首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A continuing goal in the diagnostic studies of the atmospheric general circulation is to estimate various quantities that cannot be directly observed. Evaluation of all the dynamical terms in the budget equations for kinetic energy, vorticity, heat and moisture provide estimates of kinetic energy and vorticity generation, diabatic heating and source/sinks of moisture. All these are important forcing factors to the climate system. In this paper, diagnostic aspects of the dynamics and energetics of the Asian summer monsoon and its spatial variability in terms of contrasting features of surplus and deficient summer monsoon seasons over India are studied with reanalysis data sets. The daily reanalysis data sets from the National Centre for Environmental Prediction/National Centre for Atmospheric Research (NCEP/NCAR) are used for a fifty-two year (1948–1999) period to investigate the large-scale budget of kinetic energy, vorticity, heat and moisture. The primary objectives of the study are to comprehend the climate diagnostics of the Asian summer monsoon and the role of equatorial convection of the summer monsoon activity over India.It is observed that the entrance/exit regions of the Tropical Easterly Jet (TEJ) are characterized by the production/destruction of the kinetic energy, which is essential to maintain outflow/inflow prevailing at the respective location of the TEJ. Both zonal and meridional components contribute to the production of kinetic energy over the monsoon domain, though the significant contribution to the adiabatic generation of kinetic energy originates from the meridional component over the Bay of Bengal in the upper level and over the Somali Coast in the low level. The results indicate that the entire Indian peninsula including the Bay of Bengal is quite unstable during the summer monsoon associated with the production of vorticity within the domain itself and maintain the circulation. The summer monsoon evinces strong convergence of heat and moisture over the monsoon domain. Also, considerable heat energy is generated through the action of the adiabatic process. The combined effect of these processes leads to the formation of a strong diabatic heat source in the region to maintain the monsoon circulation. The interesting aspect noted in this study is that the large-scale budgets of heat and moisture indicate excess magnitudes over the Arabian Sea and the western equatorial Indian Ocean during surplus monsoon. On the other hand, the east equatorial Indian Ocean and the Bay of Bengal region show stronger activity during deficient monsoon. This is reflected in various budget terms considered in this study.  相似文献   

2.
—?In this paper, we examine the large-scale balances of kinetic energy, vorticity, angular momentum, heat and moisture over the Asian summer monsoon region. The five year (1986–1990) uninitialized daily analyses for the summer season comprising June, July and August (JJA), produced at the European Centre for Medium Range Weather Forecasts (ECMWF) under the aegis of Tropical Ocean and Global Atmosphere (TOGA) have been considered to carry out the study.¶The following features characterize the Asian summer monsoon domain. It acts as the source of kinetic energy as well as vorticity, and sink of heat and moisture. Kinetic energy and vorticity are produced in the monsoon region and transported horizontally. On the contrary, heat and moisture are transported into the monsoon region. The zonal and meridional components of adiabatic generation of kinetic energy contribute to the production of kinetic energy over the Arabian Sea and Bay of Bengal, respectively. The horizontal advection of relative vorticity is balanced by sub-grid scale generation. The angular momentum generated due to pressure torque (east-west pressure gradient) is balanced by the flux convergence of omega momentum. Further, the angular momentum budget delineates that flux convergence of relative momentum is necessary to maintain the surface westerlies against the friction. The horizontal convergence of heat and moisture facilitates enhancement of diabatic heating, and also leads to the formation of diabatic heat sources, which are crucial to sustain the summer monsoon circulation.  相似文献   

