首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
利用2014—2016年银川市区近地面臭氧质量浓度观测资料、国家基准气候站银川站地面气象观测资料以及亚欧范围内地面、探空气象观测资料,从气象要素及环流形势两方面系统探讨气象条件对银川臭氧质量浓度的影响.结果表明:银川市区臭氧质量浓度与气温呈正相关,与相对湿度呈负相关;风力较小时垂直混合起主导作用,臭氧质量浓度与风力呈正...  相似文献   

2.
利用2015—2018年青海东部城市群的逐日空气质量数据、常规气象观测和ERA-Interim再分析资料,对该地区O3污染天气特征及其气象条件进行了分析。结果表明:最高(低)气温、温度露点差、日照时数及总辐射为青海东部城市群O3污染的正向影响因子,其中最高气温、温度露点差及总辐射的影响程度最大。海平面气压、|ΔP24|、|ΔT24|、总(低)云量为负向影响因子,其中海平面气压和|ΔT24|的影响程度最大。O3污染日的地面天气系统类型主要为低压型、低压前部型及均压场型,其中低压前部型和低压型最有利于O3污染天气的发生,这两种天气类型较为稳定且不容易被破坏。O3污染日的近地面层为热低压,中层弱对流受上空稳定气流抑制,受高压中心或高压脊控制的辐散环流及下沉运动(低压型)影响,无明显垂直运动(低压前部型及均压场型)。垂直方向存在多层逆温层,地面层干区明显,风速整体上较小,为该地区O3污染提供了有利的...  相似文献   

3.
2010年春季民勤沙地近地面沙尘气溶胶浓度特征   总被引:2,自引:2,他引:2       下载免费PDF全文
为了更好地研究沙尘气溶胶起沙和输送特征,2010年4—5月,在民勤周边沙地利用EZ LIDAR ALS300ALS450型激光雷达和GRI MM180型颗粒物采样器进行了大气气溶胶的外场连续观测,取得了晴天、浮尘、扬沙和沙尘暴天气条件下沙尘气溶胶总后向散射垂直剖面图和PM10、PM2.5、PM1.0质量浓度采样资料,其中包2010年4月24日特强沙尘暴过程资料。结果表明:春季民勤近地层大气中沙尘气溶胶浓度较高,且随气象要素的变化很大;在整个观测期内,PM10、PM2.5和PM1.0的平均质量浓度分别为202.3、57.4μg/m3和16.7μg/m3。在不同天气条件下,PM10、PM2.5和PM1.0质量浓度的变化有较好的相关性,但变化趋势有所不同。在沙尘暴天气条件下,PM10的日平均质量浓度高达2469.1μg/m3,是背景天气条件下PM10日平均质量浓度的100多倍,是浮尘天气条件下PM10日平均质量浓度的8倍,是扬沙天气条件下PM10日平均质量浓度的2倍。PM2.5在沙尘暴天气下日平均质量浓度为460.3μg/m3,是背景天气条件下PM2.5日平均质量浓度的45倍,是浮尘天气条件下PM2.5日平均质量浓度的6倍,是扬沙天气条件下PM2.5日平均质量浓度的1.4倍。PM1.0在沙尘暴天气条件下的日平均浓度为92.7μg/m3,是背景天气条件下PM1.0日平均浓度的13倍,是浮尘天气条件下PM1.0日平均浓度的7倍,是扬沙天气条件下PM1.0日平均浓度的1.3倍。可见,风速增大时,沙尘粒子浓度的增加对粒子粒径是有选择的,小粒子比重随沙尘浓度增加而相对减小,大粒子比重随沙尘浓度增加而相对增多。通过对2010年4月24日特强沙尘暴过程的研究表明,一次沙尘暴过程往往包括沙尘暴、扬沙和浮尘天气中的两种类型。通过对激光雷达数据分析发现,在强沙尘暴发生过程当中,民勤沙地发生了非常严重的风蚀起沙现象。  相似文献   

4.
基于2013~2017年重庆北碚区缙云山、蔡家和天生3个环境监测站点日值数据,结合地闪观测数据和相关气象要素资料,采用数理统计方法分析了气象条件与O3浓度的关系,并基于HYSPLIT模型研究了闪电日O3传输路径和潜在源区。结果表明:(1)北碚O3浓度峰值大多出现在7月,低值大多出现在12月,其浓度分布从高到低依次为缙云山、蔡家、天生。(2)对比闪电日与非闪电日大气污染浓度,闪电日NO2、CO平均浓度低于非闪电日,O3则相反,闪电日缙云山O3浓度超标率明显低于蔡家和天生。(3)NO2浓度与地闪频次呈负相关,且天生和蔡家NO2浓度波动大于缙云山,O3浓度与地闪频次呈正相关。(4)夏季闪电日O3气团传输路径主要来自南方。(5)地闪活动发生时O3浓度高于非闪电日,其主要原因是夏季地闪频次较高,电解反应频繁,同时重庆夏季光照时间较长,光化学反应充分,两种反应...  相似文献   

