首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
Interannual variability(IAV) in the barrier layer thickness(BLT) and forcing mechanisms in the eastern equatorial Indian Ocean(EEIO) and Bay of Bengal(BoB) are examined using monthly Argo data sets during 2002–2017. The BLT during November–January(NDJ) in the EEIO shows strong IAV, which is associated with the Indian Ocean dipole mode(IOD), with the IOD leading the BLT by two months. During the negative IOD phase, the westerly wind anomalies driving the downwelling Kelvin waves increase the isothermal layer depth(ILD). Moreover, the variability in the mixed layer depth(MLD) is complex. Affected by the Wyrtki jet, the MLD presents negative anomalies west of 85°E and strong positive anomalies between 85°E and 93°E. Therefore, the BLT shows positive anomalies except between 86°E and 92°E in the EEIO. Additionally, the IAV in the BLT during December–February(DJF) in the BoB is also investigated. In the eastern and northeastern BoB, the IAV in the BLT is remotely forced by equatorial zonal wind stress anomalies associated with the El Ni?o-Southern Oscillation(ENSO). In the western BoB, the regional surface wind forcing-related ENSO modulates the BLT variations.  相似文献   

2.
印度洋赤道潜流(equatorial undercurrent,EUC)是赤道流系的重要组成部分,对印度洋物质输运和能量交换有着重要意义.基于SODA 3.4.2海洋再分析数据,对印度洋EUC的三维空间结构和年际变化特征进行分析,并揭示其年际变率与印度洋偶极子(Indian Ocean dipole,IOD)的联系.结...  相似文献   

3.
利用2002—2015年ARGO网格化的温度、盐度数据, 结合卫星资料揭示了赤道东印度洋和孟加拉湾障碍层厚度的季节内和准半年变化特征, 探讨了其变化机制。结果表明, 障碍层厚度变化的两个高值区域出现在赤道东印度洋和孟加拉湾北部。在赤道区域, 障碍层同时受到等温层和混合层变化的影响, 5—7月和11—1月受西风驱动, Wyrtki急流携带阿拉伯海的高盐水与表层的淡水形成盐度层结, 同时西风驱动的下沉Kelvin波加深了等温层, 混合层与等温层分离, 障碍层形成。在湾内, 充沛的降雨和径流带来的大量淡水产生很强的盐度层结, 混合层全年都非常浅, 障碍层季节内变化和准半年变化主要受等温层深度变化的影响。上述两个区域障碍层变化存在关联, 季节内和准半年周期的赤道纬向风驱动的波动过程是它们存在联系的根本原因。赤道东印度洋地区的西风(东风)强迫出向东传的下沉(上升)的Kelvin波, 在苏门答腊岛西岸转变为沿岸Kelvin波向北传到孟加拉湾的东边界和北边界, 并且在缅甸的伊洛瓦底江三角洲顶部(95°E, 16°N)激发出向西的Rossby波, 造成湾内等温层深度的正(负)异常, 波动传播的速度决定了湾内的变化过程滞后于赤道区域1~2个月。  相似文献   

4.
热带印度洋偶极子事件和副热带印度洋偶极子事件的联系   总被引:6,自引:0,他引:6  
分别对热带印度洋偶极子事件和副热带印度洋偶极子事件的时间序列进行了周期分析。结果表明,热带印度洋偶极子事件的主要振荡周期为2 a和4 a,而副热带偶极子事件的主要振荡周期为8 a;对整个印度洋海区的海表温度距平进行2~8 a的带通滤波,发现未滤波之前,2个事件的相关性很低,而在进行了滤波之后,2个事件的相关性有很大的提高,并且当副热带印度洋偶极子事件超前热带印度洋偶极子事件9个月时,二者具有很强的相关性。通过对温度场和风场的分析,从物理上解释了2个事件之间的相互联系。  相似文献   

5.
利用1950-2006年间日本气象局月平均温、盐度资料,分析了热带印度洋热含量异常场的年际时空变化特征,并分别探讨了热含量年际变异与ENSO、印度洋偶极子(IOD)、南印度洋偶极子(SIOD)和热带印度洋纬向风异常的关系.结果表明,热带印度洋热含量异常场的年际振荡是由空间结构不同但变化周期相近的两个主要模态构成的,这两...  相似文献   

