首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Lunar rock magnetism   总被引:2,自引:0,他引:2  
The relationship between the magnetization and temperature in a high constant magnetic field for a temperature range between 5 K and 1100 K was examined for Apollo 11, 12 and 14 lunar materials. The average value of Curie point temperature is (768.2 ± 3.5)°C for the lunar igneous rocks and (762.5 ± 3.4)°C for the lunar fines and breccias. A tentative conclusion about the ferromagnetic substance in the lunar materials would be that Fe is absolutely dominant with a slight association of Ni and Co, and probably Si also, in the lunar native irons.The antiferromagnetic phase of ilmenite and the paramagnetic phase of pyroxenes are considerably abundant in all lunar materials. However, a discrepancy of observed magnetization from a simulated value based on known magnetic elements for the temperature range between 10 and 40 K suggests that pyroxene phase represented by (M x Fe1-x ) SiO3 (whereM = Ca2+, Mg2+, etc and 0 x 1/4) also may behave antiferromagnetically.Magnetic hysteresis curves are obtained at 5 K and 300 K, and the viscous magnetic properties also are examined for a number of lunar materials. The superparamagnetically viscous magnetization has been experimentally proven as due to fine grains of metallic iron less than 200 Å in mean diameter. The viscous magnetization is dominant in the lunar fines and breccias which is classified into Type II, while it is much smaller than the stable magnetic component in lunar igneous rocks (Type I). The superparamagnetically fine particles of metallic iron are mostly blocked at 5 K in temperature; thus coercive force (H c ) and saturation remanent magnetization (I R ) become much large at 5 K as compared with the corresponding values at 300 K.Strongly impact-metamorphosed parts of lunar breccias have an extremely stable NRM which could be attributed to TRM. NRM of the lunar igneous rocks and majority of breccias (or clastic rocks) are intermediately stable, but their stability is considerably higher than that of IRM of the same intensity. This result may imply that some mechanism which causes an appreciable magnitude of NRM and the higher stability, such as the shock effect, may take place on the lunar surface in addition to TRM mechanism for special cases.A particular igneous rock (Sample 14053) is found to have an unusually strong magnetism owing to a high content of metallic iron (about 1 weight percent), and its NRM amounts to 2 × 10–3 emu/g. The abundance of such highly magnetic rocks is not known as yet but it seems that the observed magnetic anomalies on the lunar surface could be related to such highly magnetized rock masses.  相似文献   

2.
Electron magnetic resonance spectra of specimens of two crystalline rocks (12021-55 and 12075-19) and of four specimens of fines < 1 mm (12001-16, 12030-16, 12033-50 and 12070-125) have been obtained as a function of spectrometer frequency (9 and 35 GHz), temperature (78 to 300K), heat treatments (to 960°C), and mineral phases (plagioclase, olivine, pyroxferroite, glass, and basaltic fragments). Three paramagnetic ions, Fe3+, Ti3+ and Mn2+, are identified on the basis of spectral characteristics in plagioclase fractions, with concentrations 1019 ions g–1. Spectral components of at least two phases with exchange coupling of unpaired spins are resolved in whole rock samples of the crystalline rock specimens. These disappear upon heat treatment in air at 250°C and are presumably the result of an oxidation of the phases. It is suggested that these are non-stochiometric iron-rich oxide phases which approach stochiometry with heating in air. Some of the spectral properties of the characteristic resonance in fines are shown to be inconsistent with the hypothesis that the resonance is due to spherical iron particles. Another intense spectral component observed in samples of 12033-50 (H ~ 3000 Oe,g ~ 4 at 9 GHz andH ~ 3000 Oe,g ~ 2.2 at 35 GHz) is also observed in basaltic appearing fragments selected from 12001-16. It is estimated that the source of this component has concentrations in 12001-16, 12030-16, and 12075-125 that are < 2% the concentration in 12033-50. A similarity of this component to one observed in a crystalline rock sample from 12021-55 heat-treated in air and then left in air for 27 days and to one observed in a sample of fines heat treated at low pressure (< 10–3 mm Hg) to 800°C is the basis for suggesting that it is also due to a ferromagnetic oxide phase. The spectrum of a ferromagnetic metal platlet from 12001-16, in which the resonance and antiresonance were well resolved, was used to calculate the saturation magnetization and gave a value in reasonable agreement with that of iron as expected.Deceased.American University in Cairo, Cairo, EgyptResearch sponsored by the U.S. Atomic Energy Commission and supported by NASA Contract MSC-T-76458.  相似文献   

