首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The Dabie-Sulu orogenic belt was formed by the Triassic continental collision between the South China Block and the North China Block. There is a large area of Mesozoic magmatic rocks along this orogenic belt, with emplacement ages mainly at Late Triassic, Late Jurassic and Early Cretaceous. The Late Triassic alkaline rocks and the Late Jurassic granitoids only crop out in the eastern part of the Sulu orogen, whereas the Early Cretaceous magmatic rocks occur as massive granitoids, sporadic intermedi- ate-ma...  相似文献   

2.
MAKOTO TAKEUCHI 《Island Arc》2011,20(2):221-247
Detrital chloritoids were extracted from the Lower Jurassic sandstones in the Joetsu area of central Japan. The discovery of detrital chloritoids in the Joetsu area, in addition to two previous reports, confirms their limited occurrence in the Jurassic strata of the Japanese islands. This finding emphasizes the importance of the denudation of chloritoid‐yielding metamorphic belts in Jurassic provenance evolution, in addition to a change from an active volcanic arc to a dissected arc that has already been described. Possible sources for the detrital chloritoids from the Jurassic sandstones are the Permo–Triassic chloritoid‐yielding metamorphic rocks distributed in dispersed tectonic zones (Hida, Unazuki, Ryuhozan and Hitachi Metamorphic Rocks), which are in fault contact with Permian to Jurassic accretionary complexes in the Japanese islands. This is because all of these pre‐Jurassic chloritoid‐yielding metamorphic rocks have a Carboniferous–Permian depositional age and a Permo–Triassic metamorphic age, whereas a Permian–Triassic metamorphic age on the Hitachi Metamorphic Rocks remains unreported. In addition, most metamorphic chloritoids imply a former stable land surface that has evolved into an unstable orogenic area. Therefore, the chloritoid‐yielding metamorphic rocks might form a continuous metamorphic belt originating from a passive continental margin in East Asia. Evidence from paleontological and petrological studies indicates that the Permo–Triassic metamorphic belt relates to a collision between the Central Asian Orogenic Belt and the North China Craton. The evolution of the Permian–Jurassic provenance of Japanese detrital rocks indicates that the temporal changes in detritus should result from sequences of collision‐related uplifting processes.  相似文献   

3.
南黄海盆地基底及海相中、古生界地层分布特征   总被引:5,自引:5,他引:0       下载免费PDF全文
南黄海盆地是大型海相中、古生界和陆相中、新生界两期叠合型盆地,本文根据最新地震资料结合钻井资料及与海陆地质资料的对比研究对盆地内地震层序进行了划分,得到了陆相中、新生界盆地基底即中、古生界海相盆地的顶界埋深、三叠系和上二叠统的残留厚度,推断了陆相层基底地层分布,并根据磁力异常资料推测了海相中、古生界盆地结晶基底埋深,推断了海相中、古生界整体残留情况.下三叠统青龙组和上二叠大隆及龙潭组在南黄海盆地南部坳陷及勿南沙隆起广泛存在,而在北部坳陷的分布则狭窄,中部隆起则由于隆起和剥蚀作用导致这两套地层几乎没有残余.对中-古生界海相盆地和中-新生界陆相盆地的基底特征进行了比较,认为海相中、古生界在南黄海地区区域性存在,海相层厚度分布特征受基底起伏控制,同时受到印支板块运动的影响,中部隆起区是海相中、古生界比较稳定的地区.下古生界可能在南黄海盆地广泛分布,但受资料限制,还难以获知其残余地层的特征.  相似文献   

