首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
提供一个基于光变曲线的长γ暴光度的估计量.对BASTE记录到的12个已知红移的γ暴,利用时域上的时变分析方法计算了各暴的功率密度谱,用功率密度的峰值P表征光变曲线变化的剧烈程度.通过拟合发现在共动坐标系P与γ暴的各向同性峰值光度L之间存在着相关关系.这是继Norris等和Reichart等发现时间延迟与光度、变化率与光度的相关性之后又一个γ暴时变特征量与其光度之间的相关关系.  相似文献   

2.
This work presents a possible luminosity estimator for long γ-ray bursts (GRBs) based on their light curves. We use the method of variability analysis in the time domain to calculate the power density spectrum (PDS) for each of the 12 GRBs with known redshifts observed by CGRO/BATSE. The peak of the power density spectrum P is a measure of the intensity of variability of the given light curve and a strong correlation is found between P and the isotropic peak luminosity L of the GRB. It is a successor to the lag-luminosity relation of Norris et al. (2000) and the variability-luminosity relation of Reichart et al. (2001).  相似文献   

3.
Based on nine BATSE GRBs with known redshifts, we found that the maximum spectral lag of all the pulses in a gamma-ray burst (GRB) appears to be anti-correlated with the redshift of the burst. In order to confirm this finding, we analyzed 10 GRBs detected by HETE-2 with known redshifts and found a similar relation. Using the relation, we estimated the redshifts of 878 long GRBs in the BATSE catalog, then we investigated the distributions of the redshifts and 869 Eiso of these GRBs. The distribution of the estimated redshifts is concentrated at z = 1.4 and the distribution of Eiso peaks at 1052.5 erg. The underlying physics of the correlation is unclear at present.  相似文献   

4.
The luminosities of the optical afterglows of gamma-ray bursts, 12 h (rest-frame time) after the trigger, show a surprising clustering, with a minority of events being at a significantly smaller luminosity. If real, this dichotomy would be a crucial clue to understand the nature of optically dark afterglows, i.e. bursts that are detected in the X-ray band, but not in the optical. We investigate this issue by studying bursts of the pre- Swift era, both detected and undetected in the optical. The limiting magnitudes of the undetected ones are used to construct the probability that a generic burst is observed down to a given magnitude limit. Then, by simulating a large number of bursts with pre-assigned characteristics, we can compare the properties of the observed optical luminosity distribution with the simulated one. Our results suggest that the hints of bimodality present in the observed distribution reflect a real bimodality: either the optical luminosity distribution of bursts is intrinsically bimodal, or there exists a population of bursts with a quite significant grey absorption, i.e. wavelength-independent extinction. This population of intrinsically weak or grey-absorbed events can be associated with dark bursts.  相似文献   

5.
For the mechanism of production of γ-ray bursts (GRBs) it is rather generally recognized that the long-term γ-ray burst (LGRB) originates from the deaths of massive stars while the short-term γ-ray burst (SGRB) originates from the merging of close binaries. Therefore the speculation naturally follows that the number of LGRBs is directly proportional to the star formation rate (SFR). However, it is indicated from recent data analyses that this speculation does not fit the observations very well. It is considered that only massive stars with masses greater than a certain critical mass can produce the LGRB, so the initial mass function (IMF) of stars can significantly affect the production rate of LGRBs. In this paper it is considered that the IMF of stars can be used to explain the observed number distribution of the LGRBs with the redshift, and this has led to some good results.  相似文献   

6.
There is increasing evidence of a local population of short duration gamma-ray bursts (sGRB), but it remains to be seen whether this is a separate population to higher redshift bursts. Here we choose plausible luminosity functions (LFs) for both neutron star binary mergers and giant flares from soft gamma repeaters (SGR), and combined with theoretical and observed Galactic intrinsic rates we examine whether a single progenitor model can reproduce both the overall Burst and Transient Source Experiment (BATSE) sGRB number counts and a local population, or whether a dual progenitor population is required. Though there are large uncertainties in the intrinsic rates, we find that at least a bimodal LF consisting of lower and higher luminosity populations is required to reproduce both the overall BATSE sGRB number counts and a local burst distribution. Furthermore, the best-fitting parameters of the lower luminosity population agree well with the known properties of SGR giant flares, and the predicted numbers are sufficient to account for previous estimates of the local sGRB population.  相似文献   

