共查询到16条相似文献,搜索用时 109 毫秒
1.
2.
胶州湾沉积物-海水界面溶解无机氮的迁移特征及其影响因素解析 总被引:1,自引:0,他引:1
采用实验室培养法,在原位温度和溶氧条件下,研究了夏、冬季胶州湾沉积物-海水界面溶解无机氮(DIN)的迁移特征。结果表明,夏、冬季胶州湾沉积物-海水界面DIN主要以NO_3-N和NH_4-N的形态进行交换,夏季胶州湾沉积物表现为水体DIN的源,其交换通量为1.64×10~9 mmol/d,可以提供维持初级生产力所需氮的39.3%;而冬季沉积物表现为DIN的汇,其交换通量为–2.12×10~8 mmol/d。利用相关分析和主成分回归分析,研究界面不同形态DIN交换速率和底层环境因子的关系,结果表明,夏季胶州湾沉积物-海水界面DIN的交换主要受沉积物中有机质的矿化、底栖藻类的同化作用和扩散过程共同调控,而冬季则主要受内源有机质的矿化、底栖藻类的同化作用、吸附-解吸和扩散过程共同调控。 相似文献
3.
Si在胶州湾沉积物-海水界面上的交换速率和通量研究 总被引:7,自引:0,他引:7
本文应用实验室培养法研究了 Si O3 - Si在胶州湾 1 6个站位沉积物 -海水界面上的交换速率。考虑培养时间、取样时间和间隔等因素 ,采用连续函数的方法计算了 Si O3 - Si交换速率。结果表明 ,Si O3 - Si在胶州湾沉积物 -海水界面上的交换表现为由沉积物向水体的释放 ,交换速率一般在因为 1~5mmol·m-2· d-1范围内 ,平均为 3.3mmol·m-2· d-1。高含量有机质沉积物 ,特别是生物扰动作用可以增大 Si O3 - Si交换速率。考虑胶州湾各种沉积物类型占胶州湾总面积的权重 ,Si O3 - Si在胶州湾沉积物 -海水界面上的交换通量为 1 .0 6× 1 0 9mmol·d-1 ,是河流输入量的 5.3倍 ,可提供浮游植物生长所需硅的 58%。 相似文献
4.
根据交换速率连续函数计算法,应用实验室培养法测定了PO_4-P在胶州湾16个站位沉积物-海水界面上的交换速率。结果表明,PO_4-P的交换主要表现为由沉积物向水体的释放,其交换速率一般在 0.1~90 μmol·m~(-2)·d~(-1)范围内。根据 PO_4-P在不同类型沉积物-海水界面上的交换速率,估算出其在胶州湾海底沉积物-海水界面上的交换通量为 9.76×10~6mmol·d~(-1),仅占河流输入量的 24%,可提供浮游植物生长所需磷的 9%±3%。 相似文献
5.
胶州湾沉积物-海水界面硅的交换速率及其影响因素探讨 总被引:1,自引:1,他引:1
采用实验室培养法在原位温度和溶氧条件下测定了胶州湾沉积物-海水界面硅的交换速率,并探讨了相关环境因子对界面交换速率的影响机制。结果表明,胶州湾沉积物-海水界面硅的交换表现为从沉积物向水体释放,其交换速率在947~4 889 μmol/(m2·d)范围内,平均速率为1 819 μmol/(m2·d)。表层沉积物中叶绿素a(Chl a)和总有机碳(TOC)是影响胶州湾沉积物-海水界面硅交换速率的主要环境因子,同时表层沉积物的含水率(φ)、生源硅(BSi)和粘土含量以及间隙水中溶解硅酸盐(DSi)对沉积物-海水界面硅的交换也有重要影响。由此可推知,胶州湾沉积物-海水界面硅的交换速率主要受生物活动和溶解-扩散双重过程调控,而表层沉积物粒度与底层水体中DSi对胶州湾硅的释放影响较小。 相似文献
6.
溶解无机态营养盐在渤海沉积物-海水界面交换通量研究 总被引:2,自引:0,他引:2
了解无机态营养严在渤海沉积物-海水界面交换速率、通量基控制因素,于2002-08-06~08-24,应用船基沉积物培养方法,现场测定了硅酸盐(SiO3-Si)、磷酸盐(PO4-P)和溶解无机氮(DIN)在沉积物-海水界面上的交换速率(νN)和交换通量(FN)。结果显示,νSiO3-Si变化范围为2 220~4 317μmol.m-2.d-1,平均为3 466μmol.m-2.d-1,νPO4-P为0.4~77μmol.m-2.d-1,平均为39μmol.m-2.d-1,νDIN为667~2 167μmol.m-2.d-1,平均为1 308μmol.m-2.d-1,其中NH4-N和NO3-N的贡献分别为48%和47%左右。进一步分析表明,νSiO3-Si主要由溶解和扩散2个过程控制,前者决定于沉积物黏土矿物含量和含水率,后者决定于营养盐浓度和温度。νPO4-P主要由在以黏土为主的细颗粒和氢氧化铁上的吸附-解吸和扩散过程控制,前者分别决定于沉积物粒度和上覆水中DO浓度,而后者决定于间隙水与上覆水之间的浓度差。结果表明,FSiO3为2.59×1013mmol,FPO4为2.95×1011mmol,FDIN/SE为8.62×1012mmol。这样,为维持夏季渤海初级生产力,沉积物交换过程可提供大约65%的SiO3-Si、12%的PO4-P和22%的DIN,远远高于以河流径流为主的陆源排放。 相似文献
7.