3.
The results of observations of 49 objects from the second Byurakan spectroscopic sky survey are given; they complete the recent spectroscopy of galactic samples in the fields centered on the coordinates = 09h47m, = +51° and = 09h50m, = +55°. The spectra were obtained on the 2.6-m telescope of the Byurakan Astrophysical Observatory, National Academy of Sciences of the Republic of Armenia, and the 6-m telescope of the Special Astrophysical Observatory, Russian Academy of Sciences, during 1998-2000. Redshifts and absolute stellar magnitudes were determined for all the galaxies.  相似文献   

4.
A search of rapid and slow spectral variations of Balmer lines with time resolution from seconds, minutes, months, and years is carried out for 48 Per. In total, 40 spectral scans in the H and 13 spectral scans in the 3500-5300 Å region were secured during 6 nights. The results of this study show that, in general, there are rapid variations of H at the limit of the noise level. Large changes with time scales of months and years in H and higher Balmer lines have been investigated for the first time in 48 Per.  相似文献   

5.
The relegation algorithm extends the method of normalization by Lie transformations. Given a Hamiltonian that is a power series = 0+ 1+ ... of a small parameter , normalization constructs a map which converts the principal part 0into an integral of the transformed system — relegation does the same for an arbitrary function [G]. If the Lie derivative induced by [G] is semi-simple, a double recursion produces the generator of the relegating transformation. The relegation algorithm is illustrated with an elementary example borrowed from galactic dynamics; the exercise serves as a standard against which to test software implementations. Relegation is also applied to the more substantial example of a Keplerian system perturbed by radiation pressure emanating from a rotating source.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

6.
A study is made of Lyman continuum observations of solar flares, using data obtained by the Harvard College Observatory EUV spectroheliometer on the Apollo Telescope Mount. We find that there are two main types of flare regions: an overall mean flare coincident with the H flare region, and transient Lyman continuum kernels which can be identified with the H and X-ray kernels observed by other authors. It is found that the ground level hydrogen population in flares is closer to LTE than in the quiet Sun and active regions, and that the level of Lyman continuum formation is lowered in the atmosphere from a mass column density m 5/sx 10–6 g cm–2 in the quiet Sun to m 3/sx 10–4 g cm–2 in the mean flare, and to m 10–3g cm–2 in kernels. From these results we derive the amount of chromospheric material evaporated into the high temperature region, which is found to be - 1015g, in agreement with observations of X-ray emission measures. A comparison is made between kernel observations and the theoretical predictions made by model heating calculations, available in the literature; significant discrepancies are found between observation and current particle-heating models.  相似文献   

7.
An analysis of the two-dimensional flow of water at 4°C past an infinite porous plate is presented, when the plate is subjected to a normal suction velocity and the heat flux at the plate is constant. Approximate solutions are derived for the velocity and temperature fields and the skin-friction. The effects ofG (Grashof number) andE (Eckert number) on the velocity and temperature fields are discussed.Nomenclature u, v velocity components of the fluid inx, y direction - g acceleration due to gravity - coefficient of thermal expansion of water at 4°C - v kinematic viscosity - density - T temperature inside thermal boundary layer - T free-stream temperature - k thermal conductivity - C p specific heat at constant pressure  相似文献   

8.
Taeil Bai 《Solar physics》1979,62(1):113-121
The X-ray line at 6.4 keV has been observed from solar flares. It is found that K-fluorescence of neutral iron in the photosphere due to thermal (T 107 K) X-rays of the gradual phase is its dominant production mechanism. For a given flux and energy spectrum of incident X-rays, the flux at 1 AU of iron K-photons depends on the photospheric iron abundance, the height of the X-ray source, and the helio-centric angle between the flare and the observer. Therefore, the flux of iron K-photons, when measured simultaneously with the flux and energy spectrum of the X-ray continuum and the flare location, can give us information on the height of the X-ray source and the photospheric iron abundance. Here we present our Monte Carlo calculations of iron K-fluorescence efficiencies, so that they might be useful for interpretations of future measurements of the 6.4 keV line (e.g., by a detector to be flown on the Solar Maximum Mission).  相似文献   

