首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural evolution of the Kamchatka–Aleutian junction area in late Mesozoic and Tertiary was generally controlled by (1) the processes of subduction in Kronotskiy and Proto-Kamchatka subduction zones and (2) collision of the Kronotskiy arc against NE Eurasia margin. Two structural zones of the pre-Pliocene age and six structural assemblages are recognized in studied region. 1: Eastern ranges zone comprises SE-vergent thrust folded belt, which evolved in accretionary and collisional setting. Two structural assemblages (ER1 and ER2), developed there, document shortening in the NW–SE direction and in the N–S direction, respectively. 2: Eastern Peninsulas zone generally corresponds to Kronotskiy arc terrane. Four structural assemblages are recognized in this zone. They characterize (1) precollisional deformations in the accretionary wedge (EP1) and in the fore-arc basin and volcanic belt (EP2), and (2) syn-collisional deformation of the entire Kronotskiy terrane in plunging folds (EP3) and deformations in the foreland basin (EP4). Analysis of paleomagnetic declinations versus present day structural strike in the Kronotskiy arc terrane shows that originally the arc was trending from west to east. Relative position of the accretionary wedge, fore-arc basin and volcanic belt, as well as northward dipping thrusts in accretionary wedge indicate, that a northward dipping subduction zone was located south of the arc. The accretionary wedge developed from the Late Cretaceous through the Eocene, and it implies that the subduction zone maintained its direction and position during this time. It implies that Kronotskiy arc was neither a part of the Pacific nor Kula plates and was located on an individual smaller plate, which included the arc and Vetlovka back-arc basin. Motion of the Kronotskiy arc towards Eurasia was connected only with NW-directed subduction at Kamchatka margin since Middle Eocene (42–44 Ma). Emplacement of the Kronotskiy arc at the Kamchatka margin occurred between Late Eocene and Early Miocene. This is based on the age of syn-collisional plunging folds in Kronotskiy terrane, and provenance data for the Upper Eocene to Middle Miocene Tyushevka basin, which indicate in situ evolution of the basin with respect to Kamchatka. Collision was controlled by the common motion of the Kronotskiy arc with Pacific plate towards the northwest, and by the motion of the Eurasian margin towards the south. The latter motion was responsible for the southward deflection of the western part of the Kronotskiy arc (EP3 structures), and for oblique transpressional structures in the collisional belt (ER2 structures).  相似文献   

2.
The paper deals with interpretation of global digital maps of gravity anomalies and surface topography for the northwestern Pacific and Kamchatka regions. A transformation procedure is suggested to reveal subtle features of surface topography against high elevation contrasts. Gravity data (free-air and Bouguer anomalies) have important implications for the evolution of the circum-Pacific region and the problems of volcanism and geodynamics in subduction zones. The patterns of gravity anomalies and transformed topography interpreted jointly with onshore and offshore geological data can make a basis for tectonic paleoreconstructions of upper crust and lithospheric mantle structures.  相似文献   

3.
This paper gives macroseismic and instrumental data on the 17 August 1983 Kamchatka earthquake which occurred in the center of the Kamchatka Gulf bend at a depth of 98 km with an epicentral intensity of VI–VII (MSK-64 scale), energy class 15, and magnitude MLH = 6.9. The focal mechanism represents a thrust along the inclined surface across the strike of the Kamchatka Gulf coastal line. The Primary-wave seismic moment M 0 is 6.3 × 1019 Nm, the Rayleigh wave M 0 is 1.6 × 1019 Nm, and the stress drop is 2.5 MPa. Copies of displacement and acceleration records are presented and the temporal and spatial distribution of the aftershocks is analyzed.  相似文献   

4.
In ancient times, the name “Peloro” was used to indicate an anthropic area that gradually developed around the first known human settlement on the Sicilian shore near the Straits of Messina. Since the 5th century BC, historians have documented that numerous naval armadas landed for long periods at Peloro. However, the present-day morphology of the Peloro Cape Peninsula does not have any protected inlet that would offer a location to repair hundreds of ships, as has been documented by historical sources. To address this discrepancy, geomorphologic data were collected and analyzed to verify whether historical documents were consistent with the palaeotopography of the area. This approach is based on the analysis of the morphotectonic evolution of the coastal lowland that resulted from regional uplift over the Quaternary and Holocene. The results indicate that the harbour was located in the basin of the Pantano Piccolo salt marsh, and was large and deep enough to have sheltered up to 320 ships.  相似文献   