6.
用59年Ishii再分析温度资料,讨论了热带西南印度洋(SWTIO)上升流区的季节和年际变化以及与上升流区有关的温度距平的变化,同时分析了其与热带印太海气系统的关系,结果显示SWTIO 上升流在南半球冬、夏季比较强,春季最弱。它的范围在5°~1°S,在东西向从50°E可以伸展到90°E。该上升流区的变化与温跃层的温度距平有密切的关系,并存在明显的5 a振荡周期。SWTIO上升流区温度距平的5 a周期振荡是由热带东印度洋温度距平在最大垂直温度距平曲面(MTAL)上向西沿着11.5°~6.5°S传播过来的,它与热带太平洋的温度距平传播方式不同。SWTIO上升流是热带印太海气系统的一个重要组成部分,印度洋偶极子 超前SWTIO上升流区温度变化5个月,最大相关系数达到0.57,NINO3区指数超前SWTIO上升流区指数2个月达到0.49。当热带印太区域的大气风场改变,影响热带太平洋和印度洋表层SSTA,出现ENSO和DIPOLE,进一步向西传播到SWTIO次表层,导致SWTIO上升流区出现改变。  相似文献   

7.
西北太平洋海平面异常模态在纯拉尼娜事件与拉尼娜和负印度洋偶极子(IOD)事件同时发生时表现出完全不同的形态。在纯拉尼娜事件期间,西北太平洋海平面呈现显著的正异常;而2010/2011拉尼娜事件期间西北太平洋海平面明显降低,呈显著的负异常,其与印度洋负IOD事件密切相关。研究结果表明,负IOD事件能在热带西太平洋驱动显著的西风异常,由此减弱了拉尼娜峰值期间西北太平洋海平面正异常。同时,在负IOD峰值期的9月,在日经线附近存在显著的风应力旋度正异常,激发负的海平面异常以Rossby波的形式向西传播,并在第二年6月抵达菲律宾以东海域,维持并加强该海域海平面负异常,进而对北赤道流分叉点位置及输运产生重要的影响。  相似文献   

8.
为了增进对南印度洋副热带偶极子(Subtropical Indian Ocean Dipole,SIOD)年代际变化的认识,基于Hadley中心的海表面温度(sea surface temperature,SST)、美国国家环境预报中心的大气再分析数据集Ⅰ(NCEP-NCAR Reanalysis1,NCEP)的大气再分析数据和欧洲中期天气预报中心的海洋再分析数据(Ocean Reanalysis System 4,ORAS4)等,本文分析了1958~2020年SIOD年代际转变的特征和物理机制。结果显示,2000年之前,SIOD存在2~4 a和4~6 a两个年际主周期,但近20 a(2000~2020年)其年际变化周期以1.5~2.0 a为主。与此同时,SIOD的空间特征及其强度在1987年和2004年左右出现了两次显著的年代际转变:1958~1986年(P1)期间强度最大,1987~2003年(P2)期间最弱,2004~2020年(P3)期间居中;P1期间SIOD的最大正SST异常(sea surface temperature anomalies,SSTA)中心位于(46°~80...  相似文献   

9.
印度洋偶极子及其可预报性研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
主要介绍印度洋偶极子(IOD)的时空特征、演变机制和可预报性的研究进展。IOD是东西热带印度洋反相的海温异常,是热带印度洋的年际海温变率最主要的两种异常结构之一。关于IOD的演变机制,特别是ENSO在其中所起作用,一直是学界争论的热点。一些学者认为,IOD是ENSO通过遥相关作用对热带印度洋造成的影响;另一些学者则认为,IOD是热带印度洋内部海气振荡的产物。本研究重点讨论这两种观点的相关证据以及IOD与ENSO的关系。此外,现有多数模式对IOD的预报时效小于3~4个月,潜在的预报时效则大于5个月,但这些对IOD的可预报性研究尚处于起步阶段,还有很大发展空间。  相似文献   