4.
Tetsuji  Onoue  Hiroyoshi  Sano 《Island Arc》2007,16(1):173-190
Abstract   The Sambosan accretionary complex of southwest Japan was formed during the uppermost Jurassic to lowermost Cretaceous and consists of basaltic rocks, carbonates and siliceous rocks. The Sambosan oceanic rocks were grouped into four stratigraphic successions: (i) Middle Upper Triassic basaltic rock; (ii) Upper Triassic shallow-water limestone; (iii) limestone breccia; and (iv) Middle Middle Triassic to lower Upper Jurassic siliceous rock successions. The basaltic rocks have a geochemical affinity with oceanic island basalt of a normal hotspot origin. The shallow-water limestone, limestone breccia, and siliceous rock successions are interpreted to be sediments on the seamount-top, upper seamount-flank and surrounding ocean floor, respectively. Deposition of the radiolarian chert of the siliceous rock succession took place on the ocean floor in Late Anisian and continued until Middle Jurassic. Oceanic island basalt was erupted to form a seamount by an intraplate volcanism in Late Carnian. Late Triassic shallow-water carbonate sedimentation occurred at the top of this seamount. Accumulation of the radiolarian chert was temporally replaced by Late Carnian to Early Norian deep-water pelagic carbonate sedimentation. Biotic association and lithologic properties of the pelagic carbonates suggest that an enormous production and accumulation of calcareous planktonic biotas occurred in an open-ocean realm of the Panthalassa Ocean in Late Carnian through Early Norian. Upper Norian ribbon chert of the siliceous rock succession contains thin beds of limestone breccia displaced from the shallow-water buildup resting upon the seamount. The shallow-water limestone and siliceous rock successions are nearly coeval with one another and are laterally linked by displaced carbonates in the siliceous rock succession.  相似文献   

5.
The Helan Mountain lies in the northwest margin of Ordos Basin and its uplift periods have close relations with the tectonic feature and evolution of the basin. There are many views on the uplift time of Helan Mountain, which is Late Triassic and Late Jurassic. It is concluded by the present strata, magmatic rock and hot fluid distribution that the Helan Mountain does not uplift in Late Triassic to Middle Jurassic but after Middle Jurassic. Through the research of the sedimentary strata and deposit rate in Yinchuan Graben which is near to the Helan Mountain, it is proved that the Helan Mountain uplifts in Eocene with a huge scale and in Pliocene with a rapid speed. The fission track analysis of apatite and zircon can be used to determine the precise uplift time of Helan Mountain, which shows that four stages of uplifting or cooling: Late Jurassic to the early stage of Early Cretaceous, mid-late stage of Early Cretaceous, Late Cretaceous and since Eocene. During the later two stages the uplift is most apparent and the mid-late stage of Early Cretaceous is a regional cooling course. Together with several analysis ways, it is considered that the earliest time of Helan Mountain uplift is Late Jurassic with a limited scale and that Late Cretaceous uplift is corresponding to the whole uplift of Ordos Basin, extensive uplift happened in Eocene and rapid uplift in Pliocene.  相似文献   

6.
The Helan Mountain lies in the northwest margin of Ordos Basin and its uplift periods have close relations with the tectonic feature and evolution of the basin. There are many views on the uplift time of Helan Mountain, which is Late Triassic and Late Jurassic. It is concluded by the present strata, magmatic rock and hot fluid distribution that the Helan Mountain does not uplift in Late Triassic to Middle Jurassic but after Middle Jurassic. Through the research of the sedimentary strata and deposit rate in Yinchuan Graben which is near to the Helan Mountain, it is proved that the Helan Mountain uplifts in Eocene with a huge scale and in Pliocene with a rapid speed. The fission track analysis of apatite and zircon can be used to determine the precise uplift time of Helan Mountain, which shows that four stages of uplifting or cooling Late Jurassic to the early stage of Early Cretaceous, mid-late stage of Early Cretaceous, Late Cretaceous and since Eocene. During the later two stages the uplift is most apparent and the mid-late stage of Early Cretaceous is a regional cooling course. Together with several analysis ways, it is considered that the earliest time of Helan Mountain uplift is Late Jurassic with a limited scale and that Late Cretaceous uplift is corresponding to the whole uplift of Ordos Basin, extensive uplift happened in Eocene and rapid uplift in Pliocene.  相似文献   

