首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
2008年北京奥运会期间大气气溶胶物理特征分析   总被引:5,自引:0,他引:5  
应用MODIS卫星的气溶胶产品资料和地面的光学粒子计数器的资料,对比分析了北京地区2006、2007、2008年7~9月的气溶胶光学厚度、细粒子光学厚度、Angstrom指数、气溶胶粒子数浓度谱及体积谱,发现2008年北京奥运会期间(7月20日~9月20日)的气溶胶光学厚度比2006、2007年同期明显降低,气溶胶细模态光学厚度占总光学厚度的比上升,Angstrom指数上升,气溶胶细粒子数浓度没有明显相对变化,而粗粒子数浓度则减少约50%.利用大气标高,将MODIS反演的气溶胶柱的质量浓度转化为地面气溶胶质量浓度.用粒子计数器得到的体积谱,在假定气溶胶粒子密度的情况下,计算出其质量浓度.将这两种方法得到的气溶胶质量浓度与国家环境保护部公布的空气质量指数换算得到的可吸入颗粒物(PM10)质量浓度进行比较.结果表明:北京奥运期间空气质量总体达到了国家二级空气质量标准;与2006、2007年同期相比,2008年气溶胶PM10质量浓度明显下降,而这主要是由气溶胶粗粒子的减少引起的.  相似文献   

2.
北京奥运会期间NO2浓度降低原因分析   总被引:1,自引:0,他引:1  
2002~2008年,北京市城区和近郊8月的NO2月均浓度大体呈现逐年下降趋势,其中前5年二者均以每年约10%的降幅下降,2008年发生显著下降,降幅达40%左右。利用嵌套网格空气质量模式系统(NAQPM/IAP),采用敏感性试验方法,评估了气象条件与污染控制措施对北京奥运会期间大气NO2浓度降低的影响,评估不同污染控制措施对NO2浓度降低的作用。研究结果表明,污染控制措施是NO2浓度降低的主要影响因素,其中面源的污染控制措施对于NO2浓度降低的作用最明显。  相似文献   

3.
利用2007和2008年北京地区空气质量监测资料和NCEP再分析资料,分析了北京地区空气动力学当量直径小于等于10μm颗粒物(PM10)污染过程与天气形势及天气系统之间的关系。结果表明:西太平洋热带气旋路径对北京地区发生PM10污染具有预示作用,即当热带气旋北上并在朝鲜半岛或日本登陆的情况下,北京地区一般受持续均压场等弱中尺度天气系统控制,这种中尺度天气系统不利于污染物的扩散,因此北京地区经常发生区域性的PM10空气污染事件。在2007年9次台风北上登陆朝鲜半岛或日本的过程中,北京地区伴随发生了9次PM10污染过程,预示准确率达100%,2008年的预示准确率也达到了80%以上。为了说明北京奥运会期间污染控制措施对改善北京空气质量有实际效果,利用中国科学院大气物理研究所区域空气质量模式NAQPMS,采用无控制措施源和有控制措施源,对2008年北京残奥会期间一次西太平洋北上型热带气旋天气条件下的空气质量状况进行了数值模拟试验,揭示了此次过程北京地区未发生PM10空气污染的原因。  相似文献   

4.
北京秋季地面O3的一维模式模拟研究   总被引:1,自引:0,他引:1  
用一维光化学模式,基本模拟出静稳天气条件下2001年9月9日北京几个主要大气污染物种:O3、NO、NO2、CO以及SO2的日变化特点,并解释了影响O3及NO、NO2、CO和SO2日变化的控制因子作用。初步分析认为,地面O3对非甲烷碳氢化合物(NMHC)的变化很敏感。NMHC的增加或减少,将会造成O3的明显改变。造成9月9日夜间20:00~23:00一次污染物NO、CO和SO2浓度急剧升高的原因是由于夜间大气层结稳定情况下,大气的垂直扩散减弱,污染物在底层积累造成的。由于实际大气中,影响O3生成和损耗的机制很复杂,同时大气的平流输送是影响O3及其他污染物分布的重要因素,用一维模式虽然能够揭示出影响O3变化的几个因子的作用,但要深入分析O3产生和消耗机制,还需要用三维模式。  相似文献   

