首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A closure study of sub-micrometer aerosol particle hygroscopic behaviour   总被引:2,自引:0,他引:2  
The hygroscopic properties of sub-micrometer aerosol particles were studied in connection with a ground-based cloud experiment at Great Dun Fell, in northern England in 1995. Hygroscopic diameter growth factors were measured with a Tandem Differential Mobility Analyser (TDMA) for dry particle diameters between 35 and 265 nm at one of the sites upwind of the orographic cloud. An external mixture consisting of three groups of particles, each with different hygroscopic properties, was observed. These particle groups were denoted less-hygroscopic, more-hygroscopic and sea spray particles and had average diameter growth factors of 1.11–1.15, 1.38–1.69 and 2.08–2.21 respectively when taken from a dry state to a relative humidity of 90%. Average growth factors increased with dry particle size. A bimodal hygroscopic behaviour was observed for 74–87% of the cases depending on particle size. Parallel measurements of dry sub-micrometer particle number size distributions were performed with a Differential Mobility Particle Sizer (DMPS). The inorganic ion aerosol composition was determined by means of ion chromatography analysis of samples collected with Berner-type low pressure cascade impactors at ambient conditions. The number of ions collected on each impactor stage was predicted from the size distribution and hygroscopic growth data by means of a model of hygroscopic behaviour assuming that only the inorganic substances interacted with the ambient water vapour. The predicted ion number concentration was compared with the actual number of all positive and negative ions collected on the various impactor stages. For the impactor stage which collected particles with aerodynamic diameters between 0.17–0.53 μm at ambient relative humidity, and for which all pertinent data was available for the hygroscopic closure study, the predicted ion concentrations agreed with the measured values within the combined measurement and model uncertainties for all cases but one. For this impactor sampling occasion, the predicted ion concentration was significantly higher than the measured. The air mass in which this sample was taken had undergone extensive photochemical activity which had probably produced hygroscopically active material other than inorganic ions, such as organic oxygenated substances.  相似文献   

2.
The Saharan Mineral Dust Experiment (SAMUM) was conducted in May and June 2006 in Tinfou, Morocco. A H-TDMA system and a H-DMA-APS system were used to obtain hygroscopic properties of mineral dust particles at 85% RH. Dynamic shape factors of 1.11, 1.19 and 1.25 were determined for the volume equivalent diameters 720, 840 and 960 nm, respectively.
During a dust event, the hydrophobic number fraction of 250 and 350 nm particles increased significantly from 30 and 65% to 53 and 75%, respectively, indicating that mineral dust particles can be as small as 200 nm in diameter. Log-normal functions for mineral dust number size distributions were obtained from total particle number size distributions and fractions of hydrophobic particles. The geometric mean diameter for Saharan dust particles was 715 nm during the dust event and 570 nm for the Saharan background aerosol.
Measurements of hygroscopic growth showed that the Saharan aerosol consists of an anthropogenic fraction (predominantly non natural sulphate and carbonaceous particles) and of mineral dust particles. Hygroscopic growth and hysteresis curve measurements of the 'more' hygroscopic particle fraction indicated ammonium sulphate as a main component of the anthropogenic aerosol. Particles larger than 720 nm in diameter were completely hydrophobic meaning that mineral dust particles are not hygroscopic.  相似文献   

3.
Organic compounds in the atmosphere can influence the activation, growth and lifetimes of haze, fog and cloud droplets by changing the condensation and evaporation rates of liquid water by these aqueous aerosol particles. Depending on the nature and properties of the organic compounds, the change can be to enhance or reduce these rates. In this paper we used a tandem differential mobility analyzer (TDMA) to examine the effect of tetracosane, octanoic acid, and lauric acid on the hygroscopic properties of NaCl aerosol particles at relative humidities (RH) between 30 and 95%. These organic compounds have been identified in ambient aerosol particle samples. A slight lowering of the deliquescence relative humidity (DRH) and suppression of hygroscopic growth for the NaCl-organic compound mixtures were observed when compared to pure NaCl particles. The growth of pure NaCl particles was 2.25 in diameter at 85% RH while the growth of the mixed particles was 1.3 to 1.7 in particle diameter at 85% RH with organic mass fraction of 30–50%. This shows that these organic compounds have to be present in rather large mass fractions to effect the hygroscopic behavior to a similar degree observed for ambient aerosol during field measurements. Despite the mixing of the organic material with NaCl, hysteresis was observed for decreasing RH histories, suggesting the formation of metastable droplets. These laboratory results are strikingly similar to ambient field results. For example, if the total organic mass fraction of the particles is between 0.30 and 0.50, the particle growth at 85% RH is about a factor of 1.4 for the laboratory and field measurements. Such reduction in growth compared to the pure inorganic salt is in contradiction to speculations concerning significant effects by organic compounds on cloud condensation nuclei and thus formation on clouds.  相似文献   

