首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the past, graphical or computer methods were usually employed to determine the aquifer parameters of the observed data obtained from field pumping tests. Since we employed the computer methods to determine the aquifer parameters, an analytical aquifer model was required to estimate the predicted drawdown. Following this, the gradient‐type approach was used to solve the nonlinear least‐squares equations to obtain the aquifer parameters. This paper proposes a novel approach based on a drawdown model and a global optimization method of simulated annealing (SA) or a genetic algorithm (GA) to determine the best‐fit aquifer parameters for leaky aquifer systems. The aquifer parameters obtained from SA and the GA almost agree with those obtained from the extended Kalman filter and gradient‐type method. Moreover, all results indicate that the SA and GA are robust and yield consistent results when dealing with the parameter identification problems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Concentrations of major ions and the δ13C composition of dissolved inorganic carbon in groundwater and submarine groundwater discharges in the area between Siracusa and Ragusa provinces, southeastern Sicily, representing coastal carbonate aquifers, are presented and discussed. Most of groundwater analysed belongs to calcium bicarbonate type, in agreement with the geological nature of carbonate host rocks. Carbonate groundwater acquires, besides the dissolution of carbonate minerals, dissolved carbon (and the relative isotopic composition) from the atmosphere and from soil biological activity. In fact, δ13C values and total dissolved inorganic carbon contents show that both these sources contribute to carbon dissolved species in the waters studied. Finally, mixing with seawater in the second main factor of groundwater mineralization Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
In order to evaluate natural attenuation in contaminated aquifers, there has been a recent recognition that a multidisciplinary approach, incorporating microbial and molecular methods, is required. Observed decreases in contaminant mass and identified footprints of biogeochemical reactions are often used as evidence of intrinsic bioremediation, but characterizing the structure and function of the microbial populations at contaminated sites is needed. In this paper, we review the experimental approaches and microbial methods that are available as tools to evaluate the controls on microbially mediated degradation processes in contaminated aquifers. We discuss the emerging technologies used in biogeochemical studies and present a synthesis of recent studies that serve as models of integrating microbiological approaches with more traditional geochemical and hydrogeologic approaches in order to address important biogeochemical questions about contaminant fate.  相似文献   

4.
A Eulerian-Langrangian scheme is used to reformulate the equation of solute transport with ground water in saturated soils. The governing equation is decomposed into advection along characteristic path lines and propagation of the residue at a fixed grid.The method was employed to simulate transport of a conservative pollutant in a hypothetical aquifer, subject to the equivalence of real conditions. Implementation was based on data involving parameters of a heterogeneous aquifer, heavy flux stresses of densed pumpage/recharge wells, precipitation and seasonally changing flow regimes. Simulation, with coarse grid and high Peclet numbers yielded minute mass balance errors.  相似文献   

5.
Abstract

The resolution of the freshwater and saline water aquifers in a coastal terrain (Mahanadi Basin, India) is updated. We analysed electrical borehole log data at four sites and compared the water resistivity regime of the freshwater and saline water zones obtained from electrical borehole logging, with the resistivity regime obtained by interpreting vertical electrical sounding (VES) data. The multilayer VES data interpretation is modified to a simple model, containing only the freshwater zone and the saline water zone. The composite geophysical parameters of the freshwater and saline water zones, in particular the resistivity and longitudinal unit conductance regime, are identified. The resolution obtained from the composite geophysical data analyses is very clear and convincing. The composite longitudinal unit conductance regime of the saline water zones is very high compared to that of the freshwater zones. This makes the identification of the two aquifers easy and increases its reliability. A technique which enables analysis of composite geophysical data of freshwater and saline water zones at VES sites in the vicinity of the borehole log sites is proposed. The significance of longitudinal unit conductance in resolving the freshwater and saline water aquifers is illustrated graphically. The proposed technique is validated by correlating the longitudinal unit conductance and resistivity with the total dissolved solids. The efficiency of the technique is validated by carrying out discriminant function analysis.

Citation Hodlur, G. K., Dhakate, R., Sirisha, T. & Panaskar, D. B. (2010) Resolution of freshwater and saline water aquifers by composite geophysical data analysis methods. Hydrol. Sci. J. 55(3), 414–434.  相似文献   