5.
Abstract. The Mutnovskoe deposit located in the Porozhisto‐Asachinskaya metallogenic province of South Kamchatka, Russia, is a polymetallic vein and Au‐Ag quartz vein associated type of hydrothermal deposit. The Mutnovskoe deposit is located inside a paleo‐caldera structure at the center of the Mutnovsko‐Asachinskaya geothermal field of Pliocene ‐ Quaternary age, where active gold deposition is identified in hot spring precipitate. The Mutnovskoe deposit is subdivided into the north flank, the central flank and the south flank based on the vein distributions and mineral parageneses. The mineralized vein system is oriented N‐S hosted in diorite ‐ gabbroic diorite stock, volcanic rocks and sedimentary rocks of Miocene ‐ Pleistocene age. The mineralization stage I (polymetallic vein) mainly in the central and the south flanks is Zn‐Pb‐Cu‐Au‐Ag contained in sphalerite, galena and tetrahedrite‐tennantite group mineral. The stage II (Au‐Ag quartz vein) occurs in the north and the central flanks. The stage III (Mn‐sulfide and Mn‐Ca‐carbonate vein) occurs in the whole deposit area. Stage II is the typical Au‐Ag quartz‐adularia vein of low‐sulfidation type. Stage III is alabandite‐rhodochrosite‐quartz‐calcite vein. The K‐Ar ages are 1.3±0.1 Ma for stage I sericite in alteration zone, and 0.7±0.1 Ma for the stage II adularia in mineralized vein. Based on the fluid inclusion study, range of ore forming temperature of the Mutnovskoe deposit is 200 to 260d?C (av. 230d?C). Salinities of fluid inclusions indicate 2.2 to 5.7 wt% NaCl in sphalerite and 0.8 to 3.3 wt% NaCl in quartz for the stage I. Mineral paragenesis of the polymetallic vein (stage I) is characterized by a district zoning of tennantite and Cd‐rich sphalerite in the south flank and tetrahedrite and Mn‐rich sphalerite in the central flank, which is due to the fractional crystallizations of ore‐forming fluid. Depositional condition of the low sulfidation state is inferred for the Mutnovskoe deposit, where the polymetallic vein of the south flank is in relatively higher sulfidation state than the central flank.  相似文献   

6.
Abstract. The Rodnikovoe gold deposit situated in a presently active hydrothermal system located north of the Mutnovsko-Asachinskaya geothermal area in southern Kamchatka, Far Eastern Russia, consists of typical low-sulfidation quartz-adularia veins in a host rock of diorite. The age of the mineralization was dated by the K-Ar method as 0.9 to 1.1 Ma based on adular-ia collected from the veins. Representative ore minerals in the deposit are electrum, argentite, aguilarite, polybasite, pearceite and lenaite. Dominant alteration minerals are adularia, α-cristobalite, chlorite, illite and kaolinite. Hydrothermal solutions of neutral pH were responsible for the mineralization, which is divided into six stages defined by tectonic boundaries. Gold mineralization occurred in stages I and III. Hydrothermal brecciation occurred during stages III, IV and VI. Stages II, IV, V and VI were barren. The estimated ore formation temperature based on a fluid inclusion study is 150 to 250 °C at a depth of approximately 170 m below the paleo-water table. Boiling of hydrothermal fluids is hypothesized as the cause of the intermittent deposition of gold ore. The sulfur and oxygen fugacities during the deposition of anhydrite prior to the hydrothermal brecciation were higher than those during the gold mineralization stages. The occurrence in the hydrothermal breccia of fragments of high grade Au-Ag and polymetallic ores suggests that higher grade mineralization of these metal ores might have occurred in a deeper portion of the deposit.  相似文献   

7.
A new data set of 851 lineaments mapped from European Remote Sensing satellites 1 and 2 full resolution Synthetic Aperture Radar (SAR) data are interpreted as geological proxies for stresses resulting from plate and block collision near the Cape Kamchatka region of the Kamchatka Peninsula using a Geographical Information Systems-based analysis. Numerical Manifold Method (NMM) analysis is used to model the stress field within the Cape Kamchatka region resulting from the collision of lithospheric plates and blocks. Results of our NMM model, using different plate motion and plate configuration in the region, are compared with orientation data for the mapped set of lineaments. These data suggest that the lineaments observed in SAR cannot be fully explained by a simple two-plate model in this in the Cape Kamchatka region. As an alternative, we propose that the data can be explained by the existence of the previously proposed Komandorskiy Block. Recent Global Positioning Satellite measurements in the Aleutian Islands support our lineament-derived model and show that the near Islands/Komandorskiy Island block of the extreme western Aleutians is moving independently of the North American Plate.  相似文献   