4.
A multifunctional HTDMA system with a robust temperature control   总被引:3,自引:0,他引:3  
The hygroscopicity of atmospheric aerosols significantly influences their size distribution, cloud condensation nuclei ability, atmospheric residence time, and climate forcing. In order to investigate the hygroscopic behavior of aerosol particles and serious haze in China, a Hygroscopic Tandem Differential Mobility Analyzers (HTDMA) system was designed and constructed at Fudan University. It can function as a scanning mobility particle sizing system to measure particle size distribution in the range of 20--1000 nm in diameter, as well as a hygroscopicity analyzer for aerosol particles with diameters between 20--400 nm in the range of 20%--90% RH (relative humidity). It can also measure the effect of uptake of inorganic acids or semi-VOCs on the hygroscopic behavior of aerosols, such as typical inorganic salts in atmospheric dust or their mixtures. The performance tests show that the system measured particle size of the standard polystyrene latex spheres (PSLs) is 197 nm, which is in excellent agreement with the certified diameter D=199±6 nm, as well as a standard deviation of the repeated runs SD=8.9x10-4. In addition, the measured hygroscopic growth factors of the model compounds, (NH4)2SO4 and NaNO3, agree with the Kohler theoretical curves. The results indicate that the HTDMA system is an excellent and powerful tool for studying the hygroscopic behavior of submicron aerosols and meets the demand required for laboratory research and fieldwork on atmospheric aerosols in China.  相似文献   

5.
In this work we propose and test a method to calculate cloud condensation nuclei (CCN) spectra based on aerosol number size distributions and hygroscopic growth factors. Sensitivity studies show that this method can be used in a wide variety of conditions except when the aerosol consist mainly of organic compounds. One crucial step in the calculations, estimating soluble ions in an aerosol particle based on hygroscopic growth factors, is tested in an internal hygroscopic consistency study. The results show that during the second Aerosol Characterization Experiment (ACE-2) the number concentration of inorganic ions analyzed in impactor samples could be reproduced from measured growth factors within the measurement uncertainties at the measurement site in Sagres, Portugal.
CCN spectra were calculated based on data from the ACE-2 field experiment at the Sagres site. The calculations overestimate measured CCN spectra on average by approximately 30%, which is comparable to the uncertainties in measurements and calculations at supersaturations below 0.5%. The calculated CCN spectra were averaged over time periods when Sagres received clean air masses and air masses influenced by aged and recent pollution. Pollution outbreaks enhance the CCN concentrations at supersaturations near 0.2% by a factor of 3 (aged pollution) to 5 (recent pollution) compared to the clean marine background concentrations. In polluted air masses, the shape of the CCN spectra changes. The clean spectra can be approximated by a power function, whereas the polluted spectra are better approximated by an error function.  相似文献   

6.
2016年11月13日在北京地区上空存在持续稳定的层状云天气背景下,利用飞机开展气溶胶粒径谱、化学组成、云滴谱等参量的垂直观测,研究该个例云底气溶胶的活化能力。结果表明:探测期间北京地区为轻度污染天气,地面气溶胶浓度(0.11~3 μm)达到4600 cm-3。云层高度为800~1200 m,云底气溶胶数浓度相对于近地面大幅度降低,有效粒径显著增大(0.3~0.6 μm)。同时,近地面气溶胶中疏水性的一次有机气溶胶贡献显著,而云底气溶胶中一次有机气溶胶的贡献大幅降低,无机组分和二次有机气溶胶的贡献明显增大,造成吸湿性参数κ由0.25(地面)增大至0.32(云底)。云中气溶胶和云滴的谱分布衔接较好,且两者的数浓度之和与云底气溶胶浓度一致,可分别代表未活化和已活化的粒子。基于云底气溶胶粒径谱和吸湿性参数计算得到不同过饱和比下云凝结核的活化率,通过与云中观测结果对比,反推得到云底过饱和度约为0.048%。  相似文献   

