首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a methodology to construct three-dimensional deformation maps using different parameters that can be extracted using SAR data. We apply the methodology using ENVISAT SAR data before and after the December 26th, 2003 Mw 6.6 Bam earthquake in Iran to determine spatial quasi-continuous three-dimensional coseismic deformation maps. Two near vertical deformation offset components are computed using Envisat ASAR differential interferometry (DInSAR), while two horizontal deformation offset components are measured using sub-pixel correlation techniques applied to ASAR amplitude images. Using the presented methodology, we combine four unevenly precise independent projections of surface coseismic deformation to obtain the full three-dimensional coseismic deformation field caused by an earthquake. The full 3-D coseismic displacement vector is modeled using elastic deformation models constraining details of the fault geometry and slip distribution at depth. Results from the inversion are interpreted in the framework of the Iranian present-day tectonism. Full exploitation of dense 3-D coseismic surface deformation using SAR data, even for moderate earthquakes, should facilitate distinguishing between different interpretations of the mechanical properties of seismically active areas and within the inherent ambiguity of the geophysical inversion solutions.  相似文献   

2.
A new method for the retrieval of ocean wave parameters from SAR imagery is developed,based on the shape-from-shading(SFS)technique.Previously,the SFS technique has been used in the reconstruction of 3D landform information from SAR images,in order to generate elevation maps of topography for land surfaces.Here,in order to retrieve ocean wave characteristics,we apply the SFS methodology,together with a method to orient the angular measurements of the azimuth slope and range slope,in the measurement of ocean surface waves.This method is applied to high resolution fine-quad polarization mode(HH,VV,VH and HV)C-band RADARSAT-2 SAR imagery,in order to retrieve ocean wave spectra and extract wave parameters.Collocated in situ buoy measurements are used to validate the reliability of this method.Results show that the method can reliably estimate wave height,dominant wave period,dominant wave length and dominant wave direction from C-band SAR images.The advantage of this method is that it does not depend on modulation transfer functions(MTFs),in order to measure ocean surface waves.This method can be used in monitoring ocean surface wave propagation through open water areas into ice-covered areas,especially the marginal ice zone(MIZ)in polar oceans.  相似文献   

3.
Today the health of ocean is in danger as it was never before mainly due to man-made pollutions. Operational activities show regular occurrence of accidental and deliberate oil spill in European waters. Since the areas covered by oil spills are usually large, satellite remote sensing particularly Synthetic Aperture Radar represents an effective option for operational oil spill detection. This paper describes the development of a fully automated approach for oil spill detection from SAR. Total of 41 feature parameters extracted from each segmented dark spot for oil spill and ‘look-alike’ classification and ranked according to their importance. The classification algorithm is based on a two-stage processing that combines classification tree analysis and fuzzy logic. An initial evaluation of this methodology on a large dataset has been carried out and degree of agreement between results from proposed algorithm and human analyst was estimated between 85% and 93% respectively for ENVISAT and RADARSAT.  相似文献   