7.
A suite of sedimentary-volcaniclastic rocks intercalated with the volcanic rocks unconformably overlies the Triassic Xiaochaka Formation in the Woruo Mountain region, Qiangtang Basin, northern Tibet. The vitric tuff from the base of these strata gives a SHRIMP zircon U-Pb age of 216 ± 4.5 Ma, which represents the age of the Late Triassic volcanic-sedimentary events in the Woruo Mountain region, and is consistent with that of the formation of the volcanic rocks from the Nadi Kangri Formation in the Nadigangri-Shishui River zone. There is a striking similarity in geochemical signatures of the volcanic rocks from the Woruo Mountain region and its adjacent Nadigangri-Shishui River zone, indicating that all the volcanic rocks from the Qiangtang region might have the same magmatic source and similar tectonic setting during the Late Triassic. The proper recognition of the Late Triassic large-scale volcanic eruption and volcanic-sedimentary events has important implications for the interpretation of the Late Triassic biotic extinction, climatic changes and regressive events in the eastern Tethyan domain, as well as the understanding of the initiation and nature, and sedimentary features of the Qiangtang Basin during the Late Triassic-Jurassic.  相似文献   

8.
Radiometric and geologic information indicate a complex history of Cenozoic volcanism and tectonism in the central Andes. K-Ar ages on silicic pyroclastic rocks demonstrate major volcanic activity in central and southern Peru, northern Chile, and adjacent areas during the Early and Middle Miocene, and provide additional evidence for volcanism during the Late Eocene. A provisional outline of tectonic and volcanic events in the Peruvian Andes during the Cenozoic includes: one or more pulses of igneous activity and intense deformation during the Paleocene and Eocene; a period of quiescence, lasting most of Oligocene time; reinception of tectonism and volcanism at the beginning of the Miocene; and a major pulse of deformation in the Middle Miocene accompanied and followed through the Pliocene by intense volcanism and plutonism. Reinception of igneous activity and tectonism at about the Oligocene-Miocene boundary, a feature recognized in other circum-Pacific regions, may reflect an increase in the rate of rotation of the Pacific plate relative to fixed or quasifixed mantle coordinates. Middle Miocene tectonism and latest Tertiary volcanism correlates with and probably is genetically related to the beginning of very rapid spreading at the East Pacific Rise.  相似文献   

9.
In southeastern New England the Narragansett Pier Granite locally intrudes Carboniferous metasedimentary rocks of the Narragansett basin, and yields a monazite UPb Permian emplacement age of 273 ± 2Ma. Zircon from the Narragansett Pier Granite contains a minor but detectable amount of an older, inherited component, and shows modern loss of lead. Zircon from the late-stage, aplitic Westerly Granite exhibits a more pronounced lead inheritance —permitting the inherited component to be identified as Late Archean. Such old relict zircon has not been previously recognized in Proterozoic to Paleozoic igneous rocks in New England, and may be restricted to late Paleozoic rocks of the Avalon zone. We suggest that the Archean crustal component reflects an African connection, in which old Archean crust was underplated to the Avalon zone microplate in the late Paleozoic during collision of Gondwanaland with Avalonia.  相似文献   

10.
Within the Tethyan realm, data for the subduction history of the Permo–Triassic Tethys in the form of accretionary complexes are scarce, coming mainly from northwest Turkey and Tibet. Herein we present field geological, petrological and geochronological data on a Triassic accretionary complex, the A?vanis metamorphic rocks, from northeast Turkey. The A?vanis metamorphic rocks form a SSE–NNW trending lozenge‐shaped horst, ~20 km long and ~6 km across, bounded by the strands of the active North Anatolian Fault close to the collision zone between the Eastern Pontides and the Menderes–Taurus Block. The rocks consist mainly of greenschist‐ to epidote‐amphibolite‐facies metabasite, phyllite, marble and minor metachert and serpentinite, interpreted as a metamorphic accretionary complex based on the oceanic rock types and ocean island basaltic, mid‐ocean ridge basaltic and island‐arc tholeiitic affinities of the metabasites. This rock assemblage was intruded by stocks and dikes of Early Eocene quartz diorite, leucogranodiorite and dacite porphyry. Metamorphic conditions are estimated to be 470–540°C and ~0.60–0.90 GPa. Stepwise 40Ar/39Ar dating of phengite–muscovite separates sampled outside the contact metamorphic aureoles yielded steadily increasing age spectra with the highest incremental stage corresponding to age values ranging from ~180 to 209 Ma, suggesting that the metamorphism occurred at ≥ 209 Ma. Thus, the A?vanis metamorphic rocks represent the vestiges of the Late Triassic or slightly older subduction in northeast Turkey. Estimated P–T conditions indicate higher temperatures than those predicted by steady state thermal models for average subduction zones, and can best be accounted for by a hot subduction zone, similar to the present‐day Cascadia. Contact metamorphic mineral assemblages around an Early Eocene quartz diorite stock, on the other hand, suggest that the present‐day erosion level was at depths of ~14 km during the Early Eocene, indicative of reburial of the metamorphic rocks. Partial disturbance of white‐mica Ar–Ar age spectra was probably caused by the reburial coupled with heat input by igneous activity, which is probably related to thrusting due to the continental collision between Eastern Pontides and the Menderes–Taurus Block.  相似文献   