7.
一次秋季冷锋降水过程气溶胶与云粒子分布的飞机观测   总被引:1,自引:1,他引:1  
利用机载PMS(Particle Measuring Systems)测量系统,对2008年10月4—5日石家庄地区一次冷锋降水云系的3次气溶胶和云粒子探测资料进行了分析。结果表明,冷锋过境降水前后,气溶胶粒子分布差异较大。降水发生前,气溶胶粒子平均数浓度约为103cm-3,平均直径为0.95μm;气溶胶主要集中于3000m高度以下的对流层低层,云内气溶胶数浓度明显减少。降水发生后,气溶胶粒子平均数浓度约为102cm-3,比降水前约小1个量级,平均直径为1.28μm;气溶胶主要集中于1200m以下的近地面层,其数浓度随高度增加而降低。气溶胶粒子浓度在低层云区内水平变化较小,而在无云区和云下近地层水平起伏较大。云粒子平均浓度比气溶胶小1~2个量级。气溶胶粒子平均谱主要呈双峰型,而云粒子谱主要为单峰型。  相似文献   

8.
During February 1997, one of the 2 observational periods of CIME ( c loud i ce m ountain e xperiment), a joint field experiment funded by the European Commission, took place on the summit of the Puy de Dōme in the centre of France. During this experiment the droplet spectra were measured with an FSSP and the aerosol particles in the drops and in the interstitial particle phase were measured with a counterflow virtual impactor and a round jet impactor inside a windtunnel. Very low aerosol particle and drop concentrations were observed and particles as small as 25 nm in diameter were found to activate. Two datasets obtained on 15 February and 17 February were used to study the activation of the small Aitken‐mode particles and the spectral form of the droplet spectrum and the scavenging fraction. Numerous sensitivity studies were performed investigating the rôle of the number density and chemical composition of the aerosol particles. The rôle of mixing inside the orographic cloud was studied by using a new technique. It considers the fact that the air arriving on the summit of the Puy de Dôme is a mixture of air of different origins. Thus, it weighs the results of a spectral scavenging model (DESCAM or EXMIX) calculated along a number of individual trajectories. The weighing function is derived from tracer and trajectory studies with a 3‐dimensional mesoscale model. The model was able to reproduce the activation of aerosol particles as small as 25 nm. It was caused by the low aerosol particle number concentrations. In general, we can conclude that the variability found in the sensitivity tests of the dynamical and chemical factors allows to reproduce the shape of the observed results. As too many free parameters exit at the moment we cannot quantify the contribution of each factor studied to the observed scavenging fraction, however, it seems that dynamics dominates.  相似文献   

9.
The second Aerosol Characterisation Experiment (ACE‐2) was aimed at investigating the physical, chemical and radiative properties of aerosol and their evolution in the North Atlantic region. In the 2nd "Lagrangian" experiment, an air mass was tracked over a 30‐h period during conditions of extensive stratocumulus cover. Boundary‐layer measurements of the aerosol size distribution obtained with a passive cavity aerosol spectrometer probe (PCASP) during the experiment show a gradual growth in size of particles in the 0.1–0.2 μm diameter mode. Simultaneously, SO2 concentrations were found to decrease sharply from 800 to 20 ppt. The fraction of sulphate in aerosol ionic mass increased from 0.68±0.07 to 0.82±0.09 for small particles (diameter below 1.7 μm) and from 0.21±0.04 to 0.34±0.03 for large particles (diameter above 1.7 μm). The measurements were compared with a multicyclic parcel model of gas phase diffusion into cloud droplets and aqueous phase chemical reactions. The model was able to broadly reproduce the observed transformation in the aerosol spectra and the timescale for the transformation of SO2 to sulphate aerosol. The modelled SO2 concentration in the boundary layer fell to below half its initial value over a 6.5‐h time period due to a combination of the entrainment of cleaner tropospheric air and cloud chemical reactions. NH3 and HCl gas were also found to play an important rôle in cloud processing in the model.  相似文献   

10.
Patterns of propagation of aerosol particles generated in the hygroscopic seeding of convective clouds from antihail rockets is studied. Effects of the salt particle dispersity on condensational growth rate of separate cloud droplets on these particles are studied; analytical formulas are obtained as describing change of radius of the NaCl crystal and of the cloud droplet which grows on the crystal till the moment of full dissolving of the crystal in the droplet. Numerical computations are used for comparative analysis of the salt effect on intensification of condensational growth of the droplets in the cloud.  相似文献   