10.
热带印度洋降水的年际变化特征分析   总被引:1,自引:0,他引:1  
对热带印度洋海区逐月降水资料的分析表明,热带印度洋海区降水年际变化的主要特征表现为东、西方向反位相的偶极子模态,该模态与热带印度洋海区低空纬向风场异常有较强的相关,并且与太平洋ENSO事件存在显著相关。另外对偶极子型降水主要模态的周期分析表明,偶极子型降水距平还存在1.5 a和4 a左右的变化周期。  相似文献   

11.
12.
在冬季,孟加拉湾北部存在显著的季节性逆温现象。利用Argo浮标和锚碇浮标资料,分析了冬季孟加拉湾逆温现象的观测特征和维持机制。结果表明,系统性的逆温现象主要局限于15°N以北的区域,它最早于11月份出现在恒河、伊洛瓦底江和戈达瓦里河的河口区域。逆温的强度及分布区域在1月份达到最大,随后从西南部逐步退化,3月逆温现象基本消失。冬季的逆温层位于障碍层之中,厚度在35 m左右,最大海温位于40~60 m深度,整层满足静力稳定条件。对混合层温度和盐度的诊断表明,逆温的出现主要与冬季风导致的强烈海表热量损失有关,低盐水的平流过程也对逆温现象有一定的维持作用。  相似文献   

13.
文章主要使用全球简单海洋资料同化分析系统(Simple Ocean Data Assimilation, SODA)产出的海洋再分析数据产品和美国国家环境预报中心(National Centers for Environmental Prediction, NCEP)发布的风场资料, 通过能量学方法分析了2000—2015年夏季至秋季(6—11月)孟加拉湾涡-流相互作用特征在不同印度洋偶极子(Indian Ocean Dipole, IOD)事件发生年的表现。结果表明, 在IOD负位相年更强的西南季风背景下, 涡动能和涡势能的量值均较大, 海洋不稳定过程更多地将平均流场的能量输向涡旋场, IOD正位相年反之。另外, 研究发现孟加拉湾湾口区的涡动能在个别年份会发展出一种与气候态存在显著异常的空间分布, 即在个别年份湾口中央海域异常出现涡动能极大值。通过对出现该异常现象最显著的2010年进行个例分析, 发现当年的孟加拉湾海表风场发展出一个气旋式环流异常, 显著地改变了海洋上层环流形态, 极大地影响了平均流场与涡旋场之间的相互作用。进一步对维持涡动能平衡的各做功项进行诊断后发现, 湾口异常海域涡动能年际变化的主要影响因素为海洋内部的压强做功, 其次是正压不稳定过程和平流的做功, 海表风应力做功项贡献较小。  相似文献   

14.
In this paper, effort is made to demonstrate the quality of high-resolution regional ocean circulation model in realistically simulating the circulation and variability properties of the northern Indian Ocean(10°S–25°N,45°–100°E) covering the Arabian Sea(AS) and Bay of Bengal(BoB). The model run using the open boundary conditions is carried out at 10 km horizontal resolution and highest vertical resolution of 2 m in the upper ocean.The surface and sub-surface structure of hydrographic variables(temperature and salinity) and currents is compared against the observations during 1998–2014(17 years). In particular, the seasonal variability of the sea surface temperature, sea surface salinity, and surface currents over the model domain is studied. The highresolution model's ability in correct estimation of the spatio-temporal mixed layer depth(MLD) variability of the AS and BoB is also shown. The lowest MLD values are observed during spring(March-April-May) and highest during winter(December-January-February) seasons. The maximum MLD in the AS(BoB) during December to February reaches 150 m (67 m). On the other hand, the minimum MLD in these regions during March-April-May becomes as low as 11–12 m. The influence of wind stress, net heat flux and freshwater flux on the seasonal variability of the MLD is discussed. The physical processes controlling the seasonal cycle of sea surface temperature are investigated by carrying out mixed layer heat budget analysis. It is found that air-sea fluxes play a dominant role in the seasonal evolution of sea surface temperature of the northern Indian Ocean and the contribution of horizontal advection, vertical entrainment and diffusion processes is small. The upper ocean zonal and meridional volume transport across different sections in the AS and BoB is also computed. The seasonal variability of the transports is studied in the context of monsoonal currents.  相似文献   