9.
Photoelectric measurements of photospheric velocity fields have been carried out with the Sacramento Peak Doppler Zeeman Analyzer. Emphasis was given to long periods and low spatial wavenumbers in deep photospheric layers, where the 5-min oscillations are less dominant.Multiple or double peaks cannot be detected in power spectra of the 5-min oscillations, provided that a sufficient number of physically independent points on the solar surface are observed.The most frequent wave-numbers in the spectra of 5-min oscillations (as well as of the low frequency field) agree with those derived from a model assuming statistically independent oscillators of 10 to 20 diameter. These two velocity fields are anti-correlated spatially.Kinetic power in the 20-to-50-min range of periods is closely linked to brightness changes in the same layer, an increase of brightness lagging about 250 sec behind rising motion. Granules can be excluded as a possible source for the appearance of low frequency flow patterns. Different explanations are suggested.On leave from Fraunhofer Institut, Freiburg, Germany.  相似文献   

10.
A number of examples are worked out to illustrate the consequences of reverse flux ejection from the surface of a convective layer of conducting fluid. Generally the reverse flux ejection has the opposite effect of magnetic buoyancy, tending to bury the fields rather than bringing them through the surface. Even a weak flux ejection effect prevents the excape of magnetic field through the surface. Reverse flux ejection at the surface of an -dynamo profoundly alters the character of the solutions of the dynamo equations. Altogether, flux ejection serves to obscure the interpretation of magnetic observations. The outstanding problem now is to determine under what circumstances there exists cyclonic convection with rotations in excess of ±1/2 in the rising columns of fluid. Negative turbulent diffusion is expected to be a close companion of the flux ejection effect.This work was supported by the National Aeronautics and Space Administration under grant NGL 14-001-001.  相似文献   

11.
Abstract— Meteorite magnetic records constitute physical evidence of processes acting during early solar system evolution. Consequently, the validation of these records is important in meteorite research. The first step in the validation process should be the REM value. The REM value is the ratio of natural remanence (NRM) to saturation remanent magnetization imparted by a 1 T magnetic field (SIRM). The REM values range over 3 to 4 orders of magnitude for stony meteorites and for chondrules from Allende (C3V‐S1), Bjurböle (L4‐S1), and Chainpur (LL3‐S1) meteorites. The REM values computed from published NRM and SIRM data identify many orders of magnitude range in the REM values including REM values >100 × 10?3. These data suggest a dependence for the NRM intensity on the curatorial location from which the sample was obtained. Any earth rock acquiring thermoremanent magnetization (TRM) in the geomagnetic field has a restricted range in REM mostly between 5 and 50 × 10?3, the exception being the mineral hematite in the multidomain size range. The only terrestrial samples with REM much greater than 100 × 10?3 are those struck by lightning. The REM value provides a physical basis for recognition between valid records and those that “might be contaminated.” The isothermal remanence acquisition (RA) curve is presented as a contamination curve that allows an indication of the level of magnetic field contamination required to give the computed “REM” (RM/SIRM) value. In the case of the Bjurböle and Chainpur chondrules, with REM values >100 × 10?3, the RA curve indicates that unrealistically large contamination magnetic fields would be required to give REM values greater than 100 × 10?3. This would suggest contamination other than by a hand magnet that is normally available to an experimenter. This would require an explanation that would involve large magnetic fields during chondrule formation, or some extraordinary remanence acquisition mechanism that remains to be described. Magnetic contamination experiments, using ~80 and ~40 mT magnets, demonstrate that the “REM” values and extent of modification of the magnetic vector record are mineralogy dependent, and this is mostly related to the amount and characteristics of the mineral tetrataenite. The complexity of the meteorite records suggest validation of the record as a first step. The REM value is the first physical statement that can be made in this validation.  相似文献   