6.
Pb, Nd and Sr isotope analyses together with U, Pb, Sm, Nd, Rb and Sr concentrations have been obtained for separated phases of lherzolite and bulk rock mafic granulite xenoliths in Recent volcanics from Tanzania. A garnet lherzolite from the Lashaine vent has yielded the least radiogenicPb(206Pb/204Pb= 15.55) and Nd(143Nd/144Nd= 0.51127; ?Nd0 = ?26.7) isotope compositions recorded so far for an ultramafic xenolith, and 87Sr/86Sr= 0.83604. The Pb isotope compositions of the mafic granulites are variable 15.77<206Pb/204Pb<17.50 and some show evidence for depletion of U relative to Pb up to 2.0 Ga ago. Overall the isotope results suggest that the mantle part of the continental lithosphere beneath Tanzania has components that have undergone a complex history that includes major chemical fractionations ca. 2.0 Ga ago. A phlogopite-amphibole vein from the Pello Hill sample has Sr, Nd and Pb isotope compositions similar to those of mid-ocean ridge basalts, indicating both a young emplacement age for the vein material and a source which had an isotopic signature characteristic of depleted mantle.The Sr, Nd and Pb isotope systematics of ultramafic xenoliths do not conform with those of MORB, particularly in terms of their PbSr, and NdPb relationships. In this regard they are similar to some ocean islands and could be a viable source material for some ocean island basalts at least. The mantle part of the continental lithosphere is as likely to contain recycled components derived from the continental crust as are other regions of mantle. If the mantle part of continental lithosphere is invoked as a source for ocean islands, it does not negate the possibility that substantial recycled components are involved.  相似文献   

7.
Peiyue Li  Hui Qian  Jianhua Wu 《水文研究》2014,28(4):2293-2301
Accurate knowledge of hydrogeological parameters is essential for groundwater modeling, protection and remediation. Three methods (type curve fitting method, inflection point method and global curve‐fitting method (GCFM)) which are frequently applied in the estimation of leaky aquifer parameters were compared using synthetic pumping tests. The results revealed GCFM could provide best parameter estimation among the three methods with fewer uncertainties associated with the processes of parameter estimation. GCFM was also found to be both time saving and of low cost and is thus more preferable for hydrogeological parameter estimation than the other two methods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The Tibesti massif, one of the most prominent features of the Sahara desert, covers an area of some 100,000 km2. Though largely absent from scientific inquiry for several decades, it is one of the world’s major volcanic provinces, and a key example of continental hot spot volcanism. The intense activity of the TVP began as early as the Oligocene, though the major products that mark its surface date from Lower Miocene to Quaternary (Furon (Geology of Africa. Oliver & Boyd, Edinburgh (trans 1963, orig French 1960), pp 1–377, 1963)); Gourgaud and Vincent (J Volcanol Geotherm Res 129:261–290, 2004). We present here a new and consistent analysis of each of the main components of the Tibesti Volcanic Province (TVP), based on examination of multispectral imagery and digital elevation data acquired from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Our synthesis of these individual surveys shows that the TVP is made up of several shield volcanoes (up to 80 km diameter) with large-scale calderas, extensive lava plateaux and flow fields, widespread tephra deposits, and a highly varied structural relief. We compare morphometric characteristics of the major TVP structures with other hot spot volcanoes (the Hawaiian Islands, the Galápagos Islands, the Canary and Cape Verdes archipelagos, Jebel Marra (western Sudan), and Martian volcanoes), and consider the implications of differing tectonic setting (continental versus oceanic), the thickness and velocity of the lithosphere, the relative sizes of main volcanic features (e.g. summit calderas, steep slopes at summit regions), and the extent and diversity of volcanic features. These comparisons reveal morphologic similarities between volcanism in the Tibesti, the Galápagos, and Western Sudan but also some distinct features of the TVP. Additionally, we find that a relatively haphazard spatial development of the TVP has occurred, with volcanism initially appearing in the Central TVP and subsequently migrating to both the Eastern and Western TVP regions. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

9.
Natural aquifers usually exhibit complex physical and chemical heterogeneities, which are key factors complicating kinetic processes, such as contaminant transport and transformation, posing a great challenge in the remediation of contaminated groundwater. Aquifer heterogeneity usually leads to a distinct feature, the so-called “anomalous transport” in groundwater,which deviates from the phenomenon described by the classical advection-dispersion equation(ADE) based on Fick's Law.Anomalous transport, also known as non-Fickian dispersion or “anomalous dispersion” in a broad sense, can explain the hydrogeological mechanism that leads to the temporally continuous deterioration of water quality and rapid spatial expansion of pollutant plumes. Contaminants enter and then are retained in the low-permeability matrix from the high-permeability zone via molecular diffusion, chemical adsorption, and other mass exchange effects. This process can be reversed when the concentration of pollutants in high-permeability zones is relatively low. The contaminants slowly return to the high-permeability zones through reverse molecular diffusion, resulting in sub-dispersive anomalous transport leading to the chronic gradual deterioration of water quality. Meanwhile, some contaminants are rapidly transported along the interconnected preferential flow paths, resulting in super-dispersive anomalous transport, which leads to the rapid spread of contaminants. Aquifer heterogeneity is also an important factor that constrains the efficacy of groundwater remediation, while the development, application, and evaluation of groundwater remediation technologies are usually based on the Fickian dispersion process predicted by the ADE equation.Comprehensive studies of the impacts of non-Fickian dispersion on contaminant transport and remediation are still needed. This article reviews the non-Fickian dispersion phenomenon caused by the heterogeneity of geological media, summarizes the processes and current understanding of contaminant migration and transformation in highly heterogeneous aquifers, and evaluates mathematical methods describing the main non-Fickian dispersion features. This critical review also discusses the limitations of existing research and outlines potential future research areas to advance the understanding of mechanisms and modeling of non-Fickian dispersion in heterogeneous media.  相似文献   