长江口沉积物-水界面无机氮交换通量的模拟测定 总被引:3,自引:0,他引:3
通过对长江口水下沉积物-水界面可溶态无机氮(DIN=NO3- NO2- NH4 )的交换行为研究发现,低潮时近口点(A)沉积物是水体DIN的汇(-2006.99μmol/(m2·h)),而靠近口外点(B)沉积物是水体DIN的源(1848.27μmol/(m2·h))。但高潮时,A点沉积物转变为水体DIN的源(1880.97μmol/(m2·h)),而B点的沉积物转变成为DIN的汇(-956.64μmol/(m2·h))。在距河口较远高低潮盐度变化微弱的地点(P),沉积物始终是水体DIN的源(1872.41μmol/(m2·h))。高低潮海水盐度的变化对沉积物中微生物活动的影响是导致这一变化的主要原因。 相似文献
8.
胶州湾海水中无机氮的分布与富营养化研究 总被引:23,自引:4,他引:23
根据2003年112月胶州湾海区12个航次海水无机氮等的调查资料,分析了该海域生态环境中无机氮的分布特征及时空变化,评价了水质的富营养化状况。结果表明,测区全年溶解无机氮的平均含量为17.70μmol/dm^3。在4个季节中,溶解无机氮以NO3-N的含量为最大,占58.2%,是氮主要存在形态,其中秋季含量最高,占溶解无机氮的64.74%。无机氮分布从东北部高含量区域向湾内及湾口方向呈逐步递减趋势。溶解无机磷的年平均含量为0.49μmol/dm^3,表层海水4个季节中N/P比平均为39.41,胶州湾海水中的磷相对于氮是匮乏的。据营养状态指数划分,胶州湾的东、北岸海域属富营养化区,夏、秋两季可能受到赤潮的严重威胁。 相似文献
9.
研究了胶州湾柱状沉积物磷的存在形态、浓度水平及其分布特征.结果表明3种形态磷的浓度为:总磷(TP) 12.78 μmol·g-1;无机磷(IP)9.60 μmol·g-1;有机磷(OP)3.18 μmol·g-1.无机态磷占总磷的75%,为沉积物中磷的主要存在形式.磷在柱状沉积物中的分布呈上层低(0~10cm),中间层段(66~90cm)略高,155cm以深层段浓度稳定且较低的态势,尤以TP和IP表现明显.磷在上层沉积物中浓度水平较低的现象可能与近年来入湾河流磷的输入量较低有关. 相似文献
10.
三亚湾海水温度季节变化及溶解无机氮的垂直分布特征 总被引:8,自引:3,他引:8
根据2000年4月-2001年3月在三亚湾的定点现场观测资料分析结果表明:6-8月份受外来冷水上升流的入侵和影响,使该湾水域在该季节形成明显的温跃层,底部和中部有明显的低温层。在上升流入侵期间,该湾水域平均温跃层强度为0.138-0.283℃.m^-1,最大温跃层强度为419-0.440℃.m^-1,底部最低水温在22℃左右。9月-翌年3月温跃层消失,海水混合流动充分,温度垂直分布均匀。3月份水温开始升高,至5月水温总体升至最高,并由于高气温及强太阳的辐射作用,5月份形成温跃层。溶解无机氮(DIN)的分布特征表明,硝酸盐、亚硝酸盐在冷水上升流入侵季节,其含量明显提高,比平时分别提高:10.20%(表层)、37.20%(中层)、83.81%(底层)和60.04%(表层)、82.96%(中层)、119.41%(底层)。氨态氮不直接受上升流影响,但季节变化特征明显。 相似文献
11.
应用MODIS影像监测海州湾无机氮浓度的研究 总被引:1,自引:0,他引:1
利用连云港海州湾2004年至2006年的水质监测资料,选取时间上完全同步的空间分辨率为500m的MODIS Terra 1B数据,对反射率的单波段因子和波段组合因子与可溶无机氮(DIN)质量浓度之间进行相关分析。从总体上看,单波段因子与DIN质量浓度的相关性较低,但在含氮基团倍频和合频吸收带附近的波段(波段2、7)反射率与DIN质量浓度呈负相关,显示了含氮基团对水体光谱特征的影响;在波段组合因子中,因子F11(3.4)和F13(3.4)与DIN质量浓度呈显著正相关,用这两个因子建立DIN质量浓度的回归模型,R^2都达到0.7以上,相对精度达70%左右,最终选择因子F11(3.4)的线性模型反演该海域的DIN质量浓度,其结果与实际情况非常吻合。 相似文献
12.