4.
This paper synthesizes 10‐years' worth of interannual time‐series space‐borne ERS‐1 and RADARSAT‐1 synthetic aperture radar (SAR) data collected coincident with daily measurement of snow‐covered, land‐fast first‐year sea ice (FYI) geophysical and surface radiation data collected from the Seasonal Sea Ice Monitoring and Modeling Site, Collaborative‐Interdisciplinary Cryospheric Experiment and 1998 North Water Polynya study over the period 1992 to 2002. The objectives are to investigate the seasonal co‐relationship of the SAR time‐series dataset with selected surface mass (bulk snow thickness) and climate state variables (surface temperature and albedo) measured in situ for the purpose of measuring the interannual variability of sea ice spring melt transitions and validating a time‐series SAR methodology for sea ice surface mass and climate state parameter estimation. We begin with a review of the salient processes required for our interpretation of time‐series microwave backscatter from land‐fast FYI. Our results suggest that time‐series SAR data can reliably measure the timing and duration of surface albedo transitions at daily to weekly time‐scales and at a spatial scales that are on the order of hundreds of metres. Snow thickness on FYI immediately prior to melt onset explains a statistically significant portion of the variability in timing of SAR‐detected melt onset to pond onset for SAR time‐series that are made up of more than 25 images. Our results also show that the funicular regime of snowmelt, resolved in time‐series SAR data at a temporal resolution of approximately 2·5 images per week, is not detectable for snow covers less than 25 cm in thickness. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Differential SAR Interferometry (DInSAR) is a technique that can be used to detect and characterize slope movements. It is investigated here as a tool for establishing a detailed overview of complex slope movements at a regional scale in an Alpine context. This paper gives specific recommendations to use and to understand DInSAR signals in mountainous areas located above the tree line, excluding glaciated areas. It proposes a systematic procedure based on accurate interpretations of interferometric signals from a large DInSAR dataset to locate and estimate the displacement rate of moving zones. The methodology was successfully applied in the Western Swiss Alps, where about 1500 moving objects were detected above the tree line using a large dataset of ERS and JERS interferograms dating from the 1990s. The DInSAR‐detected movements had a displacement rate ranging from a few centimeters to several meters per year and were attributed to various types of mass wasting phenomena (rock glaciers, landslides, etc.). This kind of inventory derived from DInSAR can be used as a preliminary tool for natural hazard management and process understanding in mountain areas. As automatic data archiving and systematic acquisition of SAR data are ensured worldwide for most SAR sensors, a similar methodology can basically be applied in many other parts of the globe – also by using data from current SAR sensors – as long as a high resolution DEM is available. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
《Marine pollution bulletin》2014,78(1-2):190-195
Increased frequency and enhanced damage to the marine environment and to human society caused by green macroalgae blooms demand improved high-resolution early detection methods. Conventional satellite remote sensing methods via spectra radiometers do not work in cloud-covered areas, and therefore cannot meet these demands for operational applications. We present a methodology for green macroalgae bloom detection based on RADARSAT-2 synthetic aperture radar (SAR) images. Green macroalgae patches exhibit different polarimetric characteristics compared to the open ocean surface, in both the amplitude and phase domains of SAR-measured complex radar backscatter returns. In this study, new index factors are defined which have opposite signs in green macroalgae-covered areas, compared to the open water surface. These index factors enable unsupervised detection from SAR images, providing a high-resolution new tool for detection of green macroalgae blooms, which can potentially contribute to a better understanding of the mechanisms related to outbreaks of green macroalgae blooms in coastal areas throughout the world ocean.  相似文献   

7.
SAR observation and model tracking of an oil spill event in coastal waters   总被引:4,自引:0,他引:4  
Oil spills are a major contributor to marine pollution. The objective of this work is to simulate the oil spill trajectory of oil released from a pipeline leaking in the Gulf of Mexico with the GNOME (General NOAA Operational Modeling Environment) model. The model was developed by NOAA (National Oceanic and Atmospheric Administration) to investigate the effects of different pollutants and environmental conditions on trajectory results. Also, a Texture-Classifying Neural Network Algorithm (TCNNA) was used to delineate ocean oil slicks from synthetic aperture radar (SAR) observations. During the simulation, ocean currents from NCOM (Navy Coastal Ocean Model) outputs and surface wind data measured by an NDBC (National Data Buoy Center) buoy are used to drive the GNOME model. The results show good agreement between the simulated trajectory of the oil spill and synchronous observations from the European ENVISAT ASAR (Advanced Synthetic Aperture Radar) and the Japanese ALOS (Advanced Land Observing Satellite) PALSAR (Phased Array L-band Synthetic Aperture Radar) images. Based on experience with past marine oil spills, about 63.0% of the oil will float and 18.5% of the oil will evaporate and disperse. In addition, the effects from uncertainty of ocean currents and the diffusion coefficient on the trajectory results are also studied.  相似文献   

8.
机载SAR对海探测时,探测范围小和时空匹配难等局限使其无法借助风条纹和辅助资料反演海面风矢量.本文在仿真研究CMOD5.N地球物理模型参数的函数关系,实例分析机载SAR探测图像中距离向均值曲线变化规律的基础上,发现相同风向、风速条件下,CMOD5.N模型构建的标准曲线和探测图像的距离向均值曲线遵循统一的归一化雷达截面随入射角变化规律,且两者具有良好的相关性.据此,本文提出将距离向均值曲线与标准曲线逐条匹配,采用相关系数判定两者的相关程度,选择使得相关系数绝对值最大的标准曲线作为最优匹配曲线,进而直接确定风向和风速的海面风矢量反演方法.机载SAR飞行探测实验结果表明,海面风矢量反演结果与浮标观测结果的均方根误差为风向11.3°,风速0.9m·s-1,高于反演精度指标要求,原因在于该方法既避免了机载SAR探测图像中斑点噪声的影响,又不会产生局部最优解,提高了海面风矢量反演精度.  相似文献   