7.
Observational surveys of galaxies are not trivially related to single-epoch snapshots from computer simulations. Observationally, an increase in the distance along the line of sight corresponds to an earlier cosmic time at which the properties of the surveyed galaxy population may change. The effect of observing a survey volume along the light cone must be considered in the regime where the mass function of galaxies varies exponentially with redshift. This occurs when the haloes under consideration are rare, that is either when they are very massive or observed at high redshift. While the effect of the light cone is negligible for narrow-band surveys of Lyα emitters, it can be significant for dropout surveys of Lyman-break galaxies (LBGs) where the selection functions of the photometric bands are broad. Since there are exponentially more haloes at the low-redshift end of the survey, the low-redshift tail of the selection function contains a disproportionate fraction of the galaxies observed in the survey. This leads to a redshift probability distribution for the dropout LBGs with a mean less than that of the photometric selection function (PHSF) by an amount of order the standard deviation of the PHSF. The inferred mass function of galaxies is then shallower than the true mass function at a single redshift with the abundance at the high-mass end being twice or more as large as expected. Moreover, the statistical moments of the count of galaxies calculated ignoring the light-cone effect deviate from the actual values.  相似文献   

8.
The effects of late gas accretion episodes and subsequent merger-induced starbursts on the photochemical evolution of elliptical galaxies are studied and compared to the picture of galaxy formation occurring at high redshift with a unique and intense starburst modulated by a very short infall, as suggested by Pipino and Matteucci in Paper I. By means of the comparison with the colour–magnitude relations (CMRs) and the  [〈Mg/Fe〉 V ]–σ  relation observed in ellipticals, we conclude that either bursts involving a gas mass comparable to the mass already transformed into stars during the first episode of star formation (SF) and occurring at any redshift, or bursts occurring at low redshift (i.e. z ≤ 0.2) and with a large range of accreted mass, are ruled out. These models fail in matching the above relations even if the initial infalling hypothesis is relaxed, and the galaxies form either by means of more complicated SF histories or by means of the classical monolithic model. On the other hand, galaxies accreting a small amount of gas at high redshift (i.e. z ≥ 3) produce a spread in the model results, with respect to the best model of Paper I, which is consistent with the observational scatter of the CMRs, although there is only marginal agreement with the  [〈Mg/Fe〉 V ]–σ  relation. Therefore, only small perturbations to the standard scenario seem to be allowed. We stress that the strongest constraints to galaxy-formation mechanisms are represented by the chemical abundances, whereas the colours can be reproduced under several different hypotheses.  相似文献   

9.
The variability of a gamma-ray burst (GRB) is thought to be correlated with its absolute peak luminosity, and this relation had been used to derive an estimate of the redshifts of GRBs. Recently, Amati et al. presented the results of spectral and energetic properties of several GRBs with known redshifts. Here, we analyse the properties of two groups of GRBs: one group with known redshift from afterglow observation and another group with redshift derived from the luminosity–variability relation. We study the redshift dependence of various GRBs features in their cosmological rest frames, including the burst duration, the isotropic luminosity and radiated energy, and the peak energy Ep of ν F ν spectra. We find that, for these two groups of GRBs, their properties are all redshift-dependent, i.e. their intrinsic duration, luminosity, radiated energy and peak energy Ep are all correlated with the redshift, which means that there are cosmological evolution effects on gamma-ray burst features, and this can provide an interesting clue to the nature of GRBs. If this is true, then the results also imply that the redshift derived from the luminosity–variability relation may be reliable.  相似文献   

10.
GRB 100219A at z = 4.667 has been the highest redshift gamma‐ray burst observed with the X‐shooter spectrograph up to now. The spectrum covering the range from 5000 to 24000 Å and a large number of absorption lines allows to make a detailed study of the interstellar medium in a high redshift galaxy. The ISM in the low ionisation state and the kinematics of the absorption line components reveal a complex velocity field. The metallicity measured from different absorption lines is around 0.1 solar. Other GRB hosts at redshift beyond ∼3 have similar metallicities albeit with a large scatter in the metallicity distribution. X‐shooter will allow us to determine metallicities of a larger number of GRB hosts beyond redshift 5, to probe the early chemical enrichment of the Universe and to study its evolution from redshift 2 to beyond 10 (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The current Swift sample of gamma-ray bursts (GRBs) with measured redshifts allows us to test the assumption that GRBs trace star formation in the Universe. Some authors have claimed that the rate of GRBs increases with cosmic redshift faster than the star formation rate, whose cause is not yet known. In this paper, I investigate the possibility of interpreting the observed discrepancy between the GRB rate history and the star formation rate history using cosmic metallicity evolution. I am motivated by the observation that cosmic metallicity evolves with redshift and GRBs tend to occur in low-metallicity galaxies. First, I derive a star formation history up to redshift   z = 7.4  from an updated sample of star formation rate densities. This is obtained by adding the new ultraviolet measurements of Bouwens et al. and the new ultraviolet and infrared measurements of Reddy et al. to the existing sample compiled by Hopkins & Beacom. Then, adopting a simple model for the relation between GRB production and the cosmic metallicity history as proposed by Langer & Norman, I show that the observed redshift distribution of the Swift GRBs can be reproduced with good accuracy. Although the results are limited by the small size of the GRB sample and the poorly understood selection biases in detection and localization of GRBs and in redshift determination, they suggest that GRBs trace both star formation and metallicity evolution. If the star formation history can be accurately measured with other approaches, which is presumably achievable in the near future, it will be possible to determine the cosmic metallicity evolution using the study of the redshift distribution of GRBs.  相似文献   

