首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There are large uncertainties in identifying and quantifying the natural and anthropogenic sources of chloromethanes – methyl chloride (CH3Cl), chloroform (CHCl3) and dichloromethane (CH2Cl2), which are responsible for about 15% of the total chlorine in the stratosphere. We report two years of in situ observations of these species from the AGAGE (Advanced Global Atmospheric Gas Experiment) program at Cape Grim, Tasmania (41° S, 145° E). The average background levels of CH3Cl, CHCl3 and CH2Cl2 during 1998–2000 were 551± 8, 6.3± 0.2 and 8.9± 0.2 ppt (dry air mole fractions expressed in parts per 1012) respectively, with a two-year average amplitude of the seasonal cycles in background air of 25, 1.1 and 1.5 ppt respectively. The CH3Cl and CHCl3 records at Cape Grim show clear episodes of elevated mixing ratios up to 1300 ppt and 55 ppt respectively, which are highly correlated, suggesting common source(s). Trajectory analyses show that the sources of CH3Cl and CHCl3 that are responsible for these elevated observations are located in coastal-terrestrial and/or coastal-seawater regions in Tasmania and the south-eastern Australian mainland. Elevated levels of CH2Cl2 (up to 70 ppt above background) are associated mainly with emissions from the Melbourne/Port Phillip region, a large urban/industrial complex (population 3.5 million) 300 km north of Cape Grim.Now at the Centre for Atmospheric ChemistryNow at School of Environmental Sciences  相似文献   

2.
In situ AGAGE GC-MS measurements of methyl bromide (CH3Br) and methyl chloride (CH3Cl) at Mace Head, Ireland and Cape Grim, Tasmania (1998–2001) reveal a complex pattern of sources. At Mace Head both gases have well-defined seasonal cycles with similar average annual decreases of 3.0% yr−1 (CH3Br) and 2.6% yr−1 (CH3Cl), and mean northern hemisphere baseline mole fractions of 10.37 ± 0.05 ppt and 535.7 ± 2.2 ppt, respectively. We have used a Lagrangian dispersion model and local meteorological data to segregate the Mace Head observations into different source regions, and interpret the results in terms of the known sources and sinks of these two key halocarbons. At Cape Grim CH3Br and CH3Cl also show annual decreases in their baseline mixing ratios of 2.5% yr−1 and 1.5% yr−1, respectively. Mean baseline mole fractions were 7.94 ± 0.03 ppt (CH3Br) and 541.3 ± 1.1 ppt (CH3Cl). Although CH3Cl has astrong seasonal cycle there is no well-defined seasonal cycle in the Cape Grim CH3Br record. The fact that both gases are steadily decreasing in the atmosphere at both locations implies that a change has occurred which is affecting a common, major source of both gases (possibly biomass burning) and/or their major sink process (destruction by hydroxyl radical).  相似文献   

3.
Atmospheric mixing ratios of methyl iodide (CH3I) and other methyl halides have been measured at Cape Grim, Tasmania (41°S, 145°E), since early 1998 as part of the Advanced Global Atmospheric Gases Experiment (AGAGE). This paper analyses about 1700 ambient air CH3I measurements from the 14-month period (March 1998–April 1999). Mixing ratios peaked during the summer, despite faster photolytic loss, suggesting local oceanic emissions were about 2.2–3.6 times stronger in summer than in winter. Back trajectories show that CH3I levels are strongly dependent on air mass origin, with highest mixing ratios in air from the Tasman Sea/Bass Strait region and lowest levels in air originating from the Southern Ocean at higher latitudes. CH3I mixing ratios were not well correlated with other methyl halides in unpolluted marine air. The large variations with season and air mass origin suggest that high frequency, continuous data from key locations will make a significant contribution to the understanding of sources and sinks of this important short-lived atmospheric species.  相似文献   