11.
Ground-based aerosol instrumentation covering particle size diameters from 25 nm to 32 µm was deployed to determine aerosol concentration and cloud condensation nuclei (CCN)-activation properties at water vapor supersaturations in the range of S = 0.20–1.50 % in the remote Brazilian northeast semi-arid region (NEB) in coastal (maritime) and continental (inland) regimes. The instruments measured aerosol number concentration and activation spectra for CCN and revealed that aerosol properties are sensitive with respect to the sources as a function of the local wind circulation system. The observations show that coastal aerosol total number concentrations are above 3,000 cm?3 on average, exhibiting concentration peaks depending on the time of the day in a consistent daily pattern. The variation on aerosol concentration has also influences on the fraction of particles active as CCN. At 1.0 % water vapor supersaturation, the fraction can reach as high as 80 %. Inland aerosol total concentrations were about 1,800–1,900 cm?3 and did not show much diurnal variation. The fraction of particles active as CCN observed inland depend on the history of the air masses, and was much higher when air masses were originated over the sea. It was found that (NH4)2SO4 and NaCl are the major soluble inorganic fraction of the aerosols at the coast. The major fraction of NaCl was present in the coarse mode, while ammonium sulfate dominates the inorganic fraction at the submicron range, with about 10 % of the total aerosol mass at 0.32 µm. Inorganic compounds are almost absent in particles with sizes around 0.1 μm. The study suggests that the air masses with high concentration of CCN originate at the sea. The feasible explanation lies in the fact that the NEB’s beaches have a particular morphology that produces a wide surf zone and creates a large load of aerosols when combined with strong and permanent winds of the region.  相似文献   

12.
During June and July 2003 the Sources and Origins of Atmospheric Cloud Droplets experiment (SOACED) was carried out on a mountain-top site in central Sweden. The main objective of the experiment was to characterise the microphysical and chemical properties of cloud droplet residuals and interstitial aerosol particles in continental clouds and to understand the processes controlling cloud properties at this location.Interstitial and residual aerosol size distributions, cloud liquid water content and species- and size-resolved aerosol mass concentrations are the main variables employed to address questions pertaining to the cloud droplet number concentration and scavenging efficiency during a stratocumulus cloud event observed on July 28, 2003. In this cloud event, about 56% of the aerosol mass was associated with organic species, whilst SO4 accounted for 23% and NH4 for 14%. NO3 and Cl made up about 7% of the total mass.The partitioning of the aerosol particles between cloud droplets and interstitial air has been studied in terms of their microphysical properties. The scavenging efficiency, defined as the fraction of particles activated into cloud elements compared to the total amount of particles, was investigated as a function of size. The scavenging efficiency curves displayed different shapes during the cloud event, from an S-shaped curve, with low scavenging efficiency in the Aitken mode and larger scavenging efficiency in the accumulation mode, to more unusual shapes where Aitken-mode particles were either solely activated or activated in addition to accumulation-mode particles.This study suggests that alterations of the aerosol chemical composition occurred during the measurement period, changing the hygroscopic nature of the CCN and decreasing their activation diameter. It is also hypothesized that entrainment of drier air aloft may have introduced inhomogeneities in the supersaturation field and modified the S-shaped scavenging curves.  相似文献   

13.
《Atmospheric Research》2008,87(3-4):225-240
During June and July 2003 the Sources and Origins of Atmospheric Cloud Droplets experiment (SOACED) was carried out on a mountain-top site in central Sweden. The main objective of the experiment was to characterise the microphysical and chemical properties of cloud droplet residuals and interstitial aerosol particles in continental clouds and to understand the processes controlling cloud properties at this location.Interstitial and residual aerosol size distributions, cloud liquid water content and species- and size-resolved aerosol mass concentrations are the main variables employed to address questions pertaining to the cloud droplet number concentration and scavenging efficiency during a stratocumulus cloud event observed on July 28, 2003. In this cloud event, about 56% of the aerosol mass was associated with organic species, whilst SO4 accounted for 23% and NH4 for 14%. NO3 and Cl made up about 7% of the total mass.The partitioning of the aerosol particles between cloud droplets and interstitial air has been studied in terms of their microphysical properties. The scavenging efficiency, defined as the fraction of particles activated into cloud elements compared to the total amount of particles, was investigated as a function of size. The scavenging efficiency curves displayed different shapes during the cloud event, from an S-shaped curve, with low scavenging efficiency in the Aitken mode and larger scavenging efficiency in the accumulation mode, to more unusual shapes where Aitken-mode particles were either solely activated or activated in addition to accumulation-mode particles.This study suggests that alterations of the aerosol chemical composition occurred during the measurement period, changing the hygroscopic nature of the CCN and decreasing their activation diameter. It is also hypothesized that entrainment of drier air aloft may have introduced inhomogeneities in the supersaturation field and modified the S-shaped scavenging curves.  相似文献   

