共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
3.
4.
5.
6.
利用1984-1998年4-9月驻马店雷达探测资料和地面观测资料,分析了强对流天气的时空分布特征,并根据强对流天气的回波形态,强度,高度和路径,确定了预报掼标,在微机上开发了强对流天气短时预报烽务系统。 相似文献
7.
8.
9.
鲁中地区分类强对流天气环境参量特征分析 总被引:10,自引:3,他引:10
将山东中部地区16 a暖季(4-9月)106次伴随瞬时风力不低于8级的强对流个例划分为雷暴大风、冰雹雷暴大风和强降水混合型等3种类型,利用常规探空资料和地面观测资料,通过箱须图的形式分别讨论3种类型对应的一系列关键环境参数的分布特征和预报阈值。进一步,又将上述106次个例中的特强对流个例,包括产生25 m/s以上瞬时大风的特强雷暴大风个例、产生不小于20 mm直径冰雹的特强冰雹个例以及50 mm/h或以上强度的特强短时强降水个例提取出来构成一个子集,讨论其关键环境参数分布特征和预报阈值,并与全部对流个例的相应关键环境参数进行比较。最后,对鲁中地区强对流系统的触发机制进行了简要阐述和讨论。结果表明:(1)雷暴大风型、冰雹雷暴大风型和强降水混合型对应的850和500 hPa温差的最低阈值为25℃; 3种类型对应的地面露点最低阈值分别为13、16和24℃; 相应的大气可降水量最低阈值分别为20、24和32 mm; 相应对流有效位能的最低阈值分别为300、900和1300 J/kg; 相应的0-6 km风垂直切变最低阈值分别为12.0、12.5和8.0 m/s。(2)通过地面露点、大气可降水量以及暖云层厚度等关键参数的分布特征可以将上述3种类型的前两种与第3种类型即强降水混合型进行一定程度的区分,但要通过各个关键参数的分布特征区分前两种强对流天气是困难的。(3)对于伴随冰雹的强对流天气,适宜的融化层高度为3.0-3.9 km; (4)特强雷暴大风、特强冰雹和特强短时强降水等3种特强对流类型与全部强对流个例的3种类型相比,其条件不稳定度明显增大,体现为850和500 hPa温差的增大、水汽条件有所加强、对流有效位能明显增大,3种类型特强对流天气对应的对流有效位能最低阈值分别为1000、1100和2000 J/kg; 相应的0-6 km风垂直切变最低阈值分别为16、12和11 m/s,即特强雷暴大风型和特强短时强降水型的风垂直切变阈值明显增大。上述工作构成了山东中部伴随雷暴大风的强对流天气短时预报的一个基础,结合各类强对流天气发生的气候概率,可以通过决策树或模糊逻辑方法制作成适合于地、市气象台的分类强对流天气短时预报系统。 相似文献
10.
上海地区强对流天气短时预报系统 总被引:16,自引:2,他引:16
以强对流天气的发生、发展规律为依据,从中尺度数值预报模式输出结果、Doppler天气雷达、静止气象卫星、MICAPS系统和自动雨量站网等获取大气运动的各种尺度动力条件、水汽条件、大气稳定度和触发机制,各种天气实况等动态变化资料,结合预报员经验,建立了“上海地区强对流天气短时预报系统”(以下简称“预报系统”),预报系统产品包括强对流天气的形势分析、0~12h展望预报、0~3h滚动预报及警报。预报系统 相似文献
11.
介绍淮河流域暴雨预警系统和所采用的处理方法。该系统利用合肥CIN—RAD雷达体扫资料,配合地面雨量观测资料,采用最优判别系教法建立了适合淮河流域的孔关系,用以估算每6分钟的降水量。此外系统还在区分GMS-5卫星云图上不同种类云系的基础上,配合地面观测,采用数理统计方法建立了淮河流域GMS-5卫星估算降水多通道经验公式。在CINRAD雷达和GMS-5卫星的雨量估算结果的基础上,通过与站点观测雨量的对比分析,利用数理统计方法对这两类估算雨量资料进行了集成。集成估算得到的雨量值较单独用CINRAD雷达或GMS5卫星进行雨量估算的结果在精度上有所改进,能更精确地对淮河流域雨量进行估算,进而结合HLAFS数值预报产品进行致洪暴雨的预警。该系统在2003年汛期成功地对淮河流域出现的几次暴雨过程进行了预警,汛期服务效果显著。 相似文献
12.
13.