10.
Random domain decomposition for flow in heterogeneous stratified aquifers   总被引:2,自引:0,他引:2  
We study two-dimensional flow in a layered heterogeneous medium composed of two materials whose hydraulic properties and spatial distribution are known statistically but are otherwise uncertain. Our analysis relies on the composite media theory, which employs random domain decomposition in the context of groundwater flow moment equations to explicitly account for the separate effects of material and geometric uncertainty on ensemble moments of head and flux. Flow parallel and perpendicular to the layering in a two-material composite layered medium is considered. The hydraulic conductivity of each material is log-normally distributed with a much higher mean in one material than in the other. The hydraulic conductivities of points within different materials are uncorrelated. The location of the internal boundary between the two contrasting materials is random and normally distributed with given mean and variance. We solve the equations for (ensemble) moments of hydraulic head and flux and analyze the impact of unknown geometry of materials on statistical moments of head and flux. We compare the composite media approach to approximations that replace statistically inhomogeneous conductivity fields with pseudo-homogeneous random fields. This work was performed under the auspices of the US Department of Energy (DOE): DOE/BES (Bureau of Energy Sciences) Program in the Applied Mathematical Sciences contract KC-07–01–01 and Los Alamos National Laboratory under LDRD 98604. This work made use of STC shared experimental facilities supported by the National Science Foundation under Agreement No. EAR-9876800. This work was supported in part by the European Commission under Contract No. EVK1-CT-1999–00041 (W-SAHaRA).  相似文献   

11.
We consider colloid facilitated radionuclide transport by steady groundwater flow in a heterogeneous porous formation. Radionuclide binding on colloids and soil-matrix is assumed to be kinetically/equilibrium controlled. All reactive parameters are regarded as uniform, whereas the hydraulic log-conductivity is modelled as a stationary random space function (RSF). Colloid-enhanced radionuclide transport is studied by means of spatial moments pertaining to both the dissolved and colloid-bounded concentration. The general expressions of spatial moments for a colloid-bounded plume are presented for the first time, and are discussed in order to show the combined impact of sorption processes as well as aquifer heterogeneity upon the plume migration. For the general case, spatial moments are defined by the aid of two characteristic reaction functions which cannot be expressed analytically. By adopting the approximation for the longitudinal fluid trajectory covariance valid for a flow parallel to the formation bedding suggested by Dagan and Cvetkovic [Dagan G, Cvetkovic V. Spatial Moments of Kinetically Sorbing Plume in a Heterogeneous Aquifers. Water Resour Res 1993;29:4053], we obtain closed form solutions.  相似文献   

12.
The main processes affecting the migration of a solute in a fissured aquifer will be advection and dispersion in the fissures, diffusion into the porous matrix; and adsorption. This paper considers solute transport in an idealized fissured aquifer consisting of slabs of saturated rock-matrix separated by equally spaced, planar fissures. The solution of the transport equations is developed as far as Laplace transforms of the solute concentrations in the fissure and matrix water. Numerical inversion of the transforms is used to investigate characteristic behaviour of the model for a number of special cases.  相似文献   

13.
Cross-borehole flowmeter tests have been proposed as an efficient method to investigate preferential flowpaths in heterogeneous aquifers, which is a major task in the characterization of fractured aquifers. Cross-borehole flowmeter tests are based on the idea that changing the pumping conditions in a given aquifer will modify the hydraulic head distribution in large-scale flowpaths, producing measurable changes in the vertical flow profiles in observation boreholes. However, inversion of flow measurements to derive flowpath geometry and connectivity and to characterize their hydraulic properties is still a subject of research. In this study, we propose a framework for cross-borehole flowmeter test interpretation that is based on a two-scale conceptual model: discrete fractures at the borehole scale and zones of interconnected fractures at the aquifer scale. We propose that the two problems may be solved independently. The first inverse problem consists of estimating the hydraulic head variations that drive the transient borehole flow observed in the cross-borehole flowmeter experiments. The second inverse problem is related to estimating the geometry and hydraulic properties of large-scale flowpaths in the region between pumping and observation wells that are compatible with the head variations deduced from the first problem. To solve the borehole-scale problem, we treat the transient flow data as a series of quasi-steady flow conditions and solve for the hydraulic head changes in individual fractures required to produce these data. The consistency of the method is verified using field experiments performed in a fractured-rock aquifer.  相似文献   

14.
15.
An analytical series solution method is presented for modeling regional steady-state groundwater flow in