4.
A global three-dimensional chemical transport model has been used to identify and evaluate possible candidates for the `missing' surface source required to balance the atmospheric budget of methyl bromide. Both natural and anthropogenic emissions of methyl bromide are `coloured' in the model, thus allowing the global CH3Br distribution to be broken-down into its source components. These coloured CH3Br tracers are then combined in various ways to create one base-line emission scenario and five further plausible scenarios. The additional emission scenarios are specifically designed to test whether the geographical distribution and seasonal cycles of additional vegetation and/or increased biomass burning emissions are consistent with atmospheric observations of methyl bromide mixing ratios. Due to an imbalance in our current understanding of the methyl bromide budget, simulated CH3Br mixing ratios from the base-line emission scenario are significantly lower than atmospheric measurements. Both the inclusion of a vegetation source in the tropics and a double strength biomass burning source substantially improve the agreement between model simulations and atmospheric measurements compared with the base-line emission scenario. While measurement data provides useful information on global fluxes and regional CH3Br seasonal cycles, small differences between the simulated seasonal cycles of different emission scenarios makes it difficult to distinguish between the relative likelihoods of model scenarios containing a tropical vegetation source or an increased biomass burning source. Further measurements performed in continental mid-to-high northern latitudes, central-southern Africa and South America would be of particular benefit in future attempts to constrain the location and magnitude of the natural terrestrial sources of methyl bromide.  相似文献   

5.
The concentration of gas-phase peroxides has been measured almost continuously at the Cape Grim baseline station (41° S) over a period of 393 days (7702 h of on-line measurements) between February 1991 and March 1992. In unpolluted marine air a distinct seasonal cycle in concentration was evident, from a monthly mean value of>1.4 ppbv in summer (December) to <0.2 ppbv in winter (July). In the summer months a distinct diurnal cycle in peroxides was also observed in clean marine air, with a daytime build-up in concentration and decay overnight. Both the seasonal and diurnal cycles of peroxides concentration were anticorrelated with ozone concentration, and were largely explicable using a simple photochemical box model of the marine boundary layer in which the central processes were daytime photolytic destruction of ozone, transfer of reactive oxygen into the peroxides under the low-NOx ambient conditions that favour self-reaction between peroxy radicals, and continuous heterogeneous removal of peroxides at the ocean surface. Additional factors affecting peroxides concentrations at intermediate timescales (days to a week) were a dependence on air mass origin, with air masses arriving at Cape Grim from higher latitudes having lower peroxides concentrations, a dependence on local wind speed, with higher peroxides concentrations at lower wind speeds, and a systematic decrease in peroxides concentration during periods of rainfall. Possible physical mechanisms for these synoptic scale dependencies are discussed.  相似文献   

6.
Results of more than 800 new measurements of methane (CH4) concentrations in the Southern Hemisphere troposphere (34–41° S, 130–150° E) are reported. These were obtained between September 1980 and March 1983 from the surface at Cape Grim, Tasmania, through the middle (3.5–5.5 km) to the upper troposphere (7–10 km). The concentration of CH4 increased throughout the entire troposphere over the measurement period, adding further support to the view that CH4 concentrations are currently increasing on a global scale. For data averaged vertically through the troposphere the rate of increase found was 20 ppbv/yr or 1.3%/yr at December 1981. In the surface CH4 data a seasonal cycle with a peak to peak amplitude of approximately 28 ppbv is seen, with the minimum concentration occurring in March and the maximum in September–October. A cycle with the same phase as that seen at the surface, but with a significantly decreased amplitude, is apparent in the mid troposphere but no cycle is detected in the upper tropospheric data. The phase and amplitude of the cycle are qualitatively in agreement with the concept that the major sink for methane is oxidation by hydroxyl radicals. Also presented is evidence of a positive vertical gradient in methane, with a suggestion that the magnitude of this gradient has changed over the period of measurements.  相似文献   

7.
Measurements of the stable carbon isotope ratio in atmospheric CO2 permit a distinction between variations resulting from biospheric and oceanic exchange. In situ extraction of CO2 from Cape Grim air (41°S) for isotopic analysis commenced in 1977; however difficulties with technique reliability were experienced until 1982. Since 1982, 2.6 years of relatively consistent values have accumulated.For a preliminary assessment of the latter data, estimates of the isotopic behaviour from the global transport and inter-reservoir exchange model of Pearman and Hyson (1985) have been employed. The assessment demonstrates the precision requirements of a carbon isotope monitoring program and the relevance of the isotope measurements as a constraint on parameterization of the model.Clear evidence of the changes due to fossil fuel combustion is seen in the year-to-year differences in 13C, with the mean and standard error of the overall trend being –0.025±0.005 yr-1. A significant seasonal variation in 13C is apparent, despite considerable inter-annual variability possibly associated with the 1982/83 ENSO phenomena. The average peak-to-peak amplitude is 0.055±0.014 with a maximum on day 85±15 (approx. 26 March).There is some evidence for a complex seasonal inter-relationship between concentration and isotope ratio, both in the Cape Grim data and in Mook et al. (1983) South Pole data, but with marked differences between the stations, and with both different from the model estimates.In particular, the Cape Grim results suggest that exchange with Southern Hemisphere biosphere is the main contributor to the seasonal variation in isotope ratio at this latitude.  相似文献   