8.
俄罗斯勘察加半岛热泉的地球化学和微生物学   总被引:3,自引:0,他引:3  
勘察加半岛位于欧洲板块、北美板块和太平洋板块交汇的过渡带上,是世界火山活动最活跃的地区之一.其众多的热液系统不断的向地表释放地热气体和流体.以N2和CO2为主的地热气体也经常含有高浓度的H2,CH4和H2S.大气水和熔岩水构成了勘察加热泉水的主要源,水体温度从20 ℃到>90 ℃不等.水化学性质变化同样显著,pH范围从3.1到9.8.热泉水溶解盐以氯化钠为主,同时包括K+,H3BO3,H4SiO4,Ca2+和SO42-等其他多种溶解组分.此区域也有以直链烷烃为主的石油形成.从勘察加的热泉系统中已分离出至少24种嗜热微生物.尽管其中大多数是异养微生物,但根据其生存环境的特点,自养微生物在热泉系统中可能同样很多.这些微生物对碳、硫和铁在热液系统中的生物地球化学循环有着非常重要的作用.目前,非培养的方法和生物定量的手段已用来研究勘察加热泉中微生物生态及其所具有的生物地球化学功能.  相似文献   

9.
Over 600 years, the Alhambra Palace of Granada, Spain, (a World Heritage site) has been damaged by earthquakes and slope instability. The western part of San Pedro Cliff, on the northern slope of the palace is a compound fault scarp — fault-line scarp, modified by river erosion and latterly by successive slab falls. The plane of the fault with the largest throw (c. 7 m) outcrops in the innermost part of the escarpment, and is a normal fault with a NW–SE strike and steep SE dip. It is part of a set outcropping along the Alhambra hill. Fault activity may be very recent, perhaps related to historical earthquakes. Seismic risk at the Alhambra is considered to be moderate: there is earthquake damage of the Arab walls and barrier. The most significant historical damage occurred in 1431 and partially collapsed the Arab barrier. Extension associated with the faults loosens the ground and contributes to slab falls. The faults are also preferential water paths. Both the many cracks of the walls and collapses of the Alhambra barrier appear concentrated and aligned with the fault set.Stability analyses suggest that the factor of safety of the San Pedro slope under 1000-yr-return-period earthquake loading may drop below 1.0 and the critical slip surface could penetrate the Alhambra walls. To raise the safety factor above 1.0 and to counteract extensional stress in the cliff, an apparently environmentally acceptable solution with minimal visual impact is proposed. It consists of high-yield-stress wire mesh, post-tensioned by anchors, and coloured to blend with the cliff.  相似文献   

10.
Geology of Ore Deposits - This paper in focused on the data for ludwigite and yuanfuliite of the new fumarolic genetic type. These ferric–magnesian borates (oxoborates) have been found in...  相似文献   

11.
The Magadi area, located in the southern part of the Kenya Rift, is a seismically active region where rifting is still in progress. The recent tectonic activity has been investigated through a seismological survey and the study of neotectonic joints found in Lake Magadi sediments, which were deposited some 5000 years ago. The structural analysis of these open fractures was combined with a quantitative analysis of the orientation and size characteristics of imagery faults. The gathered data demonstrate (1) that the majority of the systematic joints have straight and parallel trajectories with a common en echelon mode of propagation displayed through a rich variety of patterns, and (2) that there is a self-similarity in fault and joint principal directions recognised at the different telescopic scales. SPOT image (1:125,000), aerial photos (1:76,000), and outcrop fieldwork reveal two important structural orientations which are N015°E and N015°W. The N015°E regional direction is consistent with the orientation of the southern segment of the Kenya Rift. Structural analysis is supported by results of a joint microseismic investigation in the Lake Magadi area. Obtained focal mechanism solutions indicate an E–W to ESE–WNW normal faulting extension direction.  相似文献   