9.
The Katla central volcano, covered by the fourth largest Icelandic glacier Mýrdalsjökull, is among the most dangerous and active volcanoes in Iceland. Due to the ice cover, several indicators of its volcanic activity can only be identified indirectly. We analysed a total of 30 synthetic aperture radar (SAR) images with special focus on identifying circular and linear depressions in the glacier surface. Such features are indicative of sub-glacial geothermal heat sources and the adjacent sub-glacial tunnel (melt water drainage) system. The time series comprises images from five different SAR sensors (ERS-1, ERS-2, JERS-1/SAR, RADARSAT and ENVISAT-ASAR) covering a time period of 12 years, starting in 1994. Individual SAR scenes only partly map the glacier surface morphology due to the environmental influences on the SAR backscatter intensity. Thus, only surface features detectable in several SAR scenes at the same location were considered and merged to form an overall picture of the surface morphology of Mýrdalsjökull and its modification by sub-glacial volcanic activity between 1994 and 2006. Twenty permanent and 4 semi-permanent ice cauldrons could be identified on the surface of Mýrdalsjökull indicating geothermally active areas in the underlying caldera. An analysis of their size was not possible due to the indistinct outline in the SAR images. The spatial distribution of the geothermally active areas led to a new, piecemeal caldera model of Katla volcano. All cauldrons are connected to tunnel systems for melt water drainage. More than 100 km of the sub-glacial drainage system could be identified under the Mýrdalsjökull in the SAR time series. It has been found that the tunnel systems are not in agreement with estimated water divides. Our results allow improved assessment of areas of potential Jökulhlaup hazard accompanying a sub-glacial eruption.  相似文献   

10.
针对汶川地震PALSAR观测的方位向形变场存在严重电离层影响,导致准确提取断层地表破裂线困难的问题,本文使用一种基于频率域的电离层影响校正方法,从方位向形变场频域数据中提取电离层信号对应的频域信息,通过建模获得空间域电离层信号,并与原始形变场进行差分运算完成电离层影响的校正,还原了汶川地震断层近场沿SAR方位向的真实地表形变场.以校正后的方位向形变场作为数据源,采用非极大值抑制二维梯度算法,准确提取汶川地震北川—映秀断层和灌县—江油断层的地表破裂线.为验证提取结果的可靠性,引入野外地质调查数据进行对比分析,定量计算两条破裂线间的距离差异,结果表明基于SAR形变场自动提取的断层破裂线与野外地质调查数据具有较高的一致性,利用SAR观测形变场可作为调查地震断层地表破裂的重要补充手段.  相似文献   

11.
Up to now, high-resolution mapping of surface water extent from satellites has only been available for a few regions, over limited time periods. The extension of the temporal and spatial coverage was difficult, due to the limitation of the remote sensing technique [e.g., the interaction of the radiation with vegetation or cloud for visible observations or the temporal sampling with the synthetic aperture radar (SAR)]. The advantages and the limitations of the various satellite techniques are reviewed. The need to have a global and consistent estimate of the water surfaces over long time periods triggered the development of a multi-satellite methodology to obtain consistent surface water all over the globe, regardless of the environments. The Global Inundation Extent from Multi-satellites (GIEMS) combines the complementary strengths of satellite observations from the visible to the microwave, to produce a low-resolution monthly dataset (\(0.25^\circ \,\times \,0.25^\circ\)) of surface water extent and dynamics. Downscaling algorithms are now developed and applied to GIEMS, using high-spatial-resolution information from visible, near-infrared, and synthetic aperture radar (SAR) satellite images, or from digital elevation models. Preliminary products are available down to 500-m spatial resolution. This work bridges the gaps and prepares for the future NASA/CNES Surface Water Ocean Topography (SWOT) mission to be launched in 2020. SWOT will delineate surface water extent estimates and their water storage with an unprecedented spatial resolution and accuracy, thanks to a SAR in an interferometry mode. When available, the SWOT data will be adopted to downscale GIEMS, to produce a long time series of water surfaces at global scale, consistent with the SWOT observations.  相似文献   

12.
本研究将边界层相似理论与对流理论应用到具有海洋大气边界层(Marine Atmospheric Boundary Layer, MABL)对流特征的星载合成孔径雷达(Synthetic Aperture Radar, SAR)遥感图像,探讨了星载SAR遥感图像描述海气应力作用下水平扰动尺度变化的潜在可能性.针对具有三维对流涡旋Cell和二维水平滚轴涡旋Roll特征的星载SAR遥感图像,反演了中国海海域MABL高度,并与同步实验获取的MABL高度结果进行对比.结果表明,利用具有对流特征的星载SAR遥感图像反演MABL高度是可行的,展示了以高分辨率、大面积观测为特点的星载SAR遥感图像探测MABL的广阔前景.  相似文献   

