首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
This study investigated a series of dammed lakes and downstream-adjacent alluvial fans in the upstream to middle reaches of the Golmud River in the eastern Kunlun Mountain, on the north-eastern Qinghai-Tibetan Plateau (QTP). An optically stimulated luminescence (OSL) chronology shows the sediments of five dammed lakes developed from c. 45–40, 30–25, 18–14, and 12–8 ka, corresponding to MIS 3b, late MIS 3a, Last Deglaciation, and early Holocene, respectively. The remote sensing data show these dammed lakes have a total area of 109.4 km2, with the lake volume of more than 4.0 km3. Symmetric alluvial fans from north–south tributary valleys produced OSL ages of c. 61–52, 42–31, 26–20, and 16–10 ka, corresponding to glaciation periods: the MIS 3c and MIS 3a, MIS 2, and the Last Deglaciation. This suggests that glacial activity is responsible for the alluvial fan development, where dammed rivers occurred first, but lake formation did not take place synchronously until later periods of strong hydrologic activity, resulting from northward intrusions of the Indian summer monsoon (ISM) or glacier melt. Thus, the blocking pattern is that river valleys were dammed during periods of glacial activity and lakes formed during wet periods. The lake formation and subsequent drainage may have resulted in: (i) impeded headwater incision and strengthening of downstream dissection; (ii) enriched the halite and potash in the distal Qarhan Salt Lake through hydrologic and hydrochemical processes of abundant water input, the salt lake expansion, salt redissolution from playa and final resedimentation during later dry periods. The alluvial-dammed lake pattern in the mountain-basin systems of eastern Kunlun Mountain offers a model for assessing the linkages between monsoon dynamics, geomorphic processes and distal salt lake evolutions in other arid regions.  相似文献   

2.
Pan-riftizational tectonic activity reached climax at Luodianian (Permian) in the East Tethyan Domain, Qinghai-Tibet Plateau. Because of eruptive volcanics and influence of terrigenous materials, a complex volcanic-sedimentary landform formed on the sea floor in southern Qinghai. Four sedimentary facies types were recognized based on detailed field mapping. Spatially, platform facies volcanic-limestone type was located at the center belt approximately trending NWW, surrounded by shallow water slope facies tuff/tuffite type at the two flanks and deep water slope facies breccia/calcirudite at the most outside. The depression facies sandstone-mudstone type, which comprised mainly mudstone, de-posited between volcanic islands (platform facies volcanic-limestone type). Based on the field map-ping and stratigraphic section data, seven rift-related sedimentary facies were recognized and a depo-sitional model for volcanic island was proposed. It is revealed that some volcanic island chain formed quickly and intermittently in the Qamdo Block during violent eruption, and small carbonate reef, shoal, platform occurred above or on edge of volcanic island, and some slope sedimentary facies surrounded volcano island chain during dormant period of volcanic activities. Three types of fusulinid assemblages were distinguished in the carbonate rocks, which deposited in varied positions of a palaeo-volcanic island: (1) Misellina-Schwagerina assemblage occurred above or on edge of volcanic island, (2) Para-fusulina assemblage was located at restricted depression facies among volcanic islands or carbonate platform, and (3) the reworked Pseudofusulina-Schwagerina assemblage occurred at slope facies near margin of volcanic island, which originally deposited in the shallow-water carbonate platform, then collapsed along the volcanic island margin with fusulinid-bearing grain-supported carbonate con-glomerate or calcirudite, and finally re-deposited on the deeper slope. The sedimentary sequence re-sulting from calm shallow water was deposited at the interior of the Qamdo Block from the Devonian to early Early Permian. At the beginning of the peak period of activity of pan-riftzation (Luodianian), al-ternate volcanic island and shallow marine environment within continent crust came into being. Uni-form and stable shallow-water carbonate platform was formed during the Xiangboan. This suggested that the activity of rift basin was evidently weakened. Subsequently the instability of the basin appre-ciably increased with the occurrence of basalt in late Kuhfengian. At last the whole Qamdo Block turned into the closure period of rift during the Late Permian.  相似文献   