5.
影响北京夏季O3污染的O3前体物浓度及天气条件分析   总被引:4,自引:2,他引:4       下载免费PDF全文
根据2003年北京夏季近地面大气光化学污染物观测资料,对中国气象局培训中心(代表站)O3超标日浓度、O3前体物浓度、不同天气条件下O3浓度分布特征等进行分析。结果表明:中国北京夏季NO2,NO,CO的浓度特征与日本神奈川县相似,白天(16:00以前)如果NO2/NO超过29,则容易出现O3超标;VOC浓度的高低影响O3浓度;当处于暖湿气流控制,地面为小风或静风、气温较高、湿度较大的多云天气时,易出现O3超标情况。这些污染物发生的特点和规律对北京大气光化学污染的研究和防治具有借鉴意义。  相似文献   

6.
北京奥运会期间CBM-Z化学机制的模拟应用   总被引:1,自引:0,他引:1  
利用CBM-Z化学机制模拟了中国科学院大气物理研究所气象塔站在北京奥运会期间高臭氧时段O3浓度的日变化,评估了气象条件、北京奥运会加强控制措施以及O3前体物浓度对近地面O3生成的影响。结果表明:(1)CBM-Z化学机制较好地模拟了北京奥运会期间典型时段气象塔站O3、NO、NO2日变化特征。(2)有利于局地高臭氧事件发生的气象条件非常相似;北京奥运会加强控制措施的实施显著减少了NOx及VOCs的排放量,导致近地面O3浓度的明显下降。(3)奥运会期间VOCs和CO是影响气象塔站O3生成量的关键因素。  相似文献   

7.
利用新一代大气化学在线耦合模式WRF-Chem研究城市扩张对珠三角地区春季气象条件的改变及其对地面O3浓度的影响。研究结果表明:受城市扩张的影响,珠三角城区的月平均气温上升0.35℃;城区夜间相对湿度下降幅度为4%~6%,影响程度大于白天;风速在白天和夜间都有不同程度的下降,城市月平均风速下降1.89 m/s;边界层高度在白天和夜间均升高,城市月平均边界层高度上升39.82 m。城市扩张后,城市月平均O3浓度增加0.89 ppbv,增幅大于1.5 ppbv的区域主要在佛山和东莞,白天O3浓度增幅为0.6~1.5 ppbv,夜间增幅及影响范围都大于白天,O3浓度增加区域与主要气象要素变化的区域相一致;白天14:00城区混合层内总臭氧柱浓度增加了80 ppbv;O3浓度对气象要素的敏感程度表现为:温度>边界层高度>风速>相对湿度;白天O3浓度增幅呈U型,其中14:00的O3增幅最小,为0.2 ppbv;夜间O3增幅呈倒V型,其中20:00的增幅最大(>1.5 ppbv)。  相似文献   

8.
利用阳江市2014-2018年O3浓度资料,分析日最大8h滑动平均O3浓度及其达到一、二类环境空气功能区质量要求的日数时间变化规律,再通过地面气象观测资料,分析不同气象要素对日最大8h滑动平均O3浓度的影响状况.结果表明,2014-2018年,阳江市日最大8h滑动平均O3浓度的年平均值为73.68~92.34ug·m-...  相似文献   

9.
Models-3/CMAQ模式对郑州市大气污染物的预报分析研究   总被引:3,自引:0,他引:3  
介绍了美国国家环保局第三代空气质量模式(Models-3)的主要组成部分:气象模式系统、排放模式系统以及公共多尺度模式系统(CMAQ).并对郑州市SO2和NO2观测值与Models-3/CMAQ预报值进行对比分析,结果表明:模式可以模拟出郑州市SO2和NO2的同位相变化规律;预报值存在系统性偏低的现象;随着预报时效的延长,对SO2和NO2的预报效果逐渐变差.  相似文献   