13.
The research for the land surface fluxes has madea quiet great progress for its breakthroughs in the fieldof regional or global interactions between land surfaceand atmosphere. However, many remote sensing mod-els for estimating the land surface fluxes need the pa-rameters of surface momentum, heat, resistance ofwater vapor at a referenced height, which are the func-tion of aerodynamic surface roughness zad. It hasbeen validated that the retrieval of the land surfacefluxes is very sensitive to…  相似文献   

14.
Abstract

The purpose of this paper is to present the methodology set up to derive catchment soil moisture from Earth Observation (EO) data using microwave spaceborne Synthetic Aperture Radar (SAR) images from ERS satellites and to study the improvements brought about by an assimilation of this information into hydrological models. The methodology used to derive EO data is based on the appropriate selection of land cover types for which the radar signal is mainly sensitive to soil moisture variations. Then a hydrological model is chosen, which can take advantage of the new information brought by remote sensing. The assimilation of soil moisture deduced from EO data into hydrological models is based principally on model parameter updating. The main assumption of this method is that the better the model simulates the current hydrological system, the better the following forecast will be. Another methodology used is a sequential one based on Kalman filtering. These methods have been put forward for use in the European AIMWATER project on the Seine catchment upstream of Paris (France) where dams are operated to alleviate floods in the Paris area.  相似文献   

15.
光滑地表面毁伤检测方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
光滑地面毁伤程度评估非常重要,目前评估方法主要是基于光学图像,可是在恶劣的气候或环境条件下,很难获得光学图像,合成孔径雷达(SAR)克服了这个缺点. SAR图像是地表结构和电特征等地球物理参数的映射,通过SAR图像反演地表结构参数,可以推测出光滑地面毁伤程度. 本文以几何光学模型(GOM)为基础,建立神经网络反演模型,以获得光滑地表面受损后的粗糙度参数:表面均方根高度(σ)和表面相关长度(l),并进一步评估光滑地表面受损程度. 实验结果表明该方法可行.  相似文献   

16.
A decision methodology for the management of seismic risk of a single building is presented. The decision criterion aims at minimizing the expected life‐cycle cost, including the initial cost of the design and the expected cost of damage due to future earthquakes. The expected life‐cycle cost of each design alternative is formulated using a renewal model for the occurrence of earthquakes in a seismic source, which accounts for the temporal dependence between the occurrence of ‘characteristic’ earthquakes. The formulation involves the expected damage cost from an earthquake of specified magnitude in a given source. This term is estimated by simulating the processes of fault rupture, elastic wave propagation, surface soil amplification, dynamic structural response and generation of damage costs. As an example, the methodology is applied to an actual office building in Tokyo. A simple decision problem between two design alternatives is set: a bare steel moment frame, and the same frame equipped with oil dampers. Through this case study, the installation of the oil dampers is demonstrated to be effective in reducing the life‐cycle cost of the building under consideration. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
The traditional method of Synthetic Aperture Radar(SAR)wind field retrieval is based on an empirical relation between the near surface winds and the normalized radar backscatter cross section to estimate wind speeds,where this relation is called the geophysical model function(GMF).However,the accuracy rapidly decreases due to the impact of rainfall on the measurement of SAR and the saturation of backscattered intensity under the condition of tropical cyclone.Because of no available instrument synchronously monitoring rain rate on the satellite platform of SAR,we have to derive the precipitation of the SAR observation time from non-simultaneous passive microwave observations of rain in combination with geostationary IR images,and then use the model of rain correction to remove the impact of rain on SAR wind field measurements.For the saturation of radar backscatter cross section in high wind speed conditions,we develop an approach to estimate tropical cyclone parameters and wind fields based on the improved Holland model and the SAR image features of tropical cyclone.To retrieve the low-to-moderate wind speed,the wind direction of tropical cyclone is estimated from the SAR image using wavelet analysis.And then the maximum wind speed and the central pressure of tropical cyclone are calculated by a least square minimization of the difference between the improved Holland model and the low-to-moderate wind speed retrieved from SAR.In addition,wind fields are estimated from the improved Holland model using the above-mentioned parameters of tropical cyclone as input.To evaluate the accuracy of our approach,the SAR images of typhoon Aere,typhoon Khanun,and hurricane Ophelia are used to estimate tropical cyclone parameters and wind fields,which are compared with the best track data and reanalyzed wind fields of the Joint Typhoon Warning Center(JTWC)and the Hurricane Research Division(HRD).The results indicate that the tropical cyclone center,maximum wind speed,and central pressure are generally consistent with the best track data,and wind fields agree well with reanalyzed data from HRD.  相似文献   