3.
Samples of the Cambrian microbial dolomites were collected from Penglaiba section,a well-exposed stratigraphic section in the northwestern area of the Tarim Basin.This study provides an analogue for mediated dolomites that can precipitate in microbial mats and biofilms.The Cambrian stromatolitic dolomites were studied using high-resolution scanning electron microscopy.The results are as follows:(1)dolomites with 50 nm to 100 nm spherical nanostructures are aggregated into minerals of larger sphericities;(2)nanospherical dolomites of 50 nm to 170 nm diameter are densely arranged as dumbbell-shaped or chained aggregates;(3)silicified filaments,as well as dumbbell-shaped and chain arrangements,are preserved as important microstructures.On the basis of sedimentological,compositional,geochemical,and petrographic data,the microstructures were interpreted as nanoglobules that function as bacteria in the nucleation and filament mineralization stages.The microstructures function as such because they are wrapped in extracellular polymeric substance(EPS)or mucus and mineralized fossils.Silicification accounts for the exceptional preservation of microbial mat structures,including biofilms,as well as filamentous and coccoid microbes.In addition,EPS process is capable of binding different elements,with preference for Si,Mg,and Ca.Such suitable composition favors microbe mineralization and dolomite nucleation on organic substrates.These microscopic structures suggest bacterial mineralization and provide visual evidence for the origin of microbial dolomites.  相似文献   

4.
Study is made on a 45 km-long artificial ecosystem without irrigation in Tengger desert on the basis of long-term ecological monitoring and ecohydrological fundamentals. Changes in water allocation, utilization, cycle and balance patterns in more than 40-year evolution of the soil-plant system are analyzed. The formation of a drought horizon in shrub rhizosphere and its effect, ecohydrological function of the crust and its effect on the soil-plant system change are discussed. Driven by water self-regulation and water stress, the soil-plant system is going to develop towards the steppe desert to ensure more effective use and optimum collocation of water resource.  相似文献   

5.

Study is made on a 45 km-long artificial ecosystem without irrigation in Tengger desert on the basis of long-term ecological monitoring and ecohydrological fundamentals. Changes in water allocation, utilization, cycle and balance patterns in more than 40-year evolution of the soil-plant system are analyzed. The formation of a drought horizon in shrub rhizosphere and its effect, ecohydrological function of the crust and its effect on the soil-plant system change are discussed. Driven by water self-regulation and water stress, the soil-plant system is going to develop towards the steppe desert to ensure more effective use and optimum collocation of water resource.

  相似文献   

6.
Study is made on a 45 km-long artificial ecosystem without irrigation in Tengger desert on the basis of long-term ecological monitoring and ecohydrological fundamentals.Changes in water allocation, utilization, cycle and balance patterns in more than 40-year evolution of the soil-plant system are analyzed. The formation of a drought horizon in shrub rhizosphere and its effect, ecohydrological function of the crust and its effect on the soil-plant system change are discussed. Driven by water self-regulation and water stress, the soil-plant system is going to develop towards the steppe desert to ensure more effective use and optimum collocation of water resource.  相似文献   

7.
Located at the northeastern margin of the Qinghai-Tibet Plateau (QTP) in the Asian interior, the Lake Qinghai is sensitive to environmental change and thus an outstanding site for studying paleoenvironmental changes. Thick deposits in the Lake Qinghai provide important geological archives for obtaining high-resolution records of continental environmental history. The longest drilling core obtained from the Lake Qinghai, named Erlangjian (ELJ), reached about 1109 m and was investigated to determine its clay mineral assemblage and grain size distributions. Clay mineralogical proxies, including type, composition, and their ratios, as well as the illite crystallinity (KI) and chemical index (CI), in combination with grain size data, were used for reconstructing the history of paleoenvironmental evolution since the late Miocene in the Lake Qinghai Basin. The clay mineral records indicate that the clay mainly comprise detritus originating from peripheral material and has experienced little or no diagenesis. The proportion of authigenic origin was minor. Illite was the most abundant clay mineral, followed by chlorite, kaolinite, and smectite. Variations of clay mineral indexes reflect the cooling and drying trends in the Lake Qinghai region, and the grain size distribution is coincided with the clay minerals indexes. The paleoclimatic evolution of the Lake Qinghai Basin since the late Miocene can be divided into five intervals. The climate was relatively warm and wet in the early of late Miocene, then long-term trends in climate change character display cooling and drying; later in the late Miocene until early Pliocene the climate was in a short relatively warm and humid period; since then the climate was relatively colder and drier. These results also suggest multiple tectonic uplift events in the northeastern QTP.  相似文献   

8.