5.
对 2 0 0 0年北京地区地面O3 浓度监测资料和同期气象观测资料进行统计分析 ,发现北京地区地面O3 浓度具有明显的月际、日变化特征及地域分布特征 :O3 小时浓度在一年中 5~ 8月偏高 ,6月最高 ;在一日中 12∶0 0~ 16∶0 0 (北京时 ,下同 )偏高 ;北京地区西、西北部O3 浓度高于东北部和城区 ;分析了O3 浓度不同等级的气象特征 ,影响O3 浓度出现日变化和月际变化的主要气象因子是地面最高温度、相对湿度及地面风速等 ,并给出日O3 浓度最大值的预报方程  相似文献   

6.
为了更好地研究沙尘气溶胶起沙和输送特征,2010年4—5月,在民勤周边沙地利用EZ LIDAR ALS300&ALS450型激光雷达和 GRIMM 180型颗粒物采样器进行了大气气溶胶的外场连续观测,取得了晴天、浮尘、扬沙和沙尘暴天气条件下沙尘气溶胶总后向散射垂直剖面图和PM10、PM2.5、PM1.0质量浓度采样资料,其中包含“0424”特强沙尘暴过程资料。结果表明:春季民勤近地层大气中沙尘气溶胶浓度较高,且随气象要素的变化很大;在整个观测期内,PM10、PM2.5、PM1.0的平均质量浓度分别为202.3、57.4 μg/m3、16.7 μg/m3。在不同天气条件下,PM10、PM2.5、PM1.0质量浓度的变化有很好的相关性,但变化趋势有所不同。在沙尘暴天气条件下,PM10的日平均质量浓度高达2469.1μg/m3,是背景天气条件下PM10日平均质量浓度的100多倍,是浮尘天气条件下PM10日平均质量浓度的8倍,是扬沙天气条件下PM10日平均质量浓度的2倍。PM2.5在沙尘暴天气下日平均质量浓度为460.3 μg/m3,是背景天气条件下PM2.5日平均质量浓度的45倍,是浮尘天气条件下PM2.5日平均质量浓度的6倍,是扬沙天气条件下PM2.5日平均质量浓度的1.4倍。PM1.0在沙尘暴天气条件下的日平均浓度为92.7 μg/m3,是背景天气条件下PM1.0日平均浓度的13倍,是浮尘天气条件下PM1.0日平均浓度的7倍,是扬沙天气条件下PM1.0日平均浓度的1.3倍。可见,风速增大时沙尘粒子浓度的增加对粒子粒径是有选择的,小粒子比重随沙尘浓度增加而相对减小,大粒子比重随沙尘浓度增加而相对增多;通过对“0424”特强沙尘暴过程的研究表明,一次沙尘暴过程往往包括沙尘暴、扬沙和浮尘天气中的两种类型;通过对激光雷达数据分析发现,在强沙尘暴发生过程当中,民勤沙地发生了非常严重的风蚀起沙现象。  相似文献   

7.
利用阳江市2014-2018年O3浓度资料,分析日最大8h滑动平均O3浓度及其达到一、二类环境空气功能区质量要求的日数时间变化规律,再通过地面气象观测资料,分析不同气象要素对日最大8h滑动平均O3浓度的影响状况.结果表明,2014-2018年,阳江市日最大8h滑动平均O3浓度的年平均值为73.68~92.34ug·m-...  相似文献   