14.
利用2014年7月在黄山光明顶观测的气溶胶吸湿性参数(κ)和气溶胶离子化学组分、有机碳(OC,organic carbon)数据,对多尺度气溶胶吸湿性参数进行分析,并在此基础上建立了多尺度κ的参数化方案。研究结果表明,影响黄山夏季气溶胶来源的主要气团包括西南气团、北方气团以及东南气团。黄山夏季κ的变化范围为0.2-0.48,且随粒径增大成先增大后减小的分布特征;气溶胶粒径在0.15-1.1 μm的强吸湿段,κ>0.3,而在粒径小于0.15 μm和粒径大于1.1 μm弱吸湿段,κκ分布不同,气溶胶粒子在小于1.1 μm的粒径段,当受西南气团影响时,κ值最大,而受东南气团影响时,κ值最小;在气溶胶粒径大于1.1 μm时,κ在两个气团背景下呈现与气溶胶粒径小于1.1 μm时相反的分布特征。影响粒径小于1.1 μm气溶胶吸湿能力的主要水溶性化学组分为NH4+、SO42-、水溶性有机碳(WSOC,water soluble organic carbon),而影响大于1.1 μm粒径范围气溶胶吸湿能力的主要水溶性化学组分为NH4+、SO42-、NO3-、WSOC和Ca2+。由气溶胶多尺度离子化学组分和WSOC构建的气溶胶κ的参数化方案,在小于1.1 μm和大于1.1 μm的粒径范围内的表达式分别为κreg=0.12+0.45fNH4++0.63fSO42-+0.18fWSOC和κreg=0.01+0.78fNH4++0.76fNO3-+0.8fSO42--0.28fCa2++0.14fWSOC(f为对应组分的质量份数)。两个参数化方案均能较好地预报κ,预报值κreg与κ的计算值间存在较好的相关关系,相关系数通过了置信度99%的显著性检验,且预报误差在30%范围内。   相似文献   

15.
The impact of aerosols on the climate and atmospheric environment depends on the water uptake ability of particles; namely, hygroscopic growth and acti- vation into cloud condensation nuclei (CCN). The size-resolved activation ratios (SRAR), characterizing the fraction of aerosol particles that act as CCN at different particle sizes and supersaturations, can be measured using a combination of differential mobility analyzers (DMA) and particle counters. DMA-based measurements are in- fluenced by the multiply charged particles and the quasi-mono-dispersed particles (effect of DMA transfer function) selected for each prescribed particle size. A theoretical study, assuming different particle number size distributions and hygroscopicity of aerosols, is performed to study the effects of the DMA transfer function and multiple charging on the measured SRAR and the derived hygroscopicity. Results show that the raw SRAR can be significantly skewed and hygroscopicity may be highly biased from the true value if the data are not corrected. The effect of the transfer function is relatively small and depends on the sample to sheath flow ratio. Multiply charged particles, however, can lead to large biases of the SRAR. These results emphasize that the inversion algo- rithm, which is used to correct the effects of the DMA transfer function and multiple charging, is necessary for accurate measurement of the SRAR.  相似文献   

16.
黄山地区气溶胶吸湿增长特性数值模拟研究   总被引:4,自引:2,他引:2  
江琪  银燕  秦彦硕  陈魁  杨素英 《气象科学》2013,33(3):237-245
应用多种化学组分气溶胶的绝热气块分档模式,对2008年春季黄山地区气溶胶吸湿增长特性进行了模拟分析.结果表明:黄山地区气溶胶吸湿增长因子f的大小与粒子半径、相对湿度、粒子化学组分、上升速度及上升高度密切相关,且小粒子吸湿增长比大粒子显著.吸湿增长因子与相对湿度呈正相关,相对湿度越接近粒子的临界饱和比,吸湿增长因子变化越显著.可溶性有机气溶胶,通过增加溶液中溶质的百分比来影响临界饱和比,使吸湿增长因子增大.若不考虑不可溶粒子的成核作用,会高估粒子的吸湿性.随着上升速度增大,吸湿增长因子降低,降低程度与粒子初始高度的相对湿度有关.上升高度通过改变气块相对湿度的变化来影响气溶胶吸湿增长因子.  相似文献   