Natural gases discovered up to now in Lishui Sag, the East China Sea Basin, differ greatly in gaseous compositions, of which hydrocarbon gases amount to 2%–94% while non-hydrocarbon gases are dominated by CO2. Their hydrocarbon gases, without exception, contain less than 90% of methane and over 10% of C2 + heavier hydrocarbons, indicating a wet gas. Carbon isotopic analyses on these hydrocarbon gases showed that δ 13C1, δ 13C2 and δ 13C3 are basically lighter than −44‰, −29‰ and −26‰, respectively. The difference in carbon isotopic values between methane and ethane is great, suggesting a biogenic oil-type gas produced by the mixed organic matter at peak generation. δ 13 \( C_{CO_2 } \) values of nonhydrocarbon gases are all heavier than −10‰, indicating a typical abiogenic gas. The simulation experiment on hydrocarbon generation of organic matter in a closed gold-tube system showed that the proportion of methane in natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit is obviously higher than that in natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit, consequently the proportion of heavier hydrocarbons of the former is remarkably lower than that of the latter. Moreover, δ 13C1 values of natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit are about 5‰ heavier than those of natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit while δ 13C2 and δ 13C3 values of the former are over 9‰ heavier than those of the latter. Currently the LS36-1 oil-gas pool is the only commercial oil-gas reservoir in Lishui Sag, where carbon isotopic compositions of various hydrocarbon components differ greatly from those of natural gases produced by the Lingfeng Formation organic matter but are very similar to those of natural gases derived from the Yueguifeng Formation organic matter, therefore, natural gases in the LS36-1 oil-gas pool are mainly derived from the Yueguifeng Formation lacustrine source rock rather than the Lingfeng Formation marine or Mingyuefeng Formation coal-measures source rocks.

  相似文献   

9.
Natural gases discovered up to now in Lishui Sag, the East China Sea Basin, differ greatly in gaseous compositions, of which hydrocarbon gases amount to 2%–94% while non-hydrocarbon gases are dominated by CO2. Their hydrocarbon gases, without exception, contain less than 90% of methane and over 10% of C2 + heavier hydrocarbons, indicating a wet gas. Carbon isotopic analyses on these hydrocarbon gases showed that δ 13C1, δ 13C2 and δ 13C3 are basically lighter than ?44‰, ?29‰ and ?26‰, respectively. The difference in carbon isotopic values between methane and ethane is great, suggesting a biogenic oil-type gas produced by the mixed organic matter at peak generation. δ 13 \(C_{CO_2 } \) values of nonhydrocarbon gases are all heavier than ?10‰, indicating a typical abiogenic gas. The simulation experiment on hydrocarbon generation of organic matter in a closed gold-tube system showed that the proportion of methane in natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit is obviously higher than that in natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit, consequently the proportion of heavier hydrocarbons of the former is remarkably lower than that of the latter. Moreover, δ 13C1 values of natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit are about 5‰ heavier than those of natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit while δ 13C2 and δ 13C3 values of the former are over 9‰ heavier than those of the latter. Currently the LS36-1 oil-gas pool is the only commercial oil-gas reservoir in Lishui Sag, where carbon isotopic compositions of various hydrocarbon components differ greatly from those of natural gases produced by the Lingfeng Formation organic matter but are very similar to those of natural gases derived from the Yueguifeng Formation organic matter, therefore, natural gases in the LS36-1 oil-gas pool are mainly derived from the Yueguifeng Formation lacustrine source rock rather than the Lingfeng Formation marine or Mingyuefeng Formation coal-measures source rocks.  相似文献   

10.
Natural gases discovered up to now in Lishui Sag,the East China Sea Basin,differ greatly in gaseous compositions,of which hydrocarbon gases amount to 2%―94%while non-hydrocarbon gases are dominated by CO2.Their hydrocarbon gases,without exception,contain less than 90%of methane and over 10%of C2 heavier hydrocarbons,indicating a wet gas.Carbon isotopic analyses on these hydrocarbon gases showed thatδ13C 1 ,δ13C 2 andδ13C 3 are basically lighter than-44‰,-29‰and-26‰, respectively.The difference in carbon isotopic values between methane and ethane is great,suggesting a biogenic oil-type gas produced by the mixed organic matter at peak generation.δ13C CO2 values of nonhydrocarbon gases are all heavier than-10‰,indicating a typical abiogenic gas.The simulation experiment on hydrocarbon generation of organic matter in a closed gold-tube system showed that the proportion of methane in natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit is obviously higher than that in natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit,consequently the proportion of heavier hydrocarbons of the former is remarkably lower than that of the latter.Moreover, δ13C 1 values of natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit are about 5‰heavier than those of natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit whileδ13C 2 andδ13C 3 values of the former are over 9‰heavier than those of the latter.Currently the LS36-1 oil-gas pool is the only commercial oil-gas reservoir in Lishui Sag,where carbon isotopic compositions of various hydrocarbon components differ greatly from those of natural gases produced by the Lingfeng Formation organic matter but are very similar to those of natural gases derived from the Yueguifeng Formation organic matter,therefore,natural gases in the LS36-1 oil-gas pool are mainly derived from the Yueguifeng Formation lacustrine source rock rather than the Lingfeng Formation marine or Mingyuefeng Formation coal-measures source rocks.  相似文献   