8.
High-frequency measurements of dibromomethane (CH2Br2) and bromoform (CHBr3) at Hateruma Island, in the subtropical East China Sea, were performed using automated preconcentration gas chromatography/mass spectrometry. Their baseline concentrations, found in air masses from the Pacific Ocean, were 0.65 and 0.26 ppt, respectively, in summer and 1.08 and 0.87 ppt, respectively, in winter. Air masses transported from Southeast Asia were rich in bromocarbons, suggesting strong emissions in this area. The passage of cold fronts from the Asian continent was associated with sharp increases in observed concentrations of bromocarbons derived from coastal regions of the continent. Comparison of the relationships between [CH2Br2]/[CHBr3] and [CHBr3] in the Hateruma Island data with those in monthly mean data from 14 globally distributed U.S. National Oceanic and Atmospheric Administration ground stations suggested that these gases are produced primarily from a common process on a global scale.  相似文献   

9.
The atmospheric concentration of peroxyacetylnitrate (PAN) was measured during a cruise of the R.S. Polarstern from Bremerhaven (Germany) to Rio Grande do Sul (Brazil) in September/ October 1988. The measurements were made in-situ by a combination of electron capture gaschromatography with a cryogenic preconcentration step. The theoretical lower limit of detection (3) was 0.4 ppt. The mixing ratios of PAN varied by more than three orders of magnitude from 2000 ppt in the English Channel to less than 0.4 ppt south of the Azores (38° N). South of 35° N, PAN levels were below the detection limit, except at 30–31° S off the eastern coast of South America. Here, PAN mixing ratios of 10 to 100 ppt were detected in continentally influenced air masses. Detectable levels of PAN were mostly observed in air masses of continental or high northern origin. Changes in the wind directions were usually associated with substantial changes in the PAN mixing ratios.  相似文献   

10.
Dibromomethane (CH2Br2), a natural stratospheric ozone depleting substance, is mostly emitted from the ocean, but the relative importance of coastal (or macroalgae) and open ocean emissions is unknown. We made long-term high-frequency measurements of CH2Br2 concentrations at two remote coastal sites in Japan, on the subtropical Hateruma Island (poor in macroalgae) and at Cape Ochiishi (rich in macroalgae). CH2Br2 concentrations at Hateruma showed prominent seasonal variation, being lower in summer (around 0.94 ppt) than in winter (around 1.23 ppt). In contrast, CH2Br2 concentrations at Ochiishi were highly variable, often exceeding 2 ppt in the summer but with minimum baseline concentrations close to those from Hateruma; in the winter the concentrations were almost constant at about 1.3 ppt. Analysis of the data suggested that (1) emissions from macroalgae were not likely to extend offshore, but instead were localized near the shore, (2) strong macroalgal emissions of CH2Br2 were almost limited to the summer, but it was not reflected in the seasonality of the baseline concentrations of CH2Br2 in the atmosphere, and therefore (3) macroalgal or coastal emissions of CH2Br2 in the temperate zone might have a rather limited contribution to the global CH2Br2 sources. These findings are especially important for the understanding of the tropospheric and stratospheric bromine budget.  相似文献   

11.
Several years of continuous measurements of surfaceozone at Norwegian monitoring sites are studied in aclimatological way. The monitoring sites are at rurallocations extending from 58°N, a few hundredkilometers from the European continent and into theArctic at 79°N. The ozone observations are sorted intoclasses of integrated NOx emissions along 96 h backtrajectories. The average seasonal cycles of ozone areestimated for each class separately. The differencesindicate the change from the background air due toanthropogenic emissions. The average seasonal cycle ofozone in the cleanest air masses showed a maximum inspring and a minimum during summer and autumn at allsites, but the spring maximum was more pronounced atthe southernmost locations. Polluted air masses showedan ozone deficit during winter and a surplus duringsummer. The deviation from the background was clearlylinked to the integrated NOx emission along thetrajectories. In summer the calculations indicate thatthe number of ozone molecules formed per NOx moleculedrops with increasing emissions. The average seasonalcycle of ozone at Birkenes for different transportsectors indicate that the most pronounced ozoneformation takes place in air masses from E-Europe/Russia.  相似文献   