11.
龙门山及其邻区的构造和地震活动及动力学   总被引:156,自引:37,他引:156       下载免费PDF全文
邓起东  陈社发 《地震地质》1994,16(4):389-403
论述了龙门山推覆构造带、岷山隆起、成都平原和龙泉山地区的构造和地震活动,讨论了构造活动特点和演化历史,并分析了它们的形成机制和动力学问题  相似文献   

12.
We provide a new scheme to classify Late Cenozoic volcanic rocks in the Udokan lava plateau based on isotope datings of rocks derived during the last 15 years. The scheme distinguishes five structural-material complexes (SMCs): Middle Miocene, Late Miocene, Early/Middle Pliocene, Late Pliocene, and Quaternary. Each SMC has its ejecta of central-type eruptions and subvolcanic emplacement episodes that classify themselves into individual rock complexes, while the ejecta of mass fissure effusions from three SMCs (the Late Miocene, the Early/Middle Pliocene, and the Late Pliocene) can be lumped into three stratigraphic series. Each series includes three suites, with the middle position (in the series section) being occupied by suites composed of basaltic melt differentiates.  相似文献   

13.
Integrated study of rock assemblage, tectonic setting, geochemical feature, fossil contained and isotopic geochronology on the metamorphic mixed bodies, exposed in the Jinshajiang suture zone, suggests that one informal lithostratigraphic unit, the Eaqing Complex, and three tectono-stratigraphic units, the Jinshajiang ophiolitic melange, the Gajinxueshan Group and the Zhongxinrong Group, can be recognized there. It is first pointed out that the redefined Eaqing Complex might represent the Meso- to Neo-Proterozoic remnant metamorphic basement or mi-crocontinental fragment in the Jinshajiang area. The original rocks of it should be older than (1627 ±192) Ma based on the geochronological study. The zircon U-Pb age of plagiogranites within the Jinshajiang ophiolitic assemblage is dated for the first time at (294 ± 3) Ma and (340 ± 3) Ma respectively. The Jinshajiang ophiolite is approximately equivalent to the Ailaoshan ophiolite in the formation age, covering the interval from the Late Devonian to the Carboniferous. Dating of U-Pb age from basalt interbeds indicates that the redefined Gajinxueshan Group and Zhongxinrong Group may be considered Carboniferous to Permian and latest Permian to Middle Triassic in age. In geotectonic terms the Jinshajiang suture zone is thought to be a back-arc basin in the eastern margin of the Paleo-Tethys. This back-arc basin started in the Late Devonian, and formed in the Devonian-Carboniferous. The collision event around the Permian/Triassic boundary to the Middle Triassic led to the closure of the back-arc basin and formation of suture.  相似文献   

14.
Petrochemical studies of granitoid rocks from the eastern part of Kumaun region suggest that the leading edge of India represents an active arc during Late Paleoproterozoic times. It has been observed that melt generation for granodiorite rocks from the eastern Almora Nappe and Chhiplakot klippe along with the Askot klippe was caused through a subduction‐related process involving hydrous partial melting of a Paleoproterozoic amphibole‐ and/or garnet‐bearing mafic source with the involvement of sediments from the subduction zone. The medium‐ to high‐K basic rocks, common in subduction‐related magmatic arcs, can also explain the generation of the high‐K granodiorites of the Chhiplakot klippe. The augen gneisses from the eastern Almora nappe and Chhiplakot klippe along with the Askot klippe further show geochemical similarity with the associated granodiorites, suggesting there is a genetic linkage with one another.  相似文献   