11.
SourceparametersoftheGonghe,QinghaiProvince,China,earthquakefrominversionofdigitalbroadbandwaveformdataLI-SHENGXU(许立生)andYUN...  相似文献   

12.
塔里木地块奥陶纪古地磁新结果及其构造意义   总被引:1,自引:1,他引:1       下载免费PDF全文
本文报道塔里木地块阿克苏—柯坪—巴楚地区奥陶纪古地磁研究新结果.对采自44个采点的灰岩、泥灰岩及泥质砂岩样品的系统岩石磁学和古地磁学研究表明,所有样品可分成两组:第一类样品以赤铁矿和少量磁铁矿为主要载磁矿物,该类样品通常可分离出特征剩磁组分A;第二类样品以磁铁矿为主要载磁矿物,系统退磁揭示出这类样品中存在特征剩磁组分B.特征剩磁组分A分布于绝大多数奥陶纪样品中,具有双极性,但褶皱检验结果为负,推测其可能为新生代重磁化.特征剩磁组分B仅能从少部分中晚奥陶世样品中分离出,但褶皱检验结果为正,且其所对应古地磁极位置(40.7°S,183.3°E,dp/dm=4.8°/6.9°)与塔里木地块古生代中期以来的古地磁极位置显著差别,表明其很可能为岩石形成时期所获得的原生剩磁.古地磁结果表明塔里木地块中晚奥陶世位于南半球中低纬度地区,很可能与扬子地块一起位于冈瓦纳古大陆的边缘;中晚奥陶世之后,塔里木地块通过大幅度北向漂移和顺时针旋转,逐步与冈瓦纳大陆分离、并越过古赤道;至晚石炭世,塔里木地块已到达古亚洲洋构造域的南缘.  相似文献   

13.
Lake Qinghai is the largest inland brackish lake in China and lies within the NE Tibetan Plateau. Our study shows that pollen assemblages in each vegetation belt are significantly correlated with the vegetation types of this area. Among the herbaceous and shrubby pollen assemblages, Artemisia is over-represented, while Poaceae, Cyperaceae and Polygonaceae are under-represented. Artemisia/ Chenopodiaceae (A/C) ratios with the regional vegetation characteristic can be used as a proper index to reconstruct the...  相似文献   

14.
Starting with the research status of bio-metallogenesis of Tl deposits and their geology, this work deals with the geological background of Tl enrichment and mineralization and the mechanism of bio- metal-logenesis of Tl deposits, as exemplified by Tl deposits in the low-temperature minerogenetic province. This research on the bio-metallogenesis of Tl deposits is focused on the correlations between bio-enrichment and Tl, the enrichment of Tl in micro-paleo-animals in rocks and ores, bio-fossil casts in Tl-rich ores, the involvement of bio-sulfur in minerogenesis and the enrichment of bio-genetic organic carbon in Tl ores. Thallium deposits have experienced two ore-forming stages: syngenetic bio- en-richment and epigenetic hydrothermal reworking (or transformation). Owing to the intense epigenetic hydrothermal reworking, almost no bio-residues remain in syngenetically bio-enriched Tl ores, thereby the Tl deposits display the characteristics of hydrothermally reoworked deposits.  相似文献   