12.
Baranevskoy金-银矿床产于巴尔喀什火山的火山口,该火山坐落在堪察加中部矿区东南部。本文基于矿物学原理和流体包裹体数据分析探讨了Baranevskoy金-银矿床的成矿环境及其物理化学条件。Baranevskoy金-银矿床的围岩为中新世—上新世的安山岩和玄武岩。热液蚀变活动随深度逐渐变化,从而可以进一步划分出最深部的石英带、中部的石英-绢云母(明矾石)-黄铁矿-铁钛氧化物带及其伴生的石英-绢云母-伊利石-黄铁矿矿物组合和浅部的石英-冰长石-水云母-黏土矿物-碳酸盐岩带。成矿早期存在密集浸染的铜矿化,主要矿石矿物有黄铜矿、斑铜矿、砷黝铜矿-黝铜矿,并在Rhzavaya矿脉中存在少量的自然金。其中砷黝铜矿-黝铜矿系列以砷黝铜矿和黝铜矿两个端员作为代表,且以黝铜矿为主。成矿后期产出代表晚期金-银矿化的自然金、黄铁矿、黄铜矿、闪锌矿、方铅矿、碲化物和硫酸盐等标志性矿物。早期铜矿化(第一期)被认为是中硫阶段,紧随其后的为低硫型金-银矿化(第二期和第三期)。金从第一期到第三期都有沉淀。经研究发现,自然金也赋存于变质围岩的岩石裂隙内。早期的自然金相对富银,其中金的摩尔分数为59%~65%,低于后期(第二、第三期)自然金中金的摩尔分数(64%~72%)。流体包裹体显微测温结果显示,位于中部(Central)矿脉的包裹体均一温度为190~280 ℃,Rzhavaya矿脉的包裹体为190~240 ℃,产出自然金的蚀变围岩中石英的包裹体温度为230~310 ℃。包裹体总体表现出低盐度(0.9%~2.4% NaCleq)特征,推测存在大气水的混入。  相似文献   

13.
A new mineral romanorlovite has been found in the upper, moderately hot zones of two fumaroles, Glavnaya Tenoritovaya (Major Tenorite) and Arsenatnaya (Arsenate), located at the second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with avdoninite in both fumaroles, and in Glavnaya Tenoritovaya, it is also associated with belloite, sylvite, carnallite, mitscherlichite, sanguite, chlorothionite, eriochalcite, chrysothallite, and mellizinkalite. Romanorlovite occurs as prismatic, equant, or tabular tetragonal crystals up to 0.1 mm in size, crystal clusters up to 0.5 mm, and crusts up to 2 × 2 mm in area. The mineral is transparent with vitreous luster. Its color varies from yellow-brown to dark brown, and tiny crystals are honey- or golden-yellow. Cleavage is not observed. Romanorlovite is brittle. The Mohs hardness is ca ~3. The calculated density varies from 2.72 to 2.79 g/cm3 depending on the content of admixed Pb. The mineral is optically uniaxial (–), ω = 1.727(3), ε = 1.694(2). The Raman spectrum has been reported. The chemical composition of the holotype sample (wt %; electron microprobe data, contents of О and H calculated by stoichiometry) is as follows: 21.52 K, 0.89 Pb, 28.79 Cu, 0.02 Zn, 44.74 Cl, 4.85 Ocalc, 0.41 Hcalc, total 101.22. Its empirical formula calculated based on Cl25 with (ОН)4(Н2О)2 is K10.90Pb0.09Cu8.97Zn0.01Cl25(OH)4 · 2H2O. The simplified formula is K11Cu9Cl25(OH)4 · 2H2O (Z = 4). Romanorlovite is tetragonal, space group[ I4/mmm. The unit cell parameters are (1) holotype: a = 17.5804(7), c = 15.9075(6) Å, V = 4916.5(3) Å3; (2) the sample enriched in Pb on which the crystal structure was refined: a = 17.5538(19), c = 15.8620(17) Å, V= 4887.7(9) Å3. The strongest reflections of the powder XRD pattern (d, Å–I[hkl]) are 12.48–56[110], 11.74–36[101], 8.80–100[200], 7.97–34[002], 6.71–40[112], 3.165–32[512], 2.933–80[215, 433], 2.607–38[514]. The mineral is named in honor of Roman Yu. Orlov (1929-2005), Russian mineralogist and physicist, who worked in the Department of Mineralogy, Moscow State University.  相似文献   