10.
奥运会期间北京地区降水酸度分析:2008年7月20日至8月20日减排期间,北京地区3个酸雨监测站(密云的上甸子、北京观象台和昌平)的降水酸度为1993年以来历史同期最强,酸雨频率和强酸雨频率也达到了一个历史高值,酸雨量与总降水量的比值接近100%。仅8月1~20日期间,  相似文献   

11.
通过对2008年8月奥运期间3号岗各场馆实况天气(降水、气温、相对湿度、风等)以及8月份北京地区逐日高空、地面天气形势的分析,运用最常用的资料(尤其是自动站资料)找出不同站点精细预报要素的规律及差异。通过分析提出针对不同要素预报的评价标准应该有所侧重,同时在自动站站点布设方面应该注意自动站的代表意义等。此外在分析中更加仔细领会精细预报的内涵,指出精细预报中配合具体服务重点的跟进预报及跟踪服务的重要性。  相似文献   

12.
针对2008年北京奥运会安保,建立了一个复杂的系统,包括两个气象预报模式MM5和RAMS6.0以及一个复杂地形上有毒云团的扩散模式CDM。开发了MM5和RAMS6.0接口模块,发展了基于RAMS6.0气象场预报结果的CDM,实现了对未来36h内的精细气象场和扩散场进行模拟,气象场预报的分辨率为500~1000m,扩散场的分辨率可达到50~200m。基于T213数据,应用MM5进行了水平分辨率为3km的气象场初步预报,将该预报结果转化为RAMS6.0识别的数据格式,应用RAMS6.0对气象场进行分辨率为500~1000m的精细预报,得出北京奥运会期间的风场与湍流量的预报结果。基于该气象场,根据想定,应用CDM对北京奥运会国家体育场"鸟巢"附近发生化学事件时进行了模拟研究,得出危害范围、危害等级、危害开始时间、危害持续时间等时空分布,为奥运会开幕式化学危害应急提供技术支持。  相似文献   

13.
北京奥运会期间的气象条件分析   总被引:11,自引:0,他引:11       下载免费PDF全文
利用北京1951—2003年气象要素的时值、日值和旬值等资料,对北京7—9月尤其是奥运会比赛期间的气温、降水、湿度、风和人体舒适度指数等要素的平均状况、演变特征和极值等变化特征进行了统计分析。结果表明:北京奥运会期间的气温较适宜,对赛事有重要影响的高温天气出现概率较小;8月8—24日,平均2~3 d出现1次降水;风速具有明显日变化,01:00—07:00(北京时)较小,12:00—18:00较大;沙尘、冰雹、雾和暴雨等不利天气较少发生。  相似文献   

14.
北京奥运会期间气溶胶光学特性垂直分布特征   总被引:2,自引:0,他引:2  
利用激光雷达观测资料,分析了奥运会期间气溶胶消光系数的垂直廓线,并结合后向轨迹方法对北京地区污染来源以及污染控制措施效果进行了初步分析。观测数据表明:1)2008年消光系数较之2007年在不同高度层的降幅并不相同,600m以下的年际降幅最为显著,1200~4000m高度范围次之。2)各类型消光系数垂直廓线出现频次的统计显示,2008年影响北京的主要廓线类型为边界层上部最高型,而非近地面最高型,说明2008年近地层消光系数有明显的降低。另外,利用后向轨迹法对近地层消光系数降低的原因进行了分析,结果表明,当近地层气团中污染物主要来自于北京周边地区时,400m以下气溶胶消光系数的年际降幅可达18.1%,这说明北京周边区域大气污染控制措施对改善北京近地面层气溶胶污染起到了重要作用。  相似文献   