3.
Meridional circulation in stellar convection zones is not generally well observed, but may be critical for the workings of MHD dynamos operating in these domains. Coriolis forces from differential rotation play a large role in determining what the meridional circulation is. Here, we consider the question of whether a stellar differential rotation that is constant on cylinders concentric with the rotation axis can drive a meridional circulation. Conventional wisdom says that it can not. Using two related forms of the governing equations that respectively estimate the longitudinal components of the curl of the meridional mass flux and the vorticity, we show that such differential rotation will drive a meridional flow. This is because to satisfy anelastic mass conservation, non-spherically symmetric pressure contours must be present for all differential rotations, not just ones that depart from constancy on cylinders concentric with the rotation axis. Therefore, the fluid is always baroclinic if differential rotation is present. This is because, in anelastic systems, the perturbation pressure must satisfy a Poisson type equation, as well as an equation of state and a thermodynamic equation. We support our qualitative reasoning with numerical examples, and show that meridional circulation is sensitive to the magnitude and form of departures from rotation constant on cylinders. The effect should be present in 3D global anelastic convection simulations, particularly those for which the differential rotation driven by global convection is nearly cylindrical in profile. For solar-like differential rotation, Coriolis forces generally drive a two-celled circulation in each hemisphere, with a second, reversed flow at high latitudes. For solar like turbulent viscosities, the meridional circulation produced by Coriolis forces is much larger than observed on the Sun. Therefore, there must be at least one additional force, probably a buoyancy force, which opposes the meridional flow to bring its amplitude down to observed values.  相似文献   

4.
5.
Rationalized by the observational circulation pattern in the upper ocean of the North Pacific, meridional friction term is first incorporated in a barotropic theoretical model of the wind-driven circulation. The governing potential vorticity equation thence has β term and wind stress curl term (the two of the Sverdrup balance), zonal friction term and meridional friction term. The analytical solution satisfactorily captures many important features of the wind-driven circulation in the North Pacific: Kuroshio, Oyashio, Kuroshio extension, North Equatorial Current, and especially the eastern boundary currents in the North Pacific, i.e. California current and Alaska current.  相似文献   

6.
青藏高原大地形的热力强迫作用对亚洲夏季风的形成和发展具有重要的影响.本文利用较高分辨率的WRF区域模式,探讨了高原不同区域(斜坡和平台)的地形加热分别对南亚夏季风和东亚夏季风的影响.结果表明:高原南部喜马拉雅山脉的斜坡地形加热对其周围局地的环流形势和降水影响十分明显,是南亚夏季风北支分量形成和维持的主导因子,也是斜坡上气流爬坡和降水发生的必要条件.斜坡加热对东亚夏季风也有明显的增强作用,它不仅加强了中国东部低空西南季风环流,还会造成北部南下的异常干冷空气的响应.斜坡上的地形加热作用也是对流层高层暖中心位置维持在斜坡上空的一个重要原因.而高原平台加热对季风环流和降水的影响虽然没有喜马拉雅山脉斜坡加热那么显著,但是对南亚夏季风的影响范围更广,对经向哈得来环流影响更明显,能够调控高原以外更远处热带洋面上的西南季风环流.通过比较高原不同区域地形加热条件下的多种季风指数,进一步表明了高原地形加热对南亚和东亚夏季风均有增强作用,但是高原不同区域的地形加热对两类夏季风子系统又会产生不一样的影响.  相似文献   

7.
利用1979~2003年的NCEP/NCAR再分析资料探讨了亚澳季风区经向气流的季节性分支和结构特征. 结果表明,亚澳季风区经向气流的垂直斜压结构由冬到夏发生季节性转向,即从冬季时的低层北风、高层南风转换为夏季时的低层南风、高层北风. 季节反向的经向气流主体偏向北半球,其区域差异性在对流层中低层更为显著. 以印度半岛和中南半岛为界,亚洲热带季风区中低层经向气流在冬夏季均呈现三通道特征,与此相应,亚澳季风区自西向东存在三支相对独立的经向环流分支,且冬夏季的差异均很显著,如冬季的中心高度自西向东递减、夏季的经向跨度自西向东递增等.  相似文献   

8.
The annual cycle of the zonally averaged circulation in the middle atmosphere (16–96 km) is simulated using a numerical model based on the primitive equations in log pressure coordinates. The circulation is driven radiatively by heating due to solar ultraviolet absorption by ozone and infrared cooling due to carbon dioxide and ozone (parameterized as a Newtonian cooling). Since eddy fluxes due to planetary waves are neglected in the model, the computed mean meridional circulation must be interpreted as thediabatic circulation, not as the total eulerian mean. Rayleigh friction with a short (2–4 day) time constant above 70 km is included to simulate the strong mechanical dissipation which is hypothesized to exist in the vicinity of the mesopause due to turbulence associated with gravity waves and tides near the mesopause.Computed mean winds and temperatures are in general agreement with observations for both equinox and solstice conditions. In particular, the strong mechanical damping specified near the mesopause makes it possible to simulate the cold summer and warm winter mesopause temperatures without generating excessive mean zonal winds. In addition, the model exhibits a strong semiannual cycle in the mean zonal wind at the equator, with both amplitude and vertical structure in agreement with the easterly phase of the observed equatorial semiannual oscillation.Contribution No. 497, Department of Atmospheric Sciences, University of Washington, Seattle.  相似文献   