14.
To understand the generation and evolution of mafic magmas from Klyuchevskoy volcano in the Kamchatka arc, which is one of the most active arc volcanoes on Earth, a petrological and geochemical study was carried out on time-series samples from the volcano. The eruptive products show significant variations in their whole-rock compositions (52.0–55.5 wt.% SiO2), and they have been divided into high-Mg basalts and high-Al andesites. In the high-Mg basalts, lower-K and higher-K primitive samples (>9 wt.% MgO) are present, and their petrological features indicate that they may represent primary or near-primary magmas. Slab-derived fluids that induced generation of the lower-K basaltic magmas were less enriched in melt component than those associated with the higher-K basaltic magmas, and the fluids are likely to have been released from the subducting slab at shallower levels for the lower-K basaltic magmas than for higher-K basaltic magmas. Analyses using multicomponent thermodynamics indicates that the lower-K primary magma was generated by ~13% melting of a source mantle with ~0.7 wt.% H2O at 1245–1260?°C and ~1.9 GPa. During most of the evolution of the volcano, the lower-K basaltic magmas were dominant; the higher-K primitive magma first appeared in AD 1932. In AD 1937–1938, both the lower-K and higher-K primitive magmas erupted, which implies that the two types of primary magmas were present simultaneously and independently beneath the volcano. The higher-K basaltic magmas evolved progressively into high-Al andesite magmas in a magma chamber in the middle crust from AD 1932 to ~AD 1960. Since then, relatively primitive magma has been injected continuously into the magma chamber, which has resulted in the systematic increase of the MgO contents of erupted materials with ages from ~AD 1960 to present.  相似文献   

15.
Global environmental change shapes places and people through ongoing transformation of ecological, socioeconomic, political, and cultural phenomena. One region construed as highly vulnerable to global environmental change, particularly anthropogenic climate change, is the North. Recent research about human communities in Western arctic and subarctic places revolve around vulnerability to anthropogenic climate change, focusing on loss of the ability to pursue traditional livelihoods, threats to ecosystems sustaining human communities and the need to adapt to new environmental regimes. Fewer studies address Russia and the perceptions and emotions related to climate change. To understand how people of the Russian North engage with climate change, I conducted ethnographic research in two rural and remote communities in subarctic alpine Kamchatka, Russia in 2009–2010. Local narratives about climate change largely reflect climate skepticism, and anthropogenic climate change is rejected as explaining environmental changes because: (1) climate is considered as naturally and cyclically changing, (2) humans are not considered a large enough force to alter natural climate cycles, (3) environmental problems are solvable with technology and (4) there is a lack of knowledge about climate change science. Thus, perceptions and emotions about transformation focus on other realms—socioeconomic, political, cultural—that are perceived as more critical to everyday life in the present and near future. Here, I describe these narratives and place the regional understanding of climate change in greater context to explain resistance to imagining environmental transformations due to climate change.  相似文献   

16.
The paper presents the first data on the geochemistry and U-Pb SHRIMP geochronology of zircon from garnet amphibolites whose fragments are hosted by the sole of the ophiolite complex of Kamchatskii Cape, eastern Kamchatka. The zircons compose a homogeneous sampling, have relatively small sizes, are unhedral, have no oscillatory zoning, and possess practically no inclusions. The chemistry and photoluminescent characteristics of the zircons testify to their metamorphic genesis. The U-Pb SHRIMP dates of the zircons (81.4±9.6 Ma) indicate that the metamorphism of the amphibolite complex took place in Campanian time in the Late Cretaceous. These dates seem to correspond to the peak of the high-pressure metamorphism, which is thought to be related to the origin of an ophiolite complex of the suprasubduction type and its uplift within the Kronotskii Island arc.  相似文献   

