首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is already known (Froeschlé et al., 1997a) that the fast Lyapunov indicator (hereafter FLI), i.e. the computation on a relatively short time of a quantity related to the largest Lyapunov indicator, allows us to discriminate between ordered and weak chaotic motion. Using the FLI many results have been obtained on the standard map taken as a model problem. On this model we are not only able to discriminate between a short time weak chaotic motion and an ordered one, but also among regular motion between non resonant and resonant orbits. Moreover, periodic orbits are characterised by constant FLI values which appear to be related to the order of periodic orbits (Lega and Froeschlé, 2001). In the present paper we extend all these results to the case of continuous dynamical systems (the Hénon and Heiles system and the restricted three-body problem). Especially for the periodic orbits we need to introduce a new value: the orthogonal FLI in order to fully recover the results obtained for mappings.  相似文献   

2.
Poincaré maps for Hamiltonian systems with 3 degrees of freedom lead to the study of four dimensional symplectic mappings. As a test for the validity of a synthetic mapping of order 3 using gradient informations, we study the evolution with time of Liapounov Indicators in the case of the four dimensional standard map with chaotic and stable zones. Both Liapounov Indicators show the same behaviour for the real and synthetic mappings. They reveal exploding diffusion phenomena for temporarily confined chaotic orbits. The distribution of the time of explosion fits well with a Poisson law for the real mapping, but not for the synthetic one. However the mean time of explosion is essentially the same in both cases.  相似文献   

3.
We distinguish between regular orbits, that bifurcate from the main families of periodic orbits (those that exist also in the unperturbed case) and irregular periodic orbits, that are independent of the above. The genuine irregular families cannot be made to join the regular families by changing some parameters. We present evidence that all irregular families appear inside lobes formed by the asymptotic curves of the unstable periodic orbits. We study in particular a dynamical system of two degrees of freedom, that is symmetric with respect to the x-axis, and has also a triple resonance in its unperturbed form. The distribution of the periodic orbits (points on a Poincaré surface of section) shows some conspicuous lines composed of points of different multiplicities. The regular periodic orbits along these lines belong to Farey trees. But there are also lines composed mainly of irregular orbits. These are images of the x-axis in the map defined on the Poincaré surface of section. Higher order iterations of this map , close to the unstable triple periodic orbit, produce lines that are close to the asymptotic curves of this unstable orbit. The homoclinic tangle, formed by these asymptotic curves, contains many regular orbits, that were generated by bifurcation from the central orbit, but were trapped inside the tangle as the perturbation increased. We found some stable periodic orbits inside the homoclinic tangle, both regular and irregular. This proves that the homoclinic tangle is not completely chaotic, but contains gaps (islands of stability) filled with KAM curves.  相似文献   

4.
We investigate straight-line orbits (SLO) in Hamiltonian force fields using both direct and inverse methods. A general theorem is proven for natural Hamiltonians quadratic in the momenta for arbitrary dimensions and is considered in more detail for two and three dimensions. Next we specialize to homogeneous potentials and their superpositions, including the familiar Hénon–Heiles problem. It is shown that SLO’s can exist for arbitrary finite superpositions of N-forms. The results are applied to a family of potentials having discrete rotational symmetry as well as superpositions of these potentials.  相似文献   

5.
We present a map for the study of resonant motion in a potential made up of two harmonic oscillators with quartic perturbing terms. This potential can be considered to describe motion in the central parts of non-rotating elliptical galaxies. The map is based on the averaged Hamiltonian. Adding on a semi-empirical basis suitable terms in the unperturbed averaged Hamiltonian, corresponding to the 1:1 resonant case, we are able to construct a map describing motion in several resonant cases. The map is used in order to find thex − p x Poincare phase plane for each resonance. Comparing the results of the map, with those obtained by numerical integration of the equation of motion, we observe, that the map describes satisfactorily the broad features of orbits in all studied cases for regular motion. There are cases where the map describes satisfactorily the properties of the chaotic orbits as well.  相似文献   