8.
以大豆“中黄-14”为试验材料, 利用OTC-1型农田开顶式气室, 首次模拟研究单独CO2和O3浓度倍增及其交互作用对大豆生物量、产量及其构成因子、同化产物分配形式和收获指数的影响。与未通CO2和O3的处理相比, 单独CO2浓度倍增对生物量、产量、荚果串数、荚数、籽粒数、籽粒重具有正效应, O3为明显的负效应, 通气时段越长效果越明显; 持续的CO2浓度和O3浓度倍增交互作用表现为CO2的影响大于O3; CO2和O3交互作用逐渐达到浓度倍增的处理, 由于O3剂量逐渐累积和阶段性增加, 对大豆刺激逐渐增强, 最终O3的负效应与CO2的正效应相近。单独O3浓度倍增抑制光合产物向根和籽粒的输送, 向叶茎的输送明显增强, 使根冠比 (RSR)、子粒与茎杆比 (GCR) 明显下降, 长期作用可使大豆收获指数 (HI) 减小, 叶重比 (LWR) 显著增加, 且随通气时间的延长影响增大; CO2浓度倍增及其交互作用对RSR、LWR、GCR和HI影响相对较小, 仅在±10%左右。  相似文献   

9.
利用MODIS火点、土地类型、植被覆盖、生物质载荷和排放因子等数据产品,开发了露天生物质燃烧排放模型,并将其嵌入空气质量模式WRF-CUACE,通过敏感性试验定量评估了露天生物质燃烧对中国地面PM2.5浓度的影响。研究设计了3种模拟方案,比较模式评估结果发现修订后的方案能更好地模拟PM2.5浓度。结果表明:2014年10月露天生物质燃烧主要集中在我国东北、华南和西南地区,其对PM2.5月平均浓度的贡献达30~60μg·m3,局地甚至超过100μg·m3;华北、华东和华南地区生物质燃烧对PM2.5月平均浓度的贡献达5~20μg·m3。从相对贡献看,东北大部分地区生物质燃烧对地面PM2.5浓度的贡献超过50%,华南地区达20%~50%,西南局部地区甚至超过60%;华北、华中以及华东地区相对较低,平均相对贡献达10%~20%。生物质燃烧越严重的地区,其产生的PM2.5中二次气溶胶的贡献占比越小,反...  相似文献   

10.
2013年6—9月在河北省固城站观测到多次夜间对流性天气伴随地面O3混合比快速抬升的过程,并引起次日清晨到中午O3混合比升高。大多数对流过程中,O3混合比在半小时内升高至60×10-9~80×10-9,同时NOx等反应性气体混合比下降,θse值降低,说明下沉气流将高空气团带到地面,造成了O3混合比的升高。通过再分析资料得到下沉气团基本来源于对流层中下层,这一结论与当地进行的一次飞机观测结果吻合。多数对流过程中固城站和北京城区地面O3混合比和θse值有相同的变化趋势和程度。根据观测结果,推测华北地区在夏季和初秋时,对流层中下层存在O3高值区,混合比约为60×10-9~80×10-9。对流性天气对地面O3抬升的影响区域与对流系统的影响范围有关,可达到中尺度范围。华北地区光化学污染严重,对流性天气引起的地面O3混合比抬升程度比较强,对环境的影响值得关注。  相似文献   

11.
Surface O_3 concentration and its precursors have been observed at Longfengshan station,Heilongjiang Province for a period of one year from August 13,1994 to July 30,1995.Relationship between surface O_3 and the meteorological conditions during this period is analyzed inthis study.Observation results show that diurnal variation of surface O_3 follows a pattern ofdouble-peaks with amplitude of 27—28 ppb under fine days in summer and autumn.Although thediurnal variation is small(14 ppb),it is still detectable when it is overcast.Diurnal variation of O_3is irregular under rainy days.Surface O_3 concentration rises when wind speed starts to increase at0800 BT(Beijing Time)from 0 to 6 m s~(-1)in autumn,winter and summer.Relative high surfaceO_3 concentration is noticed frequently when S,SSW,SW and WSW wind are encountered at thestation during all seasons.At 0800 BT and 1400 BT the surface O_3 concentration increases with theincrease of global radiation accordingly during fine days in winter,spring and autumn.During finedays average peak of O_3 concentration in summer is 20 ppb higher than that in winter while theaverage peak of global radiation in summer is almost twice as high as that in winter.The averagesurface O_3 concentration under fine days in autumn at Longfengshan station is 14 ppb lower incomparison to the observation results from Lin'an station where Lin'an is at about the samelongitude and lower latitude,with same environment,which is mainly caused by the difference ofglobal radiation due to different latitudes in these two areas(difference of average peak globalradiation about 100 W m~(-2)).  相似文献   