9.
Summary The mean zonal and meridional wind components of the northern hemisphere at different pressure levels for the summer season June–August have been determined and the mean meridional mass circulation has been computed as a function of latitude. From the mass circulation the meridional flux of moisture is computed for the latitudinal belt 0°–45° N. Using the horizontal divergence of this flux the average difference between precipitation and evapotranspiration from the earth's surface is evaluated.  相似文献   

10.
— The mean zonal velocity in the atmosphere is taken as being created continually by the global scale Hadley circulation produced by the differential solar heating through the balance between the Coriolis effect and vertical diffusion, and not by conservation of absolute momentum. Hence a proper determination of the diffusion coefficient becomes the key to the solution of the zonal flow problem. In this study we take the flow field as composed of a primary global scale Hadley circulation, and a secondary flow created by the convergences of the eddy transports of heat and momentum and surface friction, which give rise to the classical three cell structure of the meridional circulation but which only modifies the zonal velocity distribution slightly.¶Finally, we use the equilibrium solution of the perturbation potential vorticity equation to obtain the eddy transports of momentum and heat, with the zonal velocity given by the primary Hadley flow as the basic flow, and we found that they are close to the statistically observed values, demonstrating that the system can maintain itself.  相似文献   

11.
We investigated to what extent the isentropic, non-geostrophic formulation of zonally averaged circulation derived for stratospheric conditions is applicable to climatological transport in the extratropical troposphere and lower stratosphere. The study is based on 10 years of daily data of ECMWF analysis and on the ECHAM3 climate model of the German Climate Computing Centre. The main result is a scalar isentropic mixing coefficient, Kyy, and a mean meridional transport circulation consistently derived from the same data base. For both data sources, isentropic mean meridional circulation is derived from horizontal mass flow rate for 4 representative months. Alternatively, a mean meridional circulation is calculated from total diabatic heating rates of the ECHAM3 model. It is shown that only the latter is in good agreement with the ECMWF mean meridional circulation. Isentropic analysis also comprises the seasonal cycle of the climatological meridional gradient and flux of Ertels potential vorticity (PV). Application of Tungs flux-gradient relation yields that for all seasons Kyy is positive in height-latitude regions where statistical significance is reached. Large Kyy values, marking regions of more efficient mixing, have been found in the subtropical vertical band of weak westerly wind and in mid-latitudes in regions of upward-propagating baroclinic wave activity in the middle and upper troposphere. Based on the ECMWF data and results of baroclinic-wave behaviour, strong indications are presented that positive zonally averaged PV flux polewards of the jet core in the NH is strengthened by stationary waves and nonlinear effects. Reduced eddy transport is apparent in winter and spring slightly below the subtropical tropopause jet. The seasonal cycle of Kyy from ECHAM3 data is to a great extent in agreement with the result based on ECMWF analysis. In the model, reduced interannual variability enlarges the height-latitude range where sign of Kyy is significant.  相似文献   

12.
Recently, prominent jet-like features of the ocean circulation, called striations, with a meridional scale of O(300–500 ;km) and extending for thousands of kilometers in length, have been detected in satellite and in situ observations and in high-resolution numerical models. In this paper, we study quasi-stationary striations, which are best seen in the multi-year time-averaged velocity fields. Using 1993–2002 mean dynamic ocean topography, satellite altimeter observations, and output of the Ocean General Circulation Model for the Earth Simulator, the dynamics of the quasi-stationary striations in the eastern parts of the subtropical North and South Pacific are examined by assessing individual terms in the time-averaged equations of relative and potential vorticity. While non-linear effects are found to be essential in the dynamics of the striations, rejecting some linear hypotheses forwarded in the earlier studies, the relevance of the Rhines mechanism is not confirmed. Eddy flux does not act as a relative vorticity source for the striations. Using the potential vorticity (PV) diagnostics, we show that the time-mean PV is not conserved along the time-mean streamlines, and on the scale of the striations these changes in PV are largely induced by the eddy flux of layer thickness. The fact that eddy fluxes contribute to the striations’ time-mean PV budget suggests that the striations are not a kinematical artifact of time-averaging of westward-propagating eddies.  相似文献   