18.
In this research, the bioremediation of dispersed crude oil, based on the amount of nitrogen and phosphorus supplementation in the closed system, was optimized by the application of response surface methodology and central composite design. Correlation analysis of the mathematical‐regression model demonstrated that a quadratic polynomial model could be used to optimize the hydrocarbon bioremediation (R2 = 0.9256). Statistical significance was checked by analysis of variance and residual analysis. Natural attenuation was removed by 22.1% of crude oil in 28 days. The highest removal on un‐optimized condition of 68.1% were observed by using nitrogen of 20.00 mg/L and phosphorus of 2.00 mg/L in 28 days while optimization process exhibited a crude oil removal of 69.5% via nitrogen of 16.05 mg/L and phosphorus 1.34 mg/L in 27 days therefore optimization can improve biodegradation in shorter time with less nutrient consumption.  相似文献   

19.
用多种数据构建2008年汶川特大地震同震位移场   总被引:2,自引:2,他引:0  
本文主要以GPS、精密水准观测和卫星SAR遥感图像分析2008年汶川特大地震同震位移特征.GPS数据包括:(1)四川盆地和川西高原地区各类国家等级GPS网点复测;(2)沿破裂带国家天文大地网GPS复测.前者推算的同震位移测定精度优于2 cm,后者6~8 cm.SAR遥感资料包括:(1)ALOS 卫星升轨相位干涉图像,精度优于8 cm;(2)ALOS和ENVISAT卫星影像合成的三维位移图,精度优于0.5 m.同震位移场显示,断层下盘(四川盆地)变形总体呈扇形集中指向震中,断层上盘(龙门山)变形总体上呈逆时针旋转态势,最大的实测水平位移5.5 m.汶川、理县、茂县等地测站位移指向破裂带方向,而平武、青川等地测站逐渐转变为平行,乃至远离破裂带方向,与汶川地震逆冲兼走滑的破裂特征一致.断层上盘大幅隆升,下盘靠近断层的区域以下沉为主,远场表现为幅度很小的隆升,垂直升降区域间,有一条与龙泉山断裂带平行的升降过渡带,调节龙泉断层的应力状态.用实测变形场检验多个地震波破裂模型表明,近场(距离断层50 km) 模型形变准确度可达40~50 cm, 远场精度优于5 cm.  相似文献   

20.
Active microwave remote sensing observations of backscattering, such as C‐band vertically polarized synthetic aperture radar (SAR) observations from the second European remote sensing (ERS‐2) satellite, have the potential to measure moisture content in a near‐surface layer of soil. However, SAR backscattering observations are highly dependent on topography, soil texture, surface roughness and soil moisture, meaning that soil moisture inversion from single frequency and polarization SAR observations is difficult. In this paper, the potential for measuring near‐surface soil moisture with the ERS‐2 satellite is explored by comparing model estimates of backscattering with ERS‐2 SAR observations. This comparison was made for two ERS‐2 overpasses coincident with near‐surface soil moisture measurements in a 6 ha catchment using 15‐cm time domain reflectometry probes on a 20 m grid. In addition, 1‐cm soil moisture data were obtained from a calibrated soil moisture model. Using state‐of‐the‐art theoretical, semi‐empirical and empirical backscattering models, it was found that using measured soil moisture and roughness data there were root mean square (RMS) errors from 3·5 to 8·5 dB and r2 values from 0·00 to 0·25, depending on the backscattering model and degree of filtering. Using model soil moisture in place of measured soil moisture reduced RMS errors slightly (0·5 to 2 dB) but did not improve r2 values. Likewise, using the first day of ERS‐2 backscattering and soil moisture data to solve for RMS surface roughness reduced RMS errors in backscattering for the second day to between 0·9 and 2·8 dB, but did not improve r2 values. Moreover, RMS differences were as large as 3·7 dB and r2 values as low as 0·53 between the various backscattering models, even when using the same data as input. These results suggest that more research is required to improve the agreement between backscattering models, and that ERS‐2 SAR data may be useful for estimating fields‐scale average soil moisture but not variations at the hillslope scale. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号