15.
本文基于1982−2021年的NOAA最优插值海表温度等资料,分析了孟加拉湾海洋热浪季节分布特征与可能成因。结果表明:大致以斯里兰卡岛与缅甸伊洛瓦底江河口连线为界,孟加拉湾西北部与东南部海域海洋热浪频率和天数呈现出不同的季节变化特征。在湾西北部海域,海洋热浪频率和天数季节变化较显著,均在夏季达到最大,春、秋季次之,冬季最少。而在湾东南部海域,二者的季节变化相对较弱。依据海洋热浪累积强度将海洋热浪从弱至强分为I~IV4种等级。分析显示,I类和II类较弱海洋热浪主要发生于夏、秋季的湾西部或西北部海域;III类以上严重海洋热浪则多发于春季的安达曼海和湾东南部海域以及夏季的缅甸西南部海域。进一步分析表明,在春、夏和秋季大部分海洋热浪活跃区,较浅的混合层及海表净热通量的变化对这些海区海洋热浪活动可能起主要作用,而冬季湾东南部海域海洋热浪形成与维持可能主要与赤道远地强迫有关。  相似文献   

16.
A regional ocean circulation model with four-dimensional variational data assimilation scheme is configured to study the ocean state of the Indian Ocean region (65°E–95°E; 5°N–20°N) covering the Arabian Sea (AS) and Bay of Bengal (BoB). The state estimation setup uses 10 km horizontal resolution and 5 m vertical resolution in the upper ocean. The in-situ temperature and salinity, satellite-derived observations of sea surface height, and blended (in-situ and satellite-derived) observations of sea surface temperature alongwith their associated uncertainties are used for data assimilation with the regionally configured ocean model. The ocean state estimation is carried out for 61 days (1 June to 31 July 2013). The assimilated fields are closer to observations compared to other global state estimates. The mixed layer depth (MLD) of the region shows deepening during the period of assimilation with AS showing higher MLD compared to the BoB. An empirical forecast equation is derived for the prediction of MLD using the air–sea forcing variables as predictors. The surface and sub-surface (50 m) heat and salt budget tendencies of the region are also investigated. It is found that at the sub-surface, only the advection and diffusion temperature and salt tendencies are important.  相似文献   

17.
Annual and interannual variations of sea-level anomaly (SLA) in the Bay of Bengal and the Andaman Sea are investigated using altimeter-derived SLA data from 1993 to 2003. It is found that the SLA annual variation in the study area can be divided into three phases with distinctive patterns. During the southwest monsoon (May-September), positive SLA presents in the equatorial region and extends northward along the eastern boundary of the bay, and the SLA distribution in the interior bay appears to be high in the east and low in the west with two cyclonic cells developing in the north and south of the western bay respectively, between which an anticyclonic cell exists. During the early northeast monsoon (October-December), the whole bay is dominated by a large cyclonic cell with the pattern of high SLA in the east and low in the west still retained, and the SLA distribution outside the bay is changed in response to the reversal of the Indian Monsoon Current (IMC) in November. During the late northeast monsoon (January-April), a large anticyclonic cell of SLA develops in the bay with negative SLA prevailing in the equatorial region and extending northward along the eastern boundary of bay. Therefore, the SLA distribution in the interior bay reverses to be high in the west and low in the east. It is suggested that the SLA annual variation in the bay is primarily driven by the local wind stress curl, involving Sverdrup balance while the abrupt SLA variation during the peak of northeast monsoon may be partly caused by the semiannual fluctuation of wind in the equatorial region. This fast adjustment in the interior bay is induced by the upwelling coastal Kelvin wave excited by the decay of Wyrtki jet during December through January. Besides the annual variation, in the bay, there are obvious SLA fluctuations with the periods of 2 and 3~7 a, which are driven by the interannual variability of large-scale wind field in the equatorial region. The coastal Kelvin wave also provides an important link for the SLA interannual variation between the equatorial region and the interior bay. It is found that the El Nio-Southern Oscillation (ENSO)-induced influence on the SLA interannual variation in the interior bay is stronger than the Indian Ocean dipole (IOD) with the associated pattern of low sea-level presenting along the periphery of the bay and high sea-level in the northeast of Sri Lanka.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号