13.
Due to limited in situ data and diagnostic numerical models, the summer circulation structure and formation mechanism in the Beibu Gulf have always been in controversy in the past 50 years. Therefore, a new three-dimensional hindcast model was built within the northwestern South China Sea(SCS), forced with the daily averaged wind, heat flux, lateral flux, as well as tidal harmonic and eight major rivers discharges. And the east boundary was set up far away off the Qiongzhou Strait(QS). Lastly, the model results were consistent with not only the synchronous observation data from the project 908 but also the historical observed data. As a result, the summer circulation structure was revealed that the southern Gulf was occupied by an anticyclonic eddy whereas the northern Gulf was dominated by a cyclonic gyre. Although the circulation major structure was stable, its area and strength had yearly and monthly oscillation. The other three sensitive experiments indicated that the circulations in the southern and northern Gulf were driven by the SCS circulation and monsoon wind, respectively. After the theoretical analysis of the potential vorticity budget, it was further revealed the circulation in the northern Gulf was driven by the positive wind stress curl in summer. Besides, the river discharge was also significant as the vertical circulation had two layer structures outside the mouth of the Red River. Generally, this work calls for the further research on other subjects, such as ocean biogeochemical or marine fisheries.  相似文献   

14.
The Asian-Australian “land bridge” is an area with the most vigorous convection in Asian monsoon region in boreal spring, where the onset and march of convection are well associated with the onset of East Asian summer monsoon. The convection occurs over Indo-China Peninsula as early as mid-April, which exerts critical impact on the evolution of monsoon circulation. Before mid-April there are primarily sensible heatings to the atmosphere over Indo-China Peninsula and Indian Peninsula, so the apparent heating ratios over them decrease with height. However, after mid-April it changes into latent heating over Indo-China Peninsula due to the onset of convection, and the apparent heating ratio increases with height in mid-and lower troposphere. The vertical distribution of heating ratio and its differences between Indo-China Peninsula and Indian Peninsula are the key factors leading to the splitting of boreal subtropical high belt over the Bay of Bengal. Such mechanism is strongly supported by the fact that the evolution of the vertical heating ratio gradient above Indo-China Peninsula leads that of 850 hPa vorticity over the Bay of Bengal. Convections over Indo-China Peninsula and its surrounding areas further increase after the splitting. Since then, there is a positive feedback lying among the convective heating, the eastward retreat of the subtropical high and the march of monsoon, which is a possible mechanism of the advance of summer monsoon and convection from Indo-China Peninsula to South China Sea.  相似文献   

15.
The problem of zonal jet formation and cyclone–anticyclone asymmetry in decaying rotating turbulence is addressed using both laboratory experiments and numerical simulations with a high-resolution shallow water model in a spherical geometry. Experiments are performed at different Rossby and Froude numbers and applying a rigid wall as meridional boundary in the numerical scheme to mimic the experimental apparatus. The formation of a zonally banded flow pattern, i.e. meridionally confined easterly/westerly jets, has observed; both experimental and numerical results confirmed that this tendency is favoured by high-planetary vorticity gradients. Also, in the experiments characterized by large rotation speeds and small Rossby deformation radius, an initial symmetric distribution of relative vorticity is found to evolve towards a dominance of anticyclonic structures, indicating a breaking of the cyclone–anticyclone symmetry. This aspect has deepened by numerically analysing the sensitivity of the temporal variations of the asymmetry index with respect to the position of the meridional confinement as well as the effect of relaxing the divergence of the fluid (i.e. non-divergent case) to zero. Results suggested that experiments characterized by the higher rotation speed and the lower fluid thickness are better reproduced by a divergent model with a high-latitude meridional boundary.  相似文献   