6.
We present a symplectic mapping model to study the evolution of a small body at the 3/4 exterior resonance with Neptune, for planar and for three dimensional motion. The mapping is based on the averaged Hamiltonian close to this resonance and is constructed in such a way that the topology of its phase space is similar to that of the Poincaré map of the elliptic restricted three-body problem. Using this model we study the evolution of a small object near the 3/4 resonance. Both chaotic and regular motions are found, and it is shown that the initial phase of the object plays an important role on the appearance of chaos. In the planar case, objects that are phase-protected from close encounters with Neptune have regular orbits even at eccentricities up to 0.44. On the other hand objects that are not phase protected show chaotic behaviour even at low eccentricities. The introduction of the inclination to our model affects the stable areas around the 3/4 mean motion resonance, which now become thinner and thinner and finally at is=10° the whole resonant region becomes chaotic. This may justify the absence of a large population of objects at this resonance.  相似文献   

7.
Linked twist maps of ergodic theory are modified to provide a model for chaotic orbits in ‘double bowl’ potentials in conservative systems, e.g. direct ‘exchange’ orbits in the planar restricted problem of three bodies. The maps are typically ergodic (and mixing), and provide a clue to the nature of relaxation or diffusion in chaotic Hamiltonian systems.  相似文献   

8.
We present a very simple and fast method to separate chaotic from regular orbits for non-integrable Hamiltonian systems. We use the standard map and the Hénon and Heiles potential as model problems and show that this method appears to be at least as sensitive as the frequency-analysis method. We also study the chaoticity of asteroidal motion. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The 2:3 and 3:4 exterior mean motion resonances with Neptune are studied by applying symplectic mapping models. The mappings represent efficiently Poincaré maps for the 3D elliptic restricted three body problem in the neighbourhood of the particular resonances. A large number of trajectories is studied showing the coexistence of regular and chaotic orbits. Generally, chaotic motion depletes the small bodies of the effective resonant region in both the 2:3 and 3:4 resonances. Applying a low frequency spectral analysis of trajectories, we determined the phase space regions that correspond to either regular or chaotic motion. It is found that the phase space of the 3:4 resonant motion is more chaotic than the 2:3 one.  相似文献   

10.
Chaotic mixing in noisy Hamiltonian systems   总被引:1,自引:0,他引:1  
This paper summarizes an investigation of the effects of low-amplitude noise and periodic driving on phase-space transport in three-dimensional Hamiltonian systems, a problem directly applicable to systems like galaxies, where such perturbations reflect internal irregularities and/or a surrounding environment. A new diagnostic tool is exploited to quantify the extent to which, over long times, different segments of the same chaotic orbit evolved in the absence of such perturbations can exhibit very different amounts of chaos. First-passage-time experiments are used to study how small perturbations of an individual orbit can dramatically accelerate phase-space transport, allowing 'sticky' chaotic orbits trapped near regular islands to become unstuck on surprisingly short time‐scales. The effects of small perturbations are also studied in the context of orbit ensembles with the aim of understanding how such irregularities can increase the efficacy of chaotic mixing. For both noise and periodic driving, the effect of the perturbation scales roughly logarithmically in amplitude. For white noise, the details are unimportant: additive and multiplicative noise tend to have similar effects and the presence or absence of friction related to the noise by a fluctuation–dissipation theorem is largely irrelevant. Allowing for coloured noise can significantly decrease the efficacy of the perturbation, but only when the autocorrelation time, which vanishes for white noise, becomes so large that there is little power at frequencies comparable with the natural frequencies of the unperturbed orbit. This suggests strongly that noise-induced extrinsic diffusion, like modulational diffusion associated with periodic driving, is a resonance phenomenon. Potential implications for galaxies are discussed.  相似文献   

11.
We created a self-consistent triaxial stellar system through the cold disipationless collapse of 100,000 particles whose evolution was followed with a multipolar code. The resulting system rotates slowly even though its total angular momentum is zero, i.e., it offers an example of figure rotation. The potential of the system was subsequently approximated with interpolating formulae yielding a smooth potential stationary in the rotating frame. The Lyapunov exponents could then be computed for a randomly selected sample of 3,472 of the bodies that make up the system, allowing the recognition of regular and partially and fully chaotic orbits. The regular orbits were Fourier analyzed and classified using their locations on the frequency map. A comparison with a similar non-rotating model showed that the fraction of chaotic orbits is slightly but significantly enhanced in the rotating model; alternatively, there are no significant differences between the corresponding fractions neither of partially and fully chaotic orbits nor of long axis tubes, short axis tubes, boxes and boxlets among the regular orbits. This is a reasonable result because the rotation causes a breaking of the symmetry that may increase chaotic effects, but the rotation velocity is probably too small to produce any other significant differences. The increase in the fraction of chaotic orbits in the rotating system seems to be due mainly to the effect of the Coriolis force, rather than the centrifugal force, in good agreement with the results of other investigations.  相似文献   