15.
Extending across three major plateaus,namely the Qinghai-Tibetan Plateau,the Inner Mongolia-Xinjiang Plateau and the Loess Plateau,Northwest China has the complex terrain and spatio-temporal climate variations,and is affected by the interactions among different circulation systems,such as the summer monsoon,the westerlies and the plateau monsoon.The understanding of the climate variability,as well as its characteristics and evolution mechanisms in this area has been limited so far.In this paper,the precipitation characteristics and mechanisms in the eastern and western parts of Northwest China during the flood season are compared and analyzed based on the data from 192 national meteorological observational sites in Northwest China in 1961-2016.The results show that,divided by the northern boundary of the East Asian summer monsoon,there are huge differences in the precipitation variation characteristics between the eastern and western parts.The inter-annual variations,interdecadal variations and total trends in the two parts all show a significant seesaw phenomenon.Moreover,it is found that the seesaw phenomenon of precipitation variation is closely related to the opposite variation between the East Asian summer monsoon index(MI) and the westerly circulation index(WI).In addition,the inverse variations on different time scales are only related to the contributions of precipitation at specific grades.Besides,in the two matching patterns of precipitation in the seesaw phenomenon,the middle and high latitudes are occupied by the "high-low-high" wave trains in the precipitation increases in the east of Northwest China(ENWC) and decreases in the west of Northwest China(WNWC) pattern,meaning precipitation increases in ENWC and decreases in WNWC.Whereas the opposite "low-high-low" wave trains at 500 hPa height are observed in the middle and high latitudes in the WH-EA pattern at 500 hPa height,meaning precipitation increases in WNWC and decreases in ENWC.Thus,the atmosphere circulation situation with two wave train types can support both the precipitation seesaw phenomenon and the opposite variation between MI and WI.Moreover,the seesaw phenomenon is shown to be related to the separate or joint effects of the South Asian High,ENSO and the plateau heating on the common but opposite effect on the summer monsoon and the westerlies,in which the South Asian High probably plays a more critical role.This study could deepen the scientific understanding of precipitation mechanisms and improve the weather forecast technology in Northwest China during the flood season.  相似文献   

16.
西北地区农村民房现状及抗震技术研究   总被引:2,自引:0,他引:2  
王兰民  王强 《华南地震》2011,31(4):14-22
在对西北地区农村民房实地调研的基础上,根据承重结构、建筑材料和工艺的不同,将其划归为生土墙体承重房屋、砖砌墙体承重房屋、木构架承重房屋和混合承重房屋.研究表明.不同类型房屋分布具有明显的区域性和年代特征,抗震性能差异较大,但均存在不同程度的地震安全问题;提高西北地区农村民房的抗震能力,需要加快实施农居地震安全工程,加快...  相似文献   

17.
Starting with the research status of bio-metallogenesis of TI deposits and their geology, this work deals with the geological background of TI enrichment and mineralization and the mechanism of bio-metallogenesis of TI deposits, as exemplified by TI deposits in the low-temperature minerogenetic province. This research on the bio-metallogenesis of TI deposits is focused on the correlations between bio-enrichment and TI, the enrichment of TI in micro-paleo-animals in rocks and ores, bio-fossil casts in TI-rich ores, the involvement of bio-sulfur in minerogenesis and the enrichment of bio-genetic organic carbon in TI ores. Thallium deposits have experienced two ore-forming stages: syngenetic bio-enrichment and epigenetic hydrothermal reworking (or transformation). Owing to the intense epigenetic hydrothermal reworking, almost no bio-residues remain in syngenetically bio-enriched TI ores, thereby the TI deposits display the characteristics of hydrothermally reoworked deposits. Supported by the National Natural Science Foundation of China (Grant No. 40372047)  相似文献   

18.
A type of authigenic pyrites that fully fill or semi-fill the rock fractures of drillholes with gas hydrate anomalies are found in the Qilian Mountain permafrost; this type of pyrite is known as “fracture-filling” pyrite. The occurrence of “fracture-filling” pyrite has a certain similarity with that of the hydrate found in this region, and the pyrite is generally concentrated in the lower part of the hydrate layer or the hydrate anomaly layer. The morphology, trace elements, rare earth elements, and sulfur isotope analyses of samples from drillhole DK-6 indicate that the “fracture-filling” pyrites are dominated by cubic ones mainly aligned in a step-like fashion along the surfaces of rock fractures and are associated with a circular structure, lower Co/Ni and Sr/Ba, lower ΣREE, higher LREE, significant Eu negative anomalies, and Δ34SCDT positive bias. In terms of the pyrites’ unique crystal morphology and geochemical characteristics and their relationship with the hydrate layers or abnormal layers, they are closely related with the accumulation system of the gas hydrate in the Qilian Mountain permafrost. As climate change is an important factor in affecting the stability of the gas hydrate, formation of fracture-filling pyrites is most likely closely related to the secondary change of the metastable gas hydrate under the regional climate warming. The distribution intensity of these pyrites indicates that when the gas hydrate stability zone (GHSZ) is narrowing, the hydrate decomposition at the bottom of the GHSZ is stronger than that at the top of the GHSZ, whereas the hydrate decomposition within the GHSZ is relatively weak. Thus, the zone between the shallowest and the deepest distribution of the fracture-filling pyrite recorded the largest possible original GHSZ.  相似文献   