苏沪浙地区短时强降水与冰雹天气分布及物理量特征对比分析 总被引:8,自引:1,他引:8
利用1971-2006年气象记录月报表A文件资料及1999-2009年自计、自动站降水资料对苏浙沪地区短时强降水与冰雹天气时空分布特征进行统计分析基础上,对华北冷涡背景条件下区域性冰雹与3小时降水量大于100 mm的极端降水过程环境场条件差异进行了对比.归纳了两种强对流天气的物理量阈值.结果表明:冰雹年发生频率先递减后略增,30~50mm·h-1降水天气日数缓慢增加,高发区均位于江苏省北部.强降水较冰雹天气华北冷涡浅薄位置偏南,冷空气强度较弱,伴随低空急流,深厚湿对流明显;冰雹天气时高空急流强盛且偏南,上千下湿呈干对流风暴特征,两者均由低层不连续线触发.统计表明,0℃层高度、△T850-500、K指数、可降水量和高空风切变等参数冰雹与强降水天气分别平均相差-1700m、7℃、8℃、-37 mm和1.63×10-3s-1,这些物理量用来区分对流天气类型较好. 相似文献
14.
利用地面气象观测、FY-2G卫星TBB、多普勒雷达、ERA5再分析资料,以及江西快速循环同化系统等资料,分析了2020年7月9日吉泰盆地梅雨期特大暴雨天气过程的中尺度系统演变特征及机制。过程分为线状对流系统MCS-A转向、南压阶段和单体对流系统MCS-B、MCS-C北移发展阶段。结合盆地西侧山区、盆地北部、盆地南部三个暴雨区,重点分析了暴雨天气过程的第一阶段。结果表明:1)边界层辐合线触发MCS-A,后者西侧不断并入边界层辐合线上和低空急流前端的新生单体,形成“列车效应”。2)弱降水冷池驱动MCS-A中强降水雨团向西南方向传播以及MCS-A与弱降水雨团合并,共同导致了MCS-A转向。3)受幕府山和吉泰盆地地形绕流作用,对流层中低层中-β尺度低涡在吉泰盆地东北部停留约5 h,激发盆地西部、北部对流活动的发展。4)对流系统处于准静止态,急流前端存在中-γ尺度涡旋,导致MCS-A中强对流单体在吉泰盆地南部长时间维持。 相似文献
15.
一次强对流天气的中尺度分析 总被引:3,自引:2,他引:3
本文对2002年8月27日的强对流天气进行了分析,这次强对流是在对流层中层非常干燥,具有强不稳定层结和中等垂直切变条件下发生的,而中尺度自动站资料和多普勒雷达资料对确定强对流发生的具体时间和落区有非常重要的意义。 相似文献
16.
通过对洛阳地区11次强对流天气进行分析,发现强对流天气分两类,并分别和不同的中尺度系统相联系.两类强对流天气发生在不同的大尺度环境场中,不仅环流形势不同,环境特征也有明显差异,因而对他们的预报思路和着眼点也应区别对待. 相似文献
17.
通过对洛阳地区11次强对流天气进行分析,发现强对流天气分两类,并分别和不同的中尺度系统相联系,两强对流天气发生在不同的大尺度环境场中,不仅环流形势不同,环境特征也有明显差异,因而对他们的预报思路和着眼点也应区别对待。 相似文献
18.
19.
一次强盛副高控制下的短时暴雨诊断分析 总被引:4,自引:0,他引:4
利用广东省GIS业务辅助平台、汕头站探空资料和中尺度自动观测站,配合雷达回波图等,从天气环流形势和中尺度系统分析的角度,分析强盛副热带高压控制下揭阳市的一次短时暴雨天气,得出中低层流场的改变,副高东南侧的东北气流和强热带风暴“韦森特”东北侧的东南气流交汇在福建和粤东附近,造成了此次暴雨的扰动环境;地面风场的辐合提供了上升运动的动力条件,中层弱的冷平流是此次强对流天气的触发机制,“喇叭口”地形对降水增幅、逆风区对对流的维持和加强都起到了十分重要的作用;对中尺度物理量进行计算分析证实这是一次中等强度的雷暴天气过程。 相似文献
20.
甘肃河西走廊两次强对流天气对比分析 总被引:1,自引:0,他引:1
使用地面高空观测资料、NCEP 1°×1°6小时再分析数据和张掖CINRAD/CC雷达观测数据,对2006年7月7日、8月10日发生在甘肃河西走廊中部的两次强对流天气的环流形势、大气稳定度、相对风暴螺旋度(SRH)、天气雷达回波特征进行了对比分析.分析结果表明:产生这两次强对流天气环流形势不同.7月7日飑线对流系统产生于北部沙漠戈壁由北向南移动,右移飑线前部结构为气旋式旋转;8月10日对流系统产生于青藏高原由南向北移动,来自高原上的暖湿气流水汽充足,不稳定层比7月7日深厚,产生冰雹的左移超级单体结构为反气旋式旋转.7月7日右移飑线相对风暴螺旋度降雹前为正值,降雹开始后转为负值;8月10日左移反气旋超级单体相对风暴螺旋度在发展期为负值,降雹开始后跃增到60m2·s-2以上. 相似文献