12.
Eddington-limited X-ray bursts from neutron stars can be used in conjunction with other spectroscopic observations to measure neutron star masses, radii and distances. In order to quantify some of the uncertainties in the determination of the Eddington limit, we analysed a large sample of photospheric radius-expansion thermonuclear bursts observed with the Rossi X-ray Timing Explorer . We identified the instant at which the expanded photosphere 'touches down' back on to the surface of the neutron star and compared the corresponding touchdown flux to the peak flux of each burst. We found that for the majority of sources, the ratio of these fluxes is smaller than ≃1.6, which is the maximum value expected from the changing gravitational redshift during the radius expansion episodes (for a  2 M  neutron star). The only sources for which this ratio is larger than ≃1.6 are high-inclination sources that include dippers and Cyg X-2. We discuss two possible geometric interpretations of this effect and show that the inferred masses and radii of neutron stars are not affected by this bias. On the other hand, systematic uncertainties as large as ∼50 per cent may be introduced to the distance determination.  相似文献   

13.
We perform Monte Carlo simulations of synthetic EMSS cluster samples, to quantify the systematic errors and the statistical uncertainties on the estimate of Ω0 derived from fits to the cluster number density evolution and to the X-ray temperature distribution up to z =0.83 . We identify the scatter around the relation between cluster X-ray luminosity and temperature to be a source of systematic error, of the order of ΔsystΩ0=0.09 , if not properly taken into account in the modelling. After correcting for this bias, our best Ω0 is 0.66. The uncertainties on the shape and normalization of the power spectrum of matter fluctuations imply relatively large uncertainties on this estimate of Ω0, of the order of ΔstatΩ0=0.1 at the 1 σ level. On the other hand, the statistical uncertainties due to the finite size of the high-redshift sample are twice as small. Therefore, what is needed in order to improve the accuracy of Ω0 estimates based on cluster number density evolution is a more reliable measure of the local temperature function and a better understanding of the cluster observed properties both in the local Universe and at high redshift, that is the relation between cluster mass, temperature and luminosity. This requires detailed observations of X-ray selected cluster samples, in comparison with hydrodynamic simulations including refined physics.  相似文献   

14.
Dynamical dark energy (DE) is a viable alternative to the cosmological constant. Constructing tests to discriminate between Λ and dynamical DE models is difficult, however, because the differences are not large. In this paper we explore tests based on the galaxy mass function, the void probability function (VPF), and the number of galaxy clusters. At high z , the number density of clusters shows large differences between DE models, but geometrical factors reduce the differences substantially. We find that detecting a model dependence in the cluster redshift distribution is a significant challenge. We show that the galaxy redshift distribution is potentially a more sensitive characteristic. We do this by populating dark matter haloes in N -body simulations with galaxies using well-tested halo occupation distributions. We also estimate the VPF and find that samples with the same angular surface density of galaxies, in different models, exhibition almost model-independent VPF which therefore cannot be used as a test for DE. Once again, geometry and cosmic evolution compensate each other. By comparing VPFs for samples with fixed galaxy mass limits, we find measurable differences.  相似文献   

15.
Although more than 2000 astronomical gamma-ray bursts (GRBs) have been detected, the precise progenitor responsible for these events is unknown. The temporal phenomenology observed in GRBs can significantly constrain the different models. Here we analyse the time histories of a sample of bright, long GRBs, searching for the ones exhibiting relatively long (more than 5 per cent of the total burst duration) 'quiescent times', defined as the intervals between adjacent episodes of emission during which the gamma-ray count rate drops to the background level. We find a quantitative relation between the duration of an emission episode and the quiescent time elapsed since the previous episode. We suggest here that the mechanism responsible for the extraction and the dissipation of energy has to take place in a metastable configuration, such that the longer the accumulation period, the higher the stored energy available for the next emission episode.  相似文献   