15.
北京奥运会空气质量保障方案京津冀地区措施评估   总被引:7,自引:1,他引:7  
采用嵌套网格空气质量预报模式系统(NAQPMS)源追踪方法,研究了奥运会北京空气质量保障方案京津冀污染控制措施对北京城八区(包括东城区、西城区、崇文区、宣武区、海淀区、朝阳区、丰台区和石景山区)空气质量的影响,量化基准、减排情景下京津冀地区对北京城八区SO2、可吸入颗粒物(PM10)浓度的贡献率。首先,模式对比验证结果表明,NAQPMS较好地模拟出奥运会同期(2006年8月)北京空气质量状况。其次,源追踪方法研究结果表明:1)除平谷县外,其余各区县SO2、PM10浓度北京污染源贡献占主导地位,特别是城八区,北京污染源对SO2、PM10月平均浓度的贡献百分比都超过80%。2)保障方案污染减排情景下,一方面北京污染源对城八区SO2贡献浓度显著减小;另一方面除张家口外,天津、河北各源区对城八区SO2贡献浓度略微下降,综合效果下,城八区SO2浓度将显著下降。与此同时,分析表明北京污染源对城八区SO2浓度贡献效率将增加。3)保障方案减排情景下,北京污染源对城八区一次PM10贡献浓度也显著减小,而天津、河北各源区对城八区一次PM10浓度则略有增加,这与周边源区对城八区SO2浓度贡献特征略有不同,综合效果下,北京本地强有力的颗粒物削减措施依然可有效降低城八区近地面PM10浓度。  相似文献   

16.
2008年8月8日,在2008年北京奥运会开幕式举行之际,北京及周边地区出现了较强对流云团,给国家体育场内开幕式活动的顺利进行带来了极大威胁。根据云系的发展状况,北京市人工影响天气办公室有针对性地组织实施了大规模地面火箭人工消减雨作业,对抑制云、降水的形成和发展起到了一定作用。在中尺度数值模式MM5的Reisner2方案中引入了AgI粒子与云相互作用的过程,在MM5中实现了催化功能。参照2008年8月8日20:05至20:12进行的消减雨作业情况,利用加入催化方案的中尺度数值模式对该作业进行了数值模拟试验,就不同的播撒量对催化效果的影响进行了研究,并对其中的微物理机制进行了分析。研究结果表明:AgI播撒率对降水量改变影响很明显,当以5g·s-1的速率持续播撒AgI7min,在播撒作业后2h,催化区域内均表现为减雨,2h后为增雨。对于减雨的微物理机制主要是由于大量播撒AgI后导致空中云水大量减少,进一步导致霰减少,霰的减少导致雨水的减少;而2h后的增雨机制则是由于在雨水、云水、霰以及温度之间形成了正反馈,最终导致地面降水的增加。需要指出的是由于单参数方案的局限性,模拟的最大减雨率仅为8%~12%,离消雨的要求尚有差距,应利用双参数云方案作进一步模拟研究。  相似文献   

17.
中国地区臭氧前体物对地面臭氧的影响   总被引:4,自引:1,他引:4  
利用GEOS-Chem模式的数值试验结果,研究中国地区NOx和两类VOCs对O3质量浓度分布及其化学机理的影响。研究表明,NOx的减少会使得中国西部O3质量浓度显著降低,但在冬季NOx的减少会使得东北、华北地区O3质量浓度上升。而京津唐地区由于VOCs/NOx比值偏低,不能通过单一减少NOx来控制O3质量浓度。VOCs排放的减少会使得我国东部地区O3质量浓度大幅减少,其中人为VOCs的减少能降低我国东部地面O3质量浓度,而生物VOCs的减少只能在夏秋季有效减少我国东部地区35°N以南区域的地面O3质量浓度。控制地面O3质量浓度时,中国西部主要考虑NOx的减排,东部35°N以北主要考虑AVOCs的减排,而30~35°N应同时考虑AVOCs和BVOCs的减排,在30°N以南的地区,则需要全面考虑NOx和VOCs的减排。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号