15.
16.
Results of a systematic paleomagnetic study are reported based on Late Carboniferous to Early Permian sedimentary rocks on the north slope of the Tanggula Mountains,in the northern Qiangtang terrane(NQT),Tibet,China.Data revealed that magnetic minerals in limestone samples from the Zarigen Formation(CP^z)are primarily composed of magnetite,while those in sandstone samples from the Nuoribagaribao Formation(Pnr)are dominated by hematite alone,or hematite and magnetite in combination.Progressive thermal,or alternating field,demagnetization allowed us to isolate a stable high temperature component(HTC)in 127 specimens from 16 sites which successfully passed the conglomerate test,consistent with primary remnance.The tilt-corrected mean direction for Late Carboniferous to Early Permian rocks in the northern Qiangtang terrane is D_s=30.2°,I_s=-40.9°,k_s=269.0,a_(95)=2.3°,N=16,which yields a corresponding paleomagnetic pole at 25.7°N,241.5°E(dp/dm=2.8°/1.7°),and a paleolatitude of 23.4°S.Our results,together with previously reported paleomagnetic data,indicate that:(1)the NQT in Tibet,China,was located at a low latitude in the southern hemisphere,and may have belonged to the northern margin of Gondwana during the Late Carboniferous to Early Permian;(2)the Paleo-Tethys Ocean was large during the Late Carboniferous to Early Permian,and(3)the NQT subsequently moved rapidly northwards,perhaps related to the fact that the Paleo-Tethys Ocean was rapidly contracting from the Late Permian to Late Triassic while the Bangong Lake-Nujiang Ocean,the northern branch of the Neo-Tethys Ocean,expanded rapidly during this time.  相似文献   

17.
Paleomagnetic study of China and its constraints on Asia tectonics has been a hot spot. Some new paleomagnetic data from three major blocks of China. North China Block (NCB), Yangtze Block (YZB) and Tarim Block (TRM) are first reported, and then available published Phanerozoic paleomagnetic poles from these blocks with the goal of placing constraints on the drift history and paleocontinental reconstruction are critically reviewed. It was found that all three major blocks were located at the mid-low latitude in the Southern Hemisphere during the Early Paleozoic. The NCB was probably independent in terms of dynamics. its drift history was dominant by latitudinal placement accompanying rotation in the Early Paleozoic. The YZB was close to Gondwanaland in Cambrian, and separated from Gondwanaland during the Late-Middle Ordovician. The TRM was part of Gondwanaland, and might be close to the YZB and Australia in the Early Paleozoic. Paleomagnetic data show that the TRM was separated from Gondwanaland during the Late-Middle Ordovician, and then drifted northward. The TRM was sutured to Siberia and Kazakstan blocks during the Permian, however, the composite Mongolia-NCB block did not collide with Siberia till Late Jurassic. During Late Permian to Late Triassic, the NCB and YZB were characterized by northern latitudinal placement and rotation on the pivot in the Dabie area. The NCB and YZB collided first in the eastern part where they were located at northern latitude of about 6°—8°, and a triangular oceanic basin remained in the Late Permian. The suturing zone was located at northern latitude of 25° where the two blocks collided at the western part in the Late Triassic. The collision between the two blocks propagated westward after the YZB rotated about 70° relative to the NCB during the Late Permian to Middle Jurassic. Then two blocks were northward drifting (about 5°) together with relative rotating and crust shortening. It was such scissors-like collision procedure that produced intensive compression in the eastern part of suturing zone between the NCB and YZB, in which continental crust subducted into the upper mantle in the Late Permian, and then the ultrahigh-pressure rocks extruded in the Late Triassic. Paleomagnetic data also indicate that three major blocks have been together clockwise rotating about 20° relative to present-day rotation axis since the Late Jurassic. It was proposed that Lahsa Block and India subcontinent successively northward subducted and collided with Eurasia or collision between Pacific/Philippines plates and Eurasia might be responsible for this clockwise rotating of Chinese continent.  相似文献   