12.
Volatile organic iodine compounds (VOIs) emitted from the ocean surface to the air play an important role in atmospheric chemistry. Shipboard observations were conducted in Funka Bay, Hokkaido, Japan, bimonthly or monthly from March 2012 to December 2014, to elucidate the seasonal variations of VOI concentrations in seawater and their sea-to-air iodine fluxes. The bay water exchanges with the open ocean water of the North Pacific twice a year (early spring and autumn). Vertical profiles of CH2I2, CH2ClI, CH3I, and C2H5I concentrations in the bay water were measured bimonthly or monthly within an identified water mass. The VOI concentrations began to increase after early April at the end of the diatom spring bloom, and represented substantial peaks in June or July. The temporal variation of the C2H5I profile, which showed a distinct peak in the bottom layer from April to July, was similar to the PO4 3? variation profile. Correlation between C2H5I and PO4 3? concentrations (r = 0.93) suggests that C2H5I production was associated with degradation of organic matter deposited on the bottom after the spring bloom. CH2I2 and CH2ClI concentrations increased substantially in the surface and subsurface layers (0–60 m) in June or July resulted in a clear seasonal variation of the sea-to-air iodine flux of the VOIs (high in summer or autumn and low in spring).  相似文献   

13.
Since 1978, a measuring station has been operated at Cape Point (34°21 S, 18°29 E). In this article, results of measurements of CO, CFCl3, CCl4, O3, N2O and CH4 are presented as monthly means and analyzed with respect to long-term trends and seasonal variations. For CO and CH4, very similar seasonal variations have been observed, indicating strong interrelations between these two gases. For CO and O3, no significant changes of the mean annual concentrations can be established for the observation periods of 10 and 5 years, respectively. The measurements yield a growth rate of 9.1 pptv yr-1 for CFCl3 (1980–1987) and 0.6 ppbv yr-1 for N2O (1983–1987). The concentration increases of CH4 (10.3 ppbv yr-1 for 1983–1987) and of CCl4 (2.1 pptv yr-1 for 1980–1988) are analyzed for temporal changes during the last years.Presented at the Second Conference on Baseline Observations in Atmospheric Chemistry (SABOAC II) in Melbourne, Australia, November 1988.  相似文献   

14.
High-volume aerosol filters, exposed in maritime air masses at Cape Grim since late 1976, were analysed for excess sulfate (not of seasalt origin) and methanesulfonate. The mean concentrations (standard errors) of 2.80(0.59) and 0.176(0.027) nmole/m3 respectively are about half those reported in a recent study of aerosol samples from various locations in the Atlantic and Pacific oceans.Methanesulfonate concentration varied seasonally by at least an order of magnitude with a summer maximum and winter minimum. No comparable cycle was found for excess sulfate.  相似文献   

15.
Methyl Chloride (CH3Cl) is a chlorine-containing trace gas in the atmosphere contributing significantly to stratospheric ozone depletion (Carpenter et al. 2014). In the global CH3Cl budget, the atmospheric CH3Cl emissions is predominantly maintained by natural sources, of which magnitudes have been relatively well-constrained. However, significant uncertainties still remain in the CH3Cl emission strengths from anthropogenic sources. High-frequency and high-precision in situ measurements of atmospheric CH3Cl concentrations obtained since 2008 at Gosan station (a remote background site in the East Asia) reveal significant pollution events superimposed on the seasonally varying regional background levels. Back trajectory statistics showed that air masses corresponding to the observed CH3Cl enhancement largely originated from regions of intensive industrial activities in China. Based on an inter-species correlation method, estimates of CH3Cl emissions from manufacturing industries including coal combustion, use of feedstocks, or process agents in chemical production for China (2008–2012) are 297 ± 71 Gg yr.?1 in 2008 to 480 ± 99 Gg yr.?1 in 2009, followed by a gradual decrease of about 25% between 2009 and 2012 (398 ± 92 Gg yr.?1 for 2010; 286 ± 68 Gg yr.?1 for 2011; 358 ± 92 Gg yr.?1 for 2012). The annual average of industrial CH3Cl emissions for 2008–2012 (363 ± 85 Gg yr.?1) in China is comparable to the known total global anthropogenic CH3Cl emissions accounting only for coal combustion and indoor biofuel use. This may suggest that unless emissions from the chemical industry are accounted for, global anthropogenic emissions of CH3Cl have been substantially underestimated. In particular, since industrial production and use of CH3Cl have not been regulated under the Montreal Protocol (MP) or its successor amendments, continuous monitoring of Chinese CH3Cl outflow is important to properly evaluate its anthropogenic emissions.  相似文献   