17.
The relationships between the physical and chemical properties of mixed-phase clouds were investigated at Storm Peak Laboratory (3220m MSL) located near the continental divide in northwestern Colorado. Interstitial aerosol particles, cloud droplets and snow crystals were concurrently collected when the laboratory was enveloped by a precipitating cloud. All samples were analyzed for trace elements, soluble anions, electrical conductivity and acidity.The results show average trace constituent concentration ratios of cloud water to snow water range from 0.4 to 26. All but six of the 32 elements and ions measured had ratios greater than one. This result suggests a chemical species dependency of in-cloud aerosol particle scavenging processes. Evidence of a decrease of in-cloud aerosol particle scavenging efficiency by snow due to increases in aerosol concentration is also presented.Differences between the chemical composition of cloud water and snow water are manifested most strongly when snow crystals grow by vapor deposition. In-cloud scavenging efficiencies by snow crystals for most aerosol particle chemical species are dependent on the growth of the snow crystals by accretion of cloud droplets. This chemical fractionation of the atmospheric aerosol by snow crystal formation and growth should be most active where narrow, continental cloud droplet size distributions and low liquid water contents are prevalent, enhancing the probability of snow crystal growth by diffusion.  相似文献   

18.
The effects of the hygroscopicity of a pre-existing particle distribution and condensation of nitric acid on cloud droplet formation were studied by using an air parcel and multicomponent condensation model. The pre-existing particle distribution used is a bimodal distribution in which the particles are assumed to be internally mixed, i.e. they are composed partly from ammonium nitrate salt and partly from some insoluble substance. The mean diameters of the distributions and the mass fraction of soluble salt were varied in the simulations. Generally, the number of activated cloud droplets was found to be increased, when the initial mass fraction of salt (i.e. the initial amount of salt) was increased. However, the effects of increased initial amount of salt on the cloud droplet formation were not straightforward in all cases studied. The effects of the condensing hygroscopic substance, with initial nitric acid concentrations of 0.1, 1.0 and 10.0 ppbv on the activation of cloud droplets were also studied. The number of activated droplets increased when the initial concentration of nitric acid was increased.  相似文献   

19.
Individual aerosol particles collected in the Negev desert in Israel during a summer and winter campaign in 1996–1997 were analysed by scanning electron microscopy with energy-dispersive X-ray analysis. Hierarchical cluster analysis was performed to interpret the data on the basis of particle diameter and composition. Eleven particle classes (groups) provided clues on sources and/or particle formation. The summer samples were enriched in sulphates and mineral dusts; the winter samples contained more sea salts, aged sea salts, and industrial particles. The fine size fraction below 1 m diameter was enriched in secondary particles and showed evidence of atmospheric processing. The secondary sulphate particles were mainly attributed to long-range transport. A regional conversion from calcite to calcium sulphate occurred during summer. Industrial particles originating from local pollution appeared during winter.  相似文献   

20.
Precipitation scavenging of aerosol particles is an important removal process in the atmosphere that can change aerosol physical and optical properties. This paper analyzes the changes in aerosol physical and optical properties before and after four rain events using in situ observations of mass concentration, number concentration, particle size distribution, scattering and absorption coefficients of aerosols in June and July 2013 at the Xianghe comprehensive atmospheric observation station in China. The results show the effect of rain scavenging is related to the rain intensity and duration, the wind speed and direction. During the rain events, the temporal variation of aerosol number concentration was consistent with the variation in mass concentration, but their size-resolved scavenging ratios were different. After the rain events, the increase in aerosol mass concentration began with an increase in particles with diameter 0.8 μm [measured using an aerodynamic particle sizer(APS)], and fine particles with diameter 0.1 μm [measured using a scanning mobility particle sizer(SMPS)]. Rainfall was most efficient at removing particles with diameter ~0.6 μm and greater than 3.5 μm. The changes in peak values of the particle number distribution(measured using the SMPS) before and after the rain events reflect the strong scavenging effect on particles within the 100–120 nm size range. The variation patterns of aerosol scattering and absorption coefficients before and after the rain events were similar, but their scavenging ratios differed, which may have been related to the aerosol particle size distribution and chemical composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号