17.
Acoustic profiling carried out with an Edgetech 3300 prophilograph in the junction zone of the Cape Verde Rise, Cape Verde Abyssal Plain, and Grimaldi and Bathymetrists seamounts in the Central Atlantic during Cruise 23 of the R/V Akademik Nikolaj Strakhov allowed us to obtain new data on neotectonic deformations in the ocean and to propose their interpretation. It has been established that neotectonic movements occurred in the discrete manner: blocks of undeformed rocks alternate with linear zones of intense deformation spatially related to paleotransform fracture zones, where anticlines, horsts, diapir-like morphostructures, and grabens were formed. The Cape Verde Ridge is a large horst. Its sedimentary cover is disturbed by thrust (?), reverse, and normal faults, steeply dipping fracture zones, and folds. Three stages of tectonic movements—Oligocene-early Miocene, pre-Quaternary, and Holocene—are recognized. The tectonic deformations occurred largely under near-meridional compression. Extension setting was characteristic of the Cape Verde Ridge and the Carter Rise in the Holocene.  相似文献   

18.
The central part of the Kamchatka Peninsula is characterized by a well defined depression associated with active volcanism, aligned NE–SW. On the east, the depression is bounded by a prominent system of active faults known as the East Kamchatka Fault Zone (EKFZ). In order to improve understanding of the behaviour and kinematic role of this fault zone a fieldwork programme, including study of trenches, was conducted in the north-central part of this system. Aerial photograph analysis, ground-truthed, indicates a westward fault dip with predominantly normal slip, while lateral offsets of river terraces and stream channels demonstrate a combined dextral component. Over 20 excavated pits and natural exposures were examined to confirm a detailed tephra succession extending from the early Holocene to recent historic eruptions. This chronological framework then provided age control on five past faulting events recognised in three trenches. These events took place at about 10.5, 6.0, 4.5 and, in a two-event succession within a short time span, at 3.3–3.2 ka BP. Event clustering may be characteristic and fault length–displacement values suggest earthquakes of M6.5, thus representing a significant new element in regional seismic hazard evaluations; additional to events generated at the subduction interface. The relatively long gap in faulting since the two most recent events may also be significant for hazard scenarios and there is a possible link between the faulting and volcanic activity in the depression. Overall, the EKFZ, together with the Nachiki Transverse Zone farther south, is thought to define a regional-scale block that is extending eastwards independently from the rest of Kamchatka.  相似文献   

19.
The Andaman arc in the northeastern Indian Ocean defines nearly 1100 km long active plate margin between the India and Burma plates where an oblique Benioff zone develops down to 200 km depth. Several east-trending seismologic sections taken across the Andaman Benioff Zone (ABZ) are presented here to detail the subduction zone geometry in a 3-D perspective. The slab gravity anomaly, computed from the 3-D ABZ configuration, is a smooth, long-wavelength and symmetric gravity high of 85 mGal amplitude centering to the immediate east of the Nicobar Island, where, a prominent gravity “high” follows the Nicobar Deep. The Slab-Residual Gravity Anomaly (SRGA) and Mantle Bouguer Anomaly (MBA) maps prepared for the Andaman plate margin bring out a double-peaked SRGA “low” in the range of − 150 to − 240 mGal and a wider-cum-larger MBA “low” having the amplitude of − 280 to − 315 mGal demarcating the Andaman arc–trench system. The gravity models provide evidences for structural control in propagating the rupture within the lithosphere. The plate margin configuration below the Andaman arc is sliced by the West Andaman Fault (WAF) as well as by a set of sympathetic faults of various proportions, often cutting across the fore-arc sediment package. Some of these fore-arc thrust faults clearly give rise to considerably high post-seismic activity, but the seismic incidence along the WAF further east is comparatively much less particularly in the north, although, the lack of depth resolution for many of the events prohibits tracing the downward continuity of these faults. Tectonic correlation of the gravity-derived models presented here tends to favour the presence of oceanic crust below the Andaman–Nicobar Outer Arc Ridge.  相似文献   

20.
Original authors’ data on the mineralogy and composition of melt inclusions in two samples show that the Early Eocene magmatic rocks at Cape Khairyuzova were formed by mixing melts of mafic, intermediate, and acid composition, which were derived from different sources. The mafic melt was rich in MgO, and its temperature was 1100–1150°C. The temperature of the acid melt varied from 1070 to 1130°C. The melts are also different in concentrations of trace elements and in their ratios. All three melt types are enriched in LILE and LREE and depleted in HFSE and were likely derived in suprasubductional environments. The mafic and intermediate magmas were formed by melting a mantle wedge and subsequent fractionation of the melts. The acid melts could be formed by melting crustal rocks when they were overheated in the newly formed orogen of significant thickness. When ascending, the mantle melts could mix in variable proportions with acid melts in crustal chambers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号