12.
We study the distribution of regular and irregular periodic orbits on a Poincaré surface of section of a simple Hamiltonian system of 2 degrees of freedom. We explain the appearance of many lines of periodic orbits that form Farey trees. There are also lines that are very close to the asymptotic curves of the unstable periodic orbits. Some regular orbits, sometimes stable, are found inside the homoclinic tangle. We explain this phenomenon, which shows that the homoclinic tangle does not cover the whole area around an unstable orbit, but has gaps. Inside the lobes only irregular orbits appear, and some of them are stable. We conjecture that the opposite is also true, i.e. all irregular orbits are inside lobes.  相似文献   

13.
Frequency analysis is a new method for analyzing the stability of orbits in a conservative dynamical system. It was first devised in order to study the stability of the solar system (Laskar, Icarus, 88, 1990). It is a powerful method for analyzing weakly chaotic motion in hamiltonian systems or symplectic maps. For regular motions, it yields an analytical representation of the solutions. In cases of 2 degrees of freedom system with monotonous torsion, precise numerical criterions for the destruction of KAM tori can be found. For a 4D symplectic map, plotting the frequency map in the frequency plane provides a clear representation of the global dynamics and describes the actual Arnold web of the system.  相似文献   

14.
The computation on a relatively short time of a quantity, related to the largest Lyapunov Characteristic Exponent, called Fast Lyapunov Indicator allows to discriminate between ordered and weak chaotic motion and also, under certain conditions, between resonant and non resonant regular orbits. The aim of this paper is to study numerically the relationship between the Fast Lyapunov Indicator values and the order of periodic orbits. Using the two-dimensional standard map as a model problem we have found that the Fast Lyapunov Indicator increases as the logarithm of the order of periodic orbits up to a given order. For higher order the Fast Lyapunov Indicator grows linearly with the order of the periodic orbits. We provide a simple model to explain the relationship that we have found between the values of the Fast Lyapunov Indicator, the order of the periodic orbits and also the minimum number of iterations needed to obtain the Fast Lyapunov Indicator values.  相似文献   

15.
This paper presents a comparative analysis of the 2/1 and 3/2 asteroidal resonances based on several analytical and numerical tools. The frequency map analysis was used to obtain a refined estimation of the chaotic transport. Fourier and wavelet analyses were used to construct the web of inner resonances and showed that they are the seat of the strongly unstable motion observed in the numerical simulations. The most regular regions in both resonances were classified. A fast symplectic mapping allowed a number of direct runs over 108 years of the orbits initially in these regions. The stability of orbits over the age of the solar system was discussed and compared to the distribution of the observed asteroids in both resonances.  相似文献   

16.
We used a multipolar code to create, through the dissipationless collapses of systems of 1,000,000 particles, three self-consistent triaxial stellar systems with axial ratios corresponding to those of E4, E5 and E6 galaxies. The E5 and E6 models have small, but significant, rotational velocities although their total angular momenta are zero, that is, they exhibit figure rotation; the rotational velocity decreases with decreasing flattening of the models and for the E4 model it is essentially zero. Except for minor changes, probably caused by unavoidable relaxation effects, the systems are highly stable. The potential of each system was subsequently approximated with interpolating formulae yielding smooth potentials, stationary for the non-rotating model and stationary in the rotating frame for the rotating ones. The Lyapunov exponents could then be computed for randomly selected samples of the bodies that make up the different systems, allowing the recognition of regular and partially and fully chaotic orbits. Finally, the regular orbits were Fourier analyzed and classified using their locations on the frequency map. As it could be expected, the percentages of chaotic orbits increase with the flattening of the system. As one goes from E6 through E4, the fraction of partially chaotic orbits relative to that of fully chaotic ones increases, with the former surpassing the latter in model E4; the likely cause of this behavior is that triaxiality diminishes from E6 through E4, the latter system being almost axially symmetric. We especulate that some of the partially chaotic orbits may obey a global integral akin to the long axis component of angular momentum. Our results show that is perfectly possible to have highly stable triaxial models with large fractions of chaotic orbits, but such systems cannot have constant axial ratios from center to border: a slightly flattened reservoir of highly chaotic orbits seems to be mandatory for those systems.  相似文献   