18.
The study of basement geochronology provides crucial insights into the tectonic evolution of oceans. However, early studies on the basement of the Xisha Uplift were constrained by limited geophysical and seismic data; Xiyong1 was the only commercial borehole drilled during the 1970 s because of the huge thickness of overlying Cenozoic strata on the continental margin. Utilizing two newly-acquired basement samples from borehole XK1, we present petrological analysis and zircon uranium(U)-lead(Pb) isotope dating data in this paper that enhance our understanding of the formation and tectonic features of the Xisha Uplift basement. Results indicate that this basement is composed of Late Jurassic amphibole plagiogneisses that have an average zircon 206 Pb/238 U age of 152.9±1.7 Ma. However, the youngest age of these rocks, 137±1 Ma, also suggests that metamorphism termination within the Xisha basement occurred by the Early Cretaceous. These metamorphic rocks have adamellites underneath them which were formed by magmatic intrusions during the late stage of the Early Cretaceous(107.8±3.6 Ma). Thus, in contrast to the Precambrian age(bulk rubidium(Rb)-strontium(Sr) analysis, 627 Ma) suggested by previous work on the nearby Xiyong1 borehole, zircons from XK1 are likely the product of Late Mesozoic igneous activity. Late Jurassic-Early Cretaceous regional metamorphism and granitic intrusions are not confined to Xisha; rocks have also been documented from areas including the Pearl River Mouth Basin and the Nansha Islands(Spratly Islands) and thus are likely closely related to large-scale and long-lasting subduction of the paleo-Pacific plate underneath the continental margins of East Asia, perhaps the result of closure of the Meso-Tethys in the South China Sea(SCS). Controversies remain as to whether, or not, the SCS region developed initially on a uniform Precambrian-aged metamorphic crystalline basement. It is clear, however, that by this time both Mesozoic compressive subduction and Cenozoic rifting and extension had significantly modified the original basement of the SCS region.  相似文献   

19.
1 INTRODUCnONThe comPonents of terrigenous sedimenop rocks indicate not only provenance information, but alsotoctOnic evolution of basin. The chdrical composition of the soure rOCks is probaby the major conttDon the chendstry of sedimentny rocks although this can be greaily modified by subsequent Processes(Rollinson l993). Thus, through exndning Petrological and chendcal comPosihons of tenigenoussedlinmp rocks, the comPonentS of the provenance or somee rOCks - which are conunnly a fun…  相似文献   

20.
A Permian-Triassic (P-Tr) boundary section of continuous carbonate facies, which well recorded the biotic and environmental processes through the great P-Tr transition in the shallow non-microbialite carbonate facies, has been studied in Yangou, Leping County, Jiangxi Province. The P-Tr sequence is well correlated with the Meishan section according to the conodont biostratigraphy and the excursion of carbon isotopes. A series of high-resolution thin-sections from the P-Tr boundary carbonate rocks at the Yangou section are studied to explore the interrelation between environmental change and biological evolution during the transitional time. Six microfacies have been identified based upon the observation of the thin-sections under a microscope on the grains and matrix and their interrelation. Combined with the data of fossils and carbon isotopes, Microfacies 4 (MF-4), coated-grain-bearing foraminifer oolitic sparitic limestone, and Microfacies 6 (MF-6), dark shelly micritic limestone, should be the different responses to the two episodes of mass extinction and environmental events that can be correlated throughout South China and even over the world. The oolitic limestone of MF-4 is the first finding from the latest Permian strata in South China and it might be a proxy of an unusual environmental condition of high pCO2, low sulfate concentration and of microbial blooming in the aftermath of the latest Permian mass extinction. The micritic limestone of MF-6 containing rich micro-gastropods and ostracods probably represents the blooming event of disaster taxa in the earliest Triassic environment. The microfacies analysis at the Yangou section can well reveal the episodic process of the biological evolution and environmental change in the shallow non-microbialite carbonate facies throughout the great P-Tr transition, thus the Yangou section becomes an important complement to the Meishan section.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号