12.
中国大气本底条件下不同地区地面臭氧特征   总被引:20,自引:1,他引:20  
分析了晴天和阴天时瓦里关本底台、临安和龙凤山本底站地面 O3浓度的特点。晴天时 ,临安站地面 O3有明显日变化 ,以春季最大 (42 .9× 1 0 - 9) ,夏季最小 (2 0 .3× 1 0 - 9) ;龙凤山站日变化更规则 ,秋季最大 (约 2 7× 1 0 - 9) ;瓦里关本底台除了夏季有微弱日变化外 ,其它季节没有明显的日变化 ,日较差也很小 ,但夏季地面 O3浓度显著高於冬季 ;夏季晴天瓦里关地面O3浓度要比龙凤山、临安高 2 0× 1 0 - 9以上。阴天时 ,临安和龙凤山站除了日变化不很规则和日较差较小外 ,其它大致与晴天相同。阴天时瓦里关不仅没有日变化 ,而且日较差更小 ,但夏季地面 O3仍然高於冬季。太阳总辐射和 NOx 浓度是控制龙凤山和临安晴天和阴天地面O3浓度的决定性因子 ,它在不同季节和地区发挥着重要作用。夏季青藏高原周围地区气流向高原输送作用 ,是形成夏季瓦里关地面 O3高值以及微弱日变化的主要原因。在美国 MaunaLoa基准站也曾观测到类似的输送影响。O3在低对流层随垂直高度增加的分布特征 ,决定了东西部测点地面 O3的差异  相似文献   

13.
利用广东省中山市2015—2019年的地面臭氧浓度及气象观测数据,分析了中山市近年来臭氧超标与气象条件的关系。结果表明,中山市2015—2019年臭氧超标天数从22天增加至66天,臭氧年评价值增长36%,中度污染以上天数占超标天数比例从9.1%增长至36.4%。臭氧超标主要集中在8—11月,其中9月超标天数最多。夏秋季节臭氧超标主要发生在气温高、湿度低、太阳辐射强、日间10—14时无明显降水、吹北风的气象条件下,臭氧的污染潜在源区主要位于中山西部到北部的城市。风向和气温是臭氧超标最重要的指标,夏、秋季日间吹北风且日最高气温在33℃或以上时超标率分别达到89.1%和78.6%。2017年和2019年在相同的最高温、相对湿度、太阳辐射强度、降水和风速条件下的臭氧超标率均远高于2015年。当臭氧起始浓度在10μg/m3以下、11~30μg/m3及30μg/m3以上时,夏(秋)季从起始浓度达到超标分别用时7.1(6.9)h、6.2(6.2)h和5.8(5.9)h,相应气温上升7.2(7.1)℃、5.8(5.8)℃和4.7(5.1)℃,起始浓度增大时,...  相似文献   

14.
不同气象条件下湍流通量的研究   总被引:3,自引:2,他引:3  
利用1989年12月-1990年1月在重庆市测得的三轴风速仪资料和气象资料,1990年7月-8月在天津测得的三轴风速仪资料、温度脉冲资料、气象资料、计算了不同气象条件下的动量通量、热通量、摩擦速度和特征温度。这对了解重庆和天津市郊不同气象条件下的近地面层的湍流通量特征是十分有益的。  相似文献   

15.
上海夏季近地面臭氧浓度及其相关气象因子的分析和预报   总被引:23,自引:1,他引:23  
为了揭示城市近地面臭氧浓度的变化特征及其相关气象因素,尝试进行近地面臭氧浓度预报。通过对2005年夏季(6~9月上旬)上海徐家汇地区近地面臭氧的观测与分析,建立了用于夏季臭氧浓度预报和高浓度臭氧污染事件预警的一种简便、实用的统计回归方法。结果表明:天气条件对臭氧形成具有明显的作用,臭氧浓度晴天最大、多云天次之、阴雨天最小;臭氧具有明显的日变化特征,12:00~14:00之间为最大值,凌晨3:00~5:00之间有一很小的次峰,5:00~6:00之间为最小值。产生高浓度臭氧污染是多项因子的综合结果,一般在高压系统的影响下,晴天少云,紫外辐射较强,相对湿度较低,气温较高,地面和高空吹偏北风,且风速较小的情形时容易产生高浓度臭氧污染。引进高浓度臭氧潜势指数和风向影响指数两个指标,并综合考虑多种气象要素,通过逐步回归建立的臭氧浓度预报方程,对逐日最大臭氧浓度具有较好的拟合效果和可预报性。  相似文献   