12.
Rotational Magnetic hysteresis (W R ) curves for lunar soils 10084, 12070, 14259, and rock 14053, have been published. There is no adequate explanation to date for the observed largeW R at high fields. Lunar rock magnetism researchers consider fine particle iron to be the primary source of stable magnetic remanence in lunar samples. Iron has cubic anisotropy with added shape anisotropy for extreme particle shapes. The observed high fieldW R must have its source in uniaxial or unidirectional anisotropy. This implies the existence of minerals with uniaxial anisotropy or exchange coupled spin states. Therefore, the source of this observed high fieldW R must be identified and understood before serious paleointensity studies are made. It is probable that the exchange coupled spin states and/or the source of uniaxial anisotropy responsible for the high fieldW R might be influenced by the lunar surface diurnal temperature cycling. The possible sources of high fieldW R in lunar samples are presented and considered.  相似文献   

13.
Semi-empirical models of solar faculae, cospatial with strong photospheric magnetic fields, have been constructed from continuum observations. The center-to-limb contrast of the various models was computed taking into account their geometrical shape. The adopted model whose horizontal size was taken to be 750 km, indicates that, in field regions, the temperature begins to rise outwards at z -125 km (above 5000 = 1) and that the extrapolated temperature at z -400 km is about 1500 K above that of the undisturbed atmosphere; the electron density is higher by a factor of about 30.  相似文献   

14.
Abstract— The magnetic properties of samples of seven Martian meteorites (EET 79001, Zagami, Nakhla, Lafayette, Governador Valadares, Chassigny and ALH 84001) have been investigated. All possess a weak, very stable primary natural remanent magnetization (NRM), and some have less stable secondary components. In some cases, the latter are associated with magnetic contamination of the samples, imparted since their recovery, and with viscous magnetization, acquired during exposure of the meteorites to the geomagnetic field since they fell. The magnetic properties are carried by a small content (<1%) of titanomagnetite and, in ALH 84001, possibly by magnetite as well. The most likely source of the primary NRM is a thermoremanent magnetization acquired when the meteorite material last cooled from a high temperature in the presence of a magnetic field. Current evidence is that this was 1.3 Ga ago for the nakhlites and Chassigny and 180 Ma for shergottites: the time of the last relevant cooling of ALH 84001 is not presently known. Preliminary estimates of the strength of the magnetizing field are in the range 0.5–5 üT, which is at least an order of magnitude greater than the present field. It is tentatively concluded that the magnetic field was generated by a dynamo process in a Martian core with appropriate structure and properties.  相似文献   

15.
Spectroscopic measurements of the strength and direction of transverse magnetic fields in six -spots are presented. The field direction is determined by the relative strength of the - and -components at different polarizer orientations, and is, with one exception, parallel to the neutral line and as strong as the umbral field. Field strengths determined by line splitting are as high as 3980 G.  相似文献   

16.
In this paper we present a new spectrophotometer ESOP (Expérience Spectroscopique d'Observation des Plasmas). We describe its general features and characteristics. We report the first spectrophotometric results on the Puppis A supernova remnant on the coronal iron line emission. These [FeXIV] observations were in the vicinity of the Eastern X-ray knot. We have observed at 30 scale. In appendices we describe in more details some specific technical points.Based on observations obtained at ESO-La Silla Observatory.  相似文献   

17.
Zhang  H.  Scharmer  G.  Lofdahl  M.  Yi  Z. 《Solar physics》1998,183(2):283-290
In this paper, we present a time series of Fei 5250.2 Å photospheric filtergrams and corresponding magnetograms in a quiet region. The relationship between fine structures of granulation and magnetic fields is analyzed. It is found that although most bright filigree features in photospheric filtergrams are related to corresponding magnetic features, they are generally not cospatial. It is also found that some bright features and their corresponding photospheric magnetic fields show fast changes within several minutes.  相似文献   