16.
Daily measurements of atmospheric sulfur dioxide (SO2) concentrations were performed from March 1989 to January 1991 at Amsterdam Island (37°50 S–77°30 E), a remote site located in the southern Indian Ocean. Long-range transport of continental air masses was studied using Radon (222Rn) as continental tracer. Average monthly SO2 concentrations range from less than 0.2 to 3.9 nmol m-3 (annual average = 0.7 nmol m-3) and present a seasonal cycle with a minimum in winter and a maximum in summer, similar to that described for atmospheric DMS concentrations measured during the same period. Clear diel correlation between atmospheric DMS and SO2 concentrations is also observed during summer. A photochemical box model using measured atmospheric DMS concentrations as input data reproduces the seasonal variations in the measured atmospheric SO2 concentrations within ±30%. Comparing between computed and measured SO2 concentrations allowed us to estimate a yield of SO2 from DMS oxidation of about 70%.  相似文献   

17.
Five years of turbidity data at Cape Grim have been analysed. The turbidity at 500 nm in clean maritime airmasses from the South to the West shows a seasonal variation, with a minimum in winter. There is also a variation in turbidity with wind speed. The winter minimum can be explained partially by a minimum in wind strength in that season. On the assumption, based on observations at Cape Grim and at other locations, that the boundary layer turbidity is caused by seasalt haze, an attempt is made to interpret the observed turbidity values and their seasonal changes. Optical extinction coefficients at the surface deduced from the measured values of optical depth are compared with extinction coefficients calculated from Mie theory using particle size distributions measured at Cape Grim. Reasonable agreement is obtained when the growth of salt particles in the high maritime humidity is considered, using both theoretical models and previous experimental results together with the rapid increase in salt concentration with wind speed.  相似文献   

18.
During the cruise ANT VII/1 (September/October 1988) of the German research vessel Polarstern the latitudinal distributions of several nonmethane hydrocarbons were measured over the Atlantic between 45°N and 30°S by in-situ gas chromatography.On the average, the highest mixing ratios of ethane, propane, i- and n-butane, ethene and acetylene were observed in the Northern Hemisphere around 40° N and just north of the intertropical convergence zone, respectively. South of the equator, a bulge in the mixing ratios of ethane and acetylene was observed indicating aged biomass burning emissions. This observation coincided with enhanced tropospheric ozone found in this region at this season. On the average ethane and acetylene mixing ratios were around 500 and 100 ppt, respectively, whereas the levels of the other NMHC were in the range of some ppt up to 100 ppt.compared with the results of the cruise ANT V/5 (March/April, 1987), the ethane mixing ratios in September/October proved to be a factor of 3 lower in the Northern Hemisphere and a factor of 2 higher in the Southern Hemisphere, probably due to seasonal effects. Possible causes are the higher OH radical concentrations in summer, which result in a faster removal of ethane or stronger emission from biomass burning which also peaks in the dry season.The relative pattern of the hydrocarbons just north of the ITCZ was very similar for both measurement series. In this region, the NMHC were advected by long-range transport from the continent, whereas generally the ocean itself acts as a major NMHC source. This is supported by the results of a balance calculation between oceanic emissions and atmospheric removal rates.  相似文献   