16.
Observations of mesospheric winds over a period of four years with the partial reflection radar at Tirunelveli (8.7°N, 77.8°E), India, are presented in this study. The emphasis is on describing seasonal variabilities in mean zonal and meridional winds in the altitude region 70–98 km. The meridional winds exhibit overall transequatorial flow associated with differential heating in the Northern and Southern Hemispheres. At lower altitudes (70–80 km) the mean zonal winds reveal easterly flow during summer and westerly flow during winter, as expected from a circulation driven by solar forcing. In the higher altitude regime (80–98 km) and at all altitudes during equinox periods, the mean zonal flow is subjected to the semi-annual oscillation (SAO). The interannual variability detected in the occurrence of SAO over Tirunelveli has also been observed in the data sets obtained from the recent UARS satellite mission. Harmonic analysis results over a period of two years indicate the presence of long-period oscillations in the mean zonal wind at specific harmonic periods near 240, 150 and 120 days. Results presented in this study are discussed in the context of current understanding of equatorial wave propagation.  相似文献   

17.
The authors’ parameterization of the dynamic and thermal action of stationary orographic waves generated by the Earth’s surface relief is included into the model of general circulation of the middle and upper atmosphere. Numerical simulation of the general circulation in the troposphere and stratosphere was performed and the influence of stationary orographic waves propagating upward from the Earth’s surface on the meridional and vertical velocity was studied. It is shown that the allowance for the dynamic and thermal action of these waves in the numerical model leads to changes by up to 20–30% in the meridional circulation and ozone fluxes associated with it at heights of the ozone layer maximum.  相似文献   

18.
准地转大洋风生环流的格子Boltzmann数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
建立了求解准地转相当正压涡度方程的格子Boltzmann (LB)模型. 该模型将准地转相当正压涡度方程作为一个平流-扩散-反应方程来加以处理,在整体二阶精度下,通过Chapman_Enskog多尺度分析法,可将格子Boltzmann方程还原到相当正压涡度方程. 在不同Reynolds数、不同边界条件以及不同风应力驱动下的数值解表明,该模型正确反映了风生环流的基本结构和不同边界的耗散特征,并得到风生环流的多平衡态解等非线性特征. 此外,不同Rossby变形半径下的实验证明,小Rossby变形半径更容易激发环流的非线性模态. 通过与同等类型有限差方案的比较,表明本文的LB模型具有稳定性好、精度高等优点.  相似文献   

19.
Mean-field hydrodynamics advanced to clear explanations for the origin and properties of the global meridional flow in stellar convection zones. Qualitative arguments and analysis of basic equations both show that the meridional circulation is driven by non-conservative centrifugal and buoyancy forces and results from a slight disbalance between these two drivers. The deviations from the thermal wind balance are relatively large near the boundaries of convection zones. Accordingly, the meridional flow attains its largest velocities in the boundary layers and decreases inside the convection zone. This picture, however, is neither supported nor dismissed by the conflicting results of recent helioseismic soundings or 3D numerical experiments. The relevant physics of the differential temperature and its possible relation to the solar oblateness are briefly discussed.  相似文献   

20.
—The radiative-convective feedback and land-sea thermal forcing play significant roles in maintenance of the summer monsoon circulation over the Indian sub-continent. In this study, the role of radiative transfer in maintaining the monsoon circulation is examined with numerical sensitivity experiments. For this purpose, a sixteen layer primitive equation limited area model is used to perform numerical simulations with and without atmospheric radiative transfer processes parameterized in the model. The initial values and boundary conditions for the numerical integrations of the model are derived from operational analyses of the ECMWF, UK. The results show that the radiative transfer is essential in maintaining the intensity of the low level Somali Jet as well as the upper level Tropical Easterly Jet (TEJ) over the Indian sub-continent and adjoining seas. The meridional circulation over the region is also well simulated. As a result, enough moisture transports from the warm equatorial region to simulate more realistic orographic precipitation in the windward side of the mountains along the West coast of India. Without radiative transfer processes in the model atmosphere the simulated monsoon circulation weakens, moisture transport decreases and the precipitation lessens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号