19.
Hu  AnPing  Li  Jian  Zhang  WenZheng  Li  ZhiSheng  Hou  Lu  Liu  QuanYou 《中国科学:地球科学(英文版)》2008,51(1):183-194

The Ordos Basin, the second largest sedimentary basin in China, contains the broad distribution of natural gas types. So far, several giant gas fields have been discovered in the Upper and Lower Paleozoic in this basin, each having over 1000×108m3 of proven gas reserves, and several gas pools have also been discovered in the Mesozoic. This paper collected the data of natural gases and elucidated the geochemical characteristics of gases from different reservoirs, and then discussed their origin. For hydrocarbons preserved in the Upper Paleozoic, the elevated δ 13C values of methane, ethane and propane indicate that the gases would be mainly coal-formed gases; the singular reversal in the stable carbon isotopes of gaseous alkanes suggests the mixed gases from humic sources with different maturity. In the Lower Paleozoic, the δ 13C1 values are mostly similar with those in the Upper Paleozoic, but the δ 13C2 and δ 13C3 values are slightly lighter, suggesting that the gases would be mixing of coal-type gases as a main member and oil-type gases. There are multiple reversals in carbon isotopes for gaseous alkanes, especially abnormal reversal for methane and ethane (i.e. δ 13C1>δ 13C2), inferring that gases would be mixed between high-mature coal-formed gases and oil-type gases. In the Mesozoic, the δ 13C values for gaseous alkanes are enriched in 12C, indicating that the gases are mainly derived from sapropelic sources; the carbon isotopic reversal for propane and butane in the Mesozoic is caused by microbial oxidation and mixing of gases from sapropelic sources with different maturity. In contrast to the Upper Paleozoic gases, the Mesozoic gases are characterized by heavier carbon isotopes of iso-butane than normal butane, which may be caused by gases generated from different kerogen types. Finally, according to δ 13C1-R 0 relationship and extremely low total organic carbon contents, the Low Paleozoic gases would not be generated from the Ordovician source as a main gas source, bycontrast, the Upper Paleozoic source as a main gas source is contributed to the Lower Paleozoic gases.

  相似文献   

20.
The Ordos Basin,the second largest sedimentary basin in China,contains the broad distribution of natural gas types.So far,several giant gas fields have been discovered in the Upper and Lower Paleozoic in this basin,each having over 1000×10 8 m 3 of proven gas reserves,and several gas pools have also been discovered in the Mesozoic.This paper collected the data of natural gases and elucidated the geochemical characteristics of gases from different reservoirs,and then discussed their origin.For hydrocarbons preserved in the Upper Paleozoic,the elevatedδ13C values of methane,ethane and propane indicate that the gases would be mainly coal-formed gases;the singular reversal in the stable carbon isotopes of gaseous alkanes suggests the mixed gases from humic sources with different maturity.In the Lower Paleozoic,theδ13C 1 values are mostly similar with those in the Upper Paleozoic,but theδ13C 2 andδ13C 3 values are slightly lighter,suggesting that the gases would be mixing of coal-type gases as a main member and oil-type gases.There are multiple reversals in carbon isotopes for gaseous alkanes,especially abnormal reversal for methane and ethane(i.e.δ13C 1 >δ13C 2 ),inferring that gases would be mixed between high-mature coal-formed gases and oil-type gases.In the Mesozoic,the δ13Cvalues for gaseous alkanes are enriched in 12C,indicating that the gases are mainly derived from sapropelic sources;the carbon isotopic reversal for propane and butane in the Mesozoic is caused by microbial oxidation and mixing of gases from sapropelic sources with different maturity.In contrast to the Upper Paleozoic gases,the Mesozoic gases are characterized by heavier carbon isotopes of iso-butane than normal butane,which may be caused by gases generated from different kerogen types. Finally,according toδ13C 1 -Ro relationship and extremely low total organic carbon contents,the Low Paleozoic gases would not be generated from the Ordovician source as a main gas source,bycontrast, the Upper Paleozoic source as a main gas source is contributed to the Lower Paleozoic gases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号