16.
From radio spectra between 160 and 320 MHz of chains of type I bursts it appears that their duration distributions allow an exponential fit, and that those of samples containing long and short chains respectively, taken from the same storm, have virtually the same characteristic time (logarithmic slope). On the average this figure decreases - as a function of the frequency - at about 1 s per 10 MHz. The high frequency cut-off of chain activity (noise storms) is mainly a consequence of the frequency dependence of the probability for the first burst of a chain to appear. Given the density of type I bursts in a chain, it is concluded that the probability of a type I burst to be followed by another one is at least 90% below 250 MHz and 70–80% at 300 MHz, which makes it essential for type I theories to include a mechanism to this effect. The drift rate distribution for chains is symmetrical with a peak at-10 MHz/s. The statistics is indicative of a correlation between drift rate and duration. No evidence has been found for the occurrence of chain pairs or frequency splitting in chains, nor for an association between chains and type III bursts.  相似文献   

17.
The proposed correlations between the energetics of gamma-ray bursts (GRBs) and their spectral properties, namely the peak energy of their prompt emission, can broadly account for the observed fluence distribution of all 'bright' BATSE GRBs, under the hypothesis that the GRB rate is proportional to the star formation rate and that the observed distribution in peak energy is independent of redshift. The correlations can also be broadly consistent with the properties of the whole BATSE long GRB population for a peak energy distribution smoothly extending towards lower energies, and in agreement with the properties of a sample at 'intermediate' fluences and with the luminosity functions inferred from the GRB number counts. We discuss the constraints that this analysis imposes on the shape of such peak energy distribution, the opening angle distribution and the tightness of the proposed correlations.  相似文献   

18.
A gamma-ray burst (GRB) releases an amount of energy similar to that of a supernova explosion, which combined with its rapid variability suggests an origin related to neutron stars or black holes. Since these compact stellar remnants form from the most massive stars not long after their birth, GRBs should trace the star formation rate in the Universe; we show that the GRB flux distribution is consistent with this. Because of the strong evolution of the star formation rate with redshift, it follows that the dimmest known bursts have z  ∼ 6, much above the value usually quoted and beyond the most distant quasars. This explains the absence of bright galaxies in well-studied GRB error boxes. The increased distances imply a peak luminosity of 8.3 × 1051 erg s−1 and a rate density of 0.025 per million years per galaxy. These values are 20 times higher and 150 times lower, respectively, than are implied by fits with non-evolving GRB rates. This means either that GRBs are caused by a much rarer phenomenon than mergers of binary neutron stars, or that their gamma-ray emission is often invisible to us due to beaming. Precise burst locations from optical transients will discriminate between the various models for GRBs from stellar deaths, because the distance between progenitor birth place and burst varies greatly among them. The dimmest GRBs are then the most distant known objects, and may probe the Universe at an age when the first stars were forming.  相似文献   

19.
We present estimates of the photometric redshifts, stellar masses and star formation histories of sources in the Submillimetre Common-User Bolometer Array (SCUBA) HAlf Degree Extragalactic Survey (SHADES). This paper describes the 60 SCUBA sources detected in the Lockman Hole covering an area of ∼320 arcmin2. Using photometry spanning the B band to 8 μm, we find that the average SCUBA source forms a significant fraction of its stars in an early period of star formation and that most of the remainder forms in a shorter more intense burst around the redshift it is observed. This trend does not vary significantly with source redshift. However, the sources show a clear increase in stellar mass with redshift, consistent with downsizing. In terms of spectral energy distribution types, only two out of the 51 sources we have obtained photometric redshifts for are best fitted by a quasar-like spectrum, with approximately 80 per cent of the sources being best fitted with late-type spectra (Sc, Im and starburst). By including photometry at 850 μm, we conclude that the average SCUBA source is forming stars at a rate somewhere between 6 and 30 times the rate implied from the rest-frame optical in a dust obscured burst and that this burst creates 15–65 per cent of the total stellar mass. Using a simplistic calculation, we estimate from the average star formation history that between one in five and one in 15 bright  ( L *+ 2 < L optical < L *− 1 mag)  galaxies in the field over the interval  0 < z < 3  will at some point in their lifetime experience a similar energetic dusty burst of star formation. Finally, we compute the evolution of the star formation rate density and find it peaks around   z ∼ 2  .  相似文献   

20.
The deviation from the power-law decline of the optical flux observed in GRB 970228 and GRB 980326 has been used recently to argue in favor of the connection between gamma-ray bursts and supernovae. We consider an alternative explanation for this phenomenon, based on the scattering of a prompt optical burst by 0.1 M middle dot in circle dust located beyond its sublimation radius 0.1-1 pc from the burst. In both cases, the optical energy observed at the time of the first detection of the afterglow suffices to produce an echo after approximately 20-30 days, as observed. Prompt optical monitoring of future bursts and multiband photometry of the afterglows will enable us to test simple models of dust reprocessing quantitatively and to predict source redshift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号