18.
Abstract— Evolutionary processes in meteorites and magnetic fields in the early solar system, both spatial and localised in planetary bodies, can leave their imprint in meteorites through the natural remanent magnetization (NRM) and other magnetic properties they impart to them. In the present investigation the Estherville mesosiderite has been studied to enquire whether its magnetic properties can help to resolve any of the uncertainties associated with mesosiderite history and evolution, and to examine evidence for any magnetic fields to which it or its constituent fragments have been subjected. The Estherville sample as received is strongly magnetized, with an initial NRM intensity of 1.4 × 10?3 Am2 kg?1. The NRM of individual fragments broken from the main mass, when referred to common reference axes, is scattered in direction on a scale which ranges from ~ 1 cm down to ~ 1 mm. Alternating field and thermal demagnetization show a range of magnetic stability among the samples and also some secondary NRM, indicating a variety of magnetic histories. Thermomagnetic analyses of matrix and iron-nickel separates show that the dominant magnetic carriers are kamacite and tetrataenite. The non-coherent directions of NRM within the matrix imply the acquisition of an initial NRM by kamacite in the fragments prior to their final accumulation into the mesosiderite material, and the presence of an ambient magnetic field when the fragment material cooled after its formation. If the tetrataenite carrying the primary NRM was formed from the previously magnetized kamacite/taenite during slow cooling after later metamorphic heating, the maximum temperature during the latter event could not have been higher than ~700 °C or the kamacite would have been remagnetized uniformly or demagnetized, according to whether or nor there was an ambient magnetic field present. Susceptibility anisotropy observations indicate the acquisition of anisotropic properties occurred before final accumulation of the meteorite. Shock and flow processes were probably important in producing foliation and lineation respectively in the fragments resulting from brecciation, and there could also be a contribution from larger metal fragments and/or veins. The scattered NRM of the iron-nickel fragments also indicates magnetization prior to emplacement, therefore favouring introduction in the solid rather than the molten form.  相似文献   

19.
Abstract– In this interview, Joseph Goldstein ( Fig. 1 ) recounts how he became interested in meteorites during his graduate studies working with Robert Ogilvie at MIT. By matching the Ni profiles observed across taenite fields in the Widmanstätten structure of iron meteorites with profiles he computed numerically he was able to determine cooling rates as the meteorites cooled through 650–400 °C. Upon graduating, he worked with a team of meteorite researchers led by Lou Walter at Goddard Space Flight Center where for 4 years he attempted to understand metallographic structures by reproducing them in the laboratory. Preferring an academic environment, Joe accepted a faculty position in the rapidly expanding metallurgy department at Lehigh University where he was responsible for their new electron microprobe. He soon became involved in studying the metal from lunar soils and identifying the metallic component from its characteristic iron and nickel compositions. Over the next two decades he refined these studies of Ni diffusion in iron meteorites, particularly the effect of phosphorus in the process, which resulted in superior Fe‐Ni‐P phase diagrams and improved cooling rates for the iron meteorites. After a period as vice president for research at Lehigh, in 1993 he moved to the University of Massachusetts to serve as dean of engineering, but during these administrative appointments Joe produced a steady stream of scientific results. Joe has served as Councilor, Treasurer, Vice President, and President of the Meteoritical Society. He received the Leonard Medal in 2005, the Sorby Award in 1999, and the Dumcumb Award for in 2008.
Figure 1 Open in figure viewer PowerPoint Joseph Goldstein.  相似文献   

20.
The theoretical problem posed by the buoyant escape of a magnetic field from the interior of a stably stratified body bears directly on the question of the present existence of primordial magnetic fields in stars. This paper treats the onset of the Rayleigh-Taylor instability of the upper boundary of a uniform horizontal magnetic field in a stably stratified atmosphere. The calculations are carried out in the Boussinesq approximation and show the rapid growth of the initial infinitesimal perturbation of the boundary. This result is in contrast to the extremely slow buoyant rise of a separate flux tube in the same atmosphere. Thus for instance, at a depth of 1/3R beneath the surface of the Sun, a field of 102 G develops ripples over a scale of 103 km in a characteristic time of 50 years, whereas the characteristic rise time of the same field in separate flux tubes with the same dimensions is 1010 years. Thus, the development of irregularities proceeds quickly, soon slowing, however, to a very slow pace when the amplitude of the irregularities becomes significant. Altogether the calculations show the complexity of the question of the existence of remnant primordial magnetic fields in stellar interiors.This work was supported in part by the National Aeronautics and Space Administration under Grant NGL 14-001-001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号