16.
Surface O3 concentration and its precursors have been observed at Longfengshan station,Heilongjiang Province for a period of one year from August 13,1994 to July 30,1995. Relationship between surface O3 and the meteorological conditions during this period is analyzed in this study.Observation results show that diurnal variation of surface O3 follows a pattern of double-peaks with amplitude of 27-28 ppb under fine days in summer and autumn.Although the diurnal variation is small(14 ppb),it is still detectable when it is overcast.Diurnal variation of O3 is irregular under rainy days.Surface O3 concentration rises when wind speed starts to increase at 0800 BT(Beijing Time)from 0 to 6 m s-1in autumn,winter and summer.Relative high surface O3 concentration is noticed frequently when S,SSW,SW and WSW wind are encountered at the station during all seasons.At 0800 BT and 1400 BT the surface O3 concentration increases with the increase of global radiation accordingly during fine days in winter,spring and autumn.During fine days average peak of O3 concentration in summer is 20 ppb higher than that in winter while the average peak of global radiation in summer is almost twice as high as that in winter.The average surface O3 concentration under fine days in autumn at Longfengshan station is 14 ppb lower in comparison to the observation results from Lin'an station where Lin'an is at about the same longitude and lower latitude,with same environment,which is mainly caused by the difference of global radiation due to different latitudes in these two areas(difference of average peak global radiation about 100 W m-2).  相似文献   

17.
利用广东省惠州市区2013—2016年逐日、逐时的环境和气象资料, 研究了珠江三角洲(简称“珠三角”)东侧惠州市臭氧污染特征及其与气象条件关系。结果表明:惠州市臭氧污染具有明显的月和季节变化特征, 10月臭氧平均浓度最高, 臭氧超标日和污染日主要出现在7—10月。惠州市臭氧浓度日变化呈单峰变化, 06—08时最低, 最大值出现在午后14—15时。臭氧浓度变化和气象条件关系密切, 低浓度臭氧大多出现在气温较低、相对湿度和风速较大、云量较多伴有降水、日照时数较小的天气, 臭氧浓度超标多出现在气温较高、相对湿度和风速较小、云量较少一般无降水、日照充足的天气。惠州市臭氧超标主要出现在地面和低空偏西风下, 这可能与惠州市处于珠三角城市群下风向的区域污染输送有关。   相似文献   

18.
The controlled simulation experiments revealed that ozone concentration increases cause various degrees of injury to leaves of crop and vegetable.The injury to vegetables is greater than that to crops.Ozone can dramatically affect stomatal conductance,photosynthetic rate and transpiration rate,and consequently the yield of crops.No matter how long exposure time was, stomatal conductance increased and photosynthetic and transpiration rates decreased with increases in ozone concentration.When ozone concentration was 100 nmol/mol,yields of rice and winter wheat declined by 27.1% and 60.5% respectively.When up to 200 nmol/mol,there was a significant reduction of yields:a decline up to 33.7% for rice and 81.3% for winter wheat.On the other hand,ozone benefits the improvement of grain quality such as amino acid and protein.  相似文献   

19.
广州市大气污染与气象条件关系的统计分析   总被引:14,自引:7,他引:14  
利用地面天气图、高空天气图(850hPa、500hPa)以及气象要素资料,统计分析了2002-2004年广州市10个典型的空气污染过程与各种天气系统以及气象要素间的联系,得出了秋冬季、春季和夏季广州市大气污染与各种天气类型的一些关系,并对地面各种气象要素与污染过程的关系进行了半定量分析,得出了广州市大气污染过程的一些天气概念模型及气象要素指标。  相似文献   

20.
影响上海市空气质量的地面天气类型及气象要素分析   总被引:22,自引:0,他引:22  
地面天气形势及气象要素的变化在空气污染潜势预报中具有很好的指示作用。利用天气学原理将地面天气系统进行分型,探索研究不同地面天气类型对上海空气质量变化的影响。整理、分析2003—2005年地面天气类型和气象要素与空气质量的关系,发现:(1)上海秋冬季以大陆冷性高压系统移动为主,而夏季主要以副热带高压和台风影响为主,春季是冬季与夏季之间的过渡,天气系统转换较为频繁。(2)春、秋、冬季易引起上海市空气污染的天气类型有L型高压、高压、高压前和均压场4种地面天气类型,与空气质量优等级相对应的天气类型是低压槽、高压底和高压后。夏季空气质量优等级对应的天气类型主要有台风、高压(副高)和低压槽。(3)秋冬季节典型天气过程一般经历高压前(或冷空气)→L型高压→高压→高压后(或高压底)→低压槽的转换,PM10浓度变化也表现为先升后降。(4)气象要素的变化也与空气污染存在密切联系,气压与空气污染物的关系为正相关,而气温、相对湿度和风速与空气污染物浓度呈负相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号