17.
We obtain thex - p xPoincare phase plane for a two dimensional, resonant, galactic type Hamiltonian using conventional numerical integration, a second order symplectic integrator and a map based on the averaged Hamiltonian. It is found that all three methods give good results, for small values of the perturbation parameter, while the symplectic integrator does a better job than the mapping, for large perturbations. The dynamical spectra are used to distinguish between regular and chaotic motion.  相似文献   

18.
In a previous work [Guzzo et al. DCDS B 5, 687–698 (2005)] we have provided numerical evidence of global diffusion occurring in slightly perturbed integrable Hamiltonian systems and symplectic maps. We have shown that even if a system is sufficiently close to be integrable, global diffusion occurs on a set with peculiar topology, the so-called Arnold web, and is qualitatively different from Chirikov diffusion, occurring in more perturbed systems. In the present work we study in more detail the chaotic behaviour of a set of 90 orbits which diffuse on the Arnold web. We find that the largest Lyapunov exponent does not seem to converge for the individual orbits while the mean Lyapunov exponent on the set of 90 orbits does converge. In other words, a kind of average mixing characterizes the diffusion. Moreover, the Local Lyapunov Characteristic Numbers (LLCNs), on individual orbits appear to reflect the different zones of the Arnold web revealed by the Fast Lyapunov Indicator. Finally, using the LLCNs we study the ergodicity of the chaotic part of the Arnold web.  相似文献   

19.
The dynamics of the two Jupiter triangular libration points perturbed by Saturn is studied in this paper. Unlike some previous works that studied the same problem via the pure numerical approach, this study is done in a semianalytic way. Using a literal solution, we are able to explain the asymmetry of two orbits around the two libration points with symmetric initial conditions. The literal solution consists of many frequencies. The amplitudes of each frequency are the same for both libration points, but the initial phase angles are different. This difference causes a temporary spatial asymmetry in the motions around the two points, but this asymmetry gradually disappears when the time goes to infinity. The results show that the two Jupiter triangular libration points should have symmetric spatial stable regions in the present status of Jupiter and Saturn. As a test of the literal solution, we study the resonances that have been extensively studied in Robutel and Gabern (Mon Not R Astron Soc 372:1463–1482, 2006). The resonance structures predicted by our analytic theory agree well with those found in Robutel and Gabern (Mon Not R Astron Soc 372:1463–1482, 2006) via a numerical approach. Two kinds of chaotic orbits are discussed. They have different behaviors in the frequency map. The first kind of chaotic orbits (inner chaotic orbits) is of small to moderate amplitudes, while the second kind of chaotic orbits (outer chaotic orbits) is of relatively larger amplitudes. Using analytical theory, we qualitatively explain the transition process from the inner chaotic orbits to the outer chaotic orbits with increasing amplitudes. A critical value of the diffusion rate is given to separate them in the frequency map. In a forthcoming paper, we will study the same problem but keep the planets in migration. The time asymmetry, which is unimportant in this paper, may cause an observable difference in the two Jupiter Trojan groups during a very fast planet migration process.  相似文献   

20.
We consider the possibility of particles being injected at the interior of a reconnecting current sheet (RCS), and study their orbits by dynamical systems methods. As an example we consider orbits in a 3D Harris type RCS. We find that, despite the presence of a strong electric field, a 'mirror' trapping effect persists, to a certain extent, for orbits with appropriate initial conditions within the sheet. The mirror effect is stronger for electrons than for protons. In summary, three types of orbits are distinguished: (i) chaotic orbits leading to escape by stochastic acceleration, (ii) regular orbits leading to escape along the field lines of the reconnecting magnetic component, and (iii) mirror-type regular orbits that are trapped in the sheet, making mirror oscillations. Dynamically, the latter orbits lie on a set of invariant KAM tori that occupy a considerable amount of the phase space of the motion of the particles. We also observe the phenomenon of 'stickiness', namely chaotic orbits that remain trapped in the sheet for a considerable time. A trapping domain, related to the boundary of mirror motions in velocity space, is calculated analytically. Analytical formulae are derived for the kinetic energy gain in regular or chaotic escaping orbits. The analytical results are compared with numerical simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号