equation. By means of a finite volume method, the shallow-water equations and sediment transport equations are solved. The bed shear stress consists of the sum of shear stresses by waves and flow, in which the waves are computed with a depth-limited growth equation for wave height and wave frequency. A new formulation for erosion of fines from a sandy bed is proposed in the transport equation for fine sediment. It is shown by comparison with 2D simulations and field measurements that a 1D schematization gives a proper representation of the dynamics in short tidal basins.  相似文献   

16.
Roll waves commonly occur in overland flow and have an important influence on the progress of soil erosion on slopes. This study aimed to explore the evolution and mechanism of roll waves on steep slopes. The potential effects of flow rate, rainfall intensity and bed roughness on the laws controlling roll wave parameters were investigated. The flow rates, rainfall intensities and bed roughness varied from 5 to 30 L/min, 0 to 150 mm/h, and 0.061 to 1.700 mm, respectively. The results indicate that roll waves polymerize significantly along the propagation path, and bed roughness and rainfall affect the generation and evolution of roll waves. The wave velocity, length and height decreased with bed roughness, whereas the wave frequency increased with increasing bed roughness under fixed flow rate and rainfall intensity conditions. Rainfall increased the wave velocity and wavelength and decreased the wave frequency. The wave velocity, height and wavelength tended to increase with an increasing flow rate. Rainfall promoted the generation of roll waves, whereas bed roughness had the opposite effect. The generation of roll waves is closely related to the Froude number (Fr) and flow resistance. In this experiment, the range of the Reynolds number for the roll waves generated in the laminar region was 142–416, and the range of the flow resistance coefficient was 0.64–4.85. The critical value of the Fr for flow instability in the laminar region was approximately 0.57. Exploring the generation and evolution law of roll waves is necessary for understanding the processes and dynamic mechanisms of slope soil erosion.  相似文献   

17.
Variability in the characteristics of depth-induced wave breakers along a non-uniform coastal topography and its impact on the morpho-sedimentary processes is examined at the island sheltered wave-dominated micro-tidal coast, Karwar, west coast of India. Waves are simulated using the coupled wind wave model, SWAN nested in WAVEWATCH III, forced by the reanalysis winds from different sources (NCEP/NCAR, ECMWF, and NCEP/CFSR). Impact of the wave breakers is evaluated through mean longshore current and sediment transport for various wave energy conditions across different coastal morphology. Study revealed that the NCEP/CFSR wind is comparatively reasonable in simulation of nearshore waves using the SWAN model nested by 2D wave spectra generated from WAVEWATCH III. The Galvin formula for estimating mean longshore current using the crest wave period and the Kamphuis approximation for longshore sediment transport is observed realistically at the sheltered coastal environment while the coast interacts with spilling and plunging breakers.  相似文献   

18.
The effects of wave–current interactions on ocean surface waves induced by Hurricane Hugo in and around the Charleston Harbor and its adjacent coastal waters are examined by using a three-dimensional (3D) wave–current coupled modeling system. The 3D storm surge modeling component of the coupled system is based on the Princeton Ocean Model (POM), the wave modeling component is based on the third generation wave model, Simulating WAves Nearshore (SWAN), and the inundation model is adopted from [Xie, L., Pietrafesa, L. J., Peng, M., 2004. Incorporation of a mass-conserving inundation scheme into a three-dimensional storm surge model. J. Coastal Res., 20, 1209–1223]. The results indicate that the change of water level associated with the storm surge is the primary cause for wave height changes due to wave–surge interaction. Meanwhile, waves propagating on top of surge cause a feedback effect on the surge height by modulating the surface wind stress and bottom stress. This effect is significant in shallow coastal waters, but relatively small in offshore deep waters. The influence of wave–current interaction on wave propagation is relatively insignificant, since waves generally propagate in the direction of the surface currents driven by winds. Wave–current interactions also affect the surface waves as a result of inundation and drying induced by the storm. Waves break as waters retreat in regions of drying, whereas waves are generated in flooded regions where no waves would have occurred without the flood water.  相似文献   

19.
The morphologic changes in estuaries and coastal lagoons are very complex and constitute a challenging task in coastal research. The bathymetric changes result from the combined action of tides, waves, rivers discharge and wind stress in the area of interest. Additionally, an accurate knowledge of the sediment transport is essential to achieve a good morphological characterization. This work establishes the influence of the wave climate on the morphodynamics of the Ria de Aveiro lagoon inlet by analysing the numerical results of the morphodynamic modelling system MORSYS2D. The numerical simulations considered a realistic coupled forcing of tidal currents and waves. The computed sediment fluxes and bathymetric changes are analysed and compared with the erosion and accretion trends obtained from the numerical simulations forced only by tidal currents, in order to establish the wave climate influence. The final bathymetry and the corresponding changes are compared with bathymetric data collected through surveys. It is concluded that: (a) the morphodynamics of the study area is dominated by the wave regime in the lagoon inlet and nearshore areas, while in the inner areas is tidally dominated; and (b) the inclusion of the wave regime forcing constitutes an improvement in order to accurately reproduce the local morphodynamics.  相似文献   

20.
Tides are often considered to be the dominant hydrodynamic process within mesotidal estuaries although waves can also have a large influence on intertidal erosion rates. Here, we use a combination of hydrodynamic measurements and sediment deposition records to determine the conditions under which observed waves are ‘morphologically significant’, in which case they influence tidal and suspended sediment flux asymmetry and subsequently infilling over geomorphological timescales. Morphological significant conditions were evaluated using data from contrasting arms in a dendritic mesotidal estuary, in which the orientation of the arms relative to the prevailing wind results in a marked difference in wave conditions, deposition rates and morphology. By defining the morphological significance of waves as a product of the magnitude of bed shear stress and frequency of occurrence, even small (but frequently occurring) winds are shown to be capable of generating waves that are morphologically significant given sufficient fetch. In the arm in which fetch length is restricted, only stronger but rare storm events can influence sediment flux and therefore tides are more morphologically significant over longer timescales. Water depth within this mesotidal estuary is shown to be a critical parameter in controlling morphological significance; the rapid attenuation of short period waves with depth results in contrasting patterns of erosion occurring during neaps and accretion during springs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号