19.
Data on a variety of organic gases are presented, obtained with a protontransfer mass spectrometer (PTR-MS) operated during the March 1998 LBA/CLAIREairborne measurement campaign, between 60 and 12500 m over the rainforest inSurinam (2° N–5° N, 54° W–57° W). The instrumentcan detect molecules with a proton affinity greater than water, includingalkenes, dialkenes, carbonyls, alcohols, and nitriles. Many such molecules areemitted from the rainforest (e.g., isoprene) or formed from the oxidation ofprimary emissions (e.g., methylvinylketone (MVK) and methacrolein (MACR)).From a comparison with modelled data; the variation with altitude; previouslyreported biogenic emissions and the time and location of the measurement,possible and probable identities for the significant masses encountered in therange 33–140 amu have been deduced.The main observed protonated masses, postulated identities and observedaverage boundary layer mixing ratios over the rainforest were: 33 methanol(1.1 nmol/mol); 42 acetonitrile (190 pmol/mol); 43 multiple possibilities (5.9nmol/mol), 45 acetaldehyde (1.7 nmol/mol), 47 formic acid (not quantified);59 acetone (2.9 nmol/mol), 61 acetic acid (not quantified), 63 dimethylsulphide (DMS) (289 pmol/mol), 69 isoprene (1.7 nmol/mol), 71 MVK + MACR (1.3nmol/mol), 73 methyl ethyl ketone (1.8 nmol/mol), 75 hydroxyacetone (606pmol/mol), 83 C5 isoprene hydroxy carbonylsC5H8O2, methyl furan, and cis 3-hexen-1-ol(732 pmol/mol), 87 C5 carbonyls and methacrylic acid, 95 possibly2-vinyl furan (656 pmol/mol), 97 unknown (305 pmol/mol), 99 cis hexenal (512pmol/mol) and 101 isoprene C5 hydroperoxides (575 pmol/mol). Somespecies agreed well with those derived from an isoprene only photochemicalmodel (e.g., mass 71 MVK + MACR) while others did not and were observed athigher than previously reported mixing ratios (e.g., mass 59 acetone, mass 63DMS). Monoterpenes were not detected above the detection limit of 300pmol/mol. Several species postulated are potentially important sources ofHOx in the free troposphere, e.g., methanol, acetone, methyl ethylketone, methyl vinyl ketone and methacrolein.  相似文献   

20.
We present a 16-month record of ozone (O3), carbon monoxide (CO), total reactive nitrogen (NOy), sulphur dioxide (SO2), methane (CH4), C2 – C8 non-methane hydrocarbons (NMHCs), C1 – C2 halocarbons, and dimethyl sulfide (DMS) measured at a southern China coastal site. The study aimed to establish/update seasonal profiles of chemically active trace gases and pollution tracers in subtropical Asia and to characterize the composition of the `background' atmosphere over the South China Sea (SCS) and of pollution outflow from the industrialized Pearl River Delta (PRD) region and southern China. Most of the measured trace gases of anthropogenic origin exhibited a winter maximum and a summer minimum, while O3 showed a maximum in autumn which is in contrast to the seasonal behavior of O3 in rural eastern China and in many mid-latitude remote locations in the western Pacific. The data were segregated into two groups representing the SCS background air and the outflow of regional continental pollution (PRD plus southern China), based on CO mixing ratios and meteorological conditions. NMHCs and halocarbon data were further analyzed to examine the relationships between their variability and atmospheric lifetime and to elucidate the extent of atmospheric processing in the sampled air parcels. The trace gas variability (S) versus lifetime (τ) relationship, defined by the power law, Slnx = Aτb, (where X is the trace gas mixing ratio) gives a fit parameter A of 1.39 and exponent b of 0.42 for SCS air, and A of 2.86 and b of 0.31 for the regional continental air masses. An examination of ln[n-butane]/ln[ethane] versus ln[propane]/ln[ethane] indicates that their relative abundance was dominated by mixing as opposed to photochemistry in both SCS and regional outflow air masses. The very low ratios of ethyne/CO, propane/ethane and toluene/benzene suggest that the SCS air mass has undergone intense atmospheric processing since these gases were released into the atmosphere. Compared to the results from other polluted rural sites and from urban areas, the large values of these species in the outflow of PRD/southern China suggest source(s) emitting higher levels of ethyne, benzene, and toluene, relative to light alkanes. These chemical characteristics could be unique indicators of anthropogenic emissions from southern China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号