On the basis of data collected in the Jiaozhou Bay in June and July 2003, the DIC distribution in seawater is studied,and an average air-sea flux of CO2 is estimated. The results show that the content of DIC inside the bay is markedly higher than outside the bay in June, but the content of DIC outside the bay is markedly higher than inside the bay in July. The trend of DIC distribution inside the bay is similar, viz. the content is the maximum in the northeast, then decreases gradually toward the west, and the content is the minimum in the west. The total trend of vertical distribution is to increase gradually from surface to bottom. This characteristic of DIC distribution is determined by Jiaozhou Bay hydrology and there is a close relation between DIC and particulate N,P. Average CO2 flux across the source for atmospheric CO2 in June and July, and the total CO2 flux from seawater into atmosphere is about 740 t in June and 969 t in July. 相似文献
13.
桑沟湾养殖海域营养盐和沉积物-水界面扩散通量研究 总被引:7,自引:0,他引:7
利用2006年4,7,11月和2007年1月4个航次对桑沟湾养殖海域的观测资料,分析了该海域营养盐分布、结构特征、主要控制过程以及沉积物-水界面扩散通量,结果表明,该海域的营养盐分布具有明显的季节变化,海水中NO3-,NO2-,PO43-,DOP,TDP和SiO32-浓度皆是秋季最高,而NH4+,DON,TDN浓度则为夏季最高;各种营养盐的最低值除DON外都出现在春季。春季湾内外海水交换不畅,再加上大型藻类海带等生长旺盛期的消耗,使营养盐浓度处于较低水平,在夏秋两季丰水期沿岸河流注入对该海域营养盐的影响较大,冬季无机营养盐浓度分布主要受沿岸流的影响。磷的结构变化较大,其中DOP百分含量在夏季最高,达到81%。从春季到秋季海水中TDN的结构变化从以DON为主转变成以DIN为主。硅和氮的原子比值全年变化不大,硅和氮和氮和磷原子比值春夏两季的高于秋冬季的。分析营养盐化学计量限制标准和浮游植物生长的最低阈值结果表明,磷是春夏两季桑沟湾浮游植物生长的限制性因素;春季硅浓度低于浮游植物生长的最低阀值,也是一个潜在的限制因素。计算结果显示桑沟湾沉积物释放的NH4+,SiO32-和PO43-对初级生产力的贡献较小,与其他浅海环境相比,桑沟湾沉积物-水界面的营养盐通量处于较低或中等水平。 相似文献
14.
象山港溶解无机氮环境容量研究 总被引:1,自引:0,他引:1
综合考虑凫溪、颜公河、郭巨大碶等10个陆源污染物入海口的影响,建立了象山港三维水质模型并对该海域溶解无机氮(Dissolved Inorganic Nitrogen, DIN)时空分布进行了数值模拟。结合象山港海域功能区划要求,通过调整各入海口DIN最低排海浓度(Rmin)的取值范围设置了四类情境,基于排海通量最优化法计算了对应情境下象山港DIN的环境容量。结果表明,象山港DIN环境容量随Rmin的增大而减小,其范围介于127.16~274.17 t/a;同时Rmin的增大也导致各入海口DIN排海通量需要削减,按削减优先程度,可将各入海口划分为Ⅰ、Ⅱ、Ⅲ、Ⅳ四级,入海口所处海域水体半交换时间越长、DIN年排海通量越大,相应的削减优先程度越高。 相似文献
15.
On the basis of data collected in the Jiaozhou Bay in June and July 2003, the DIC distribution in seawater is studied,and an average air-sea flux of CO2 is estimated. The results show that the content of DIC inside the bay is markedly higher than outside the bay in June, but the contem of DIC outside the bay is markedly higher than inside the bay in July. The trend of DIC distribution inside the bay is similar, viz. the content is the maximum in the northeast, then decreases gradually toward the west, and the content is the minimum in the west. The total trend of vertical distribution is to increase gradually from surface to bottom. This characteristic of DIC distribution is determined by Jiaozhou Bay hydrology and there is a close relation between DIC and particulate N.P. Average CO2 flux across the air-sea interface is 0.55 mol/(m^2.a) in June and 0.72 mol/(m^2.a) in July. Jiaozhou Bay is considered as a net annual source for atmospheric CO2 in June and July, and the total CO2 flux from seawater into atmosphere is about 740 t in June and 969 t in July. 相似文献
16.
长江河口淡水端溶解态无机氮磷的通量 总被引:15,自引:1,他引:15
1998年2和9月在长江河口淡水端连续观测了DIN(NO3-,NO2-,NH4+),PO43-,流速和流向.结果表明,溶解态无机氮、磷浓度的时空变化较复杂;1998年2月NO3-,NO2-,NH4+和PO43-的月通量分别为168241,974.4,19335和2648t,9月的月通量分别为905678,8317,5797和6281t;1998年NO3-,NO2-,NH4+和PO43-年通量分别为497.1×104,3.911×104,10.22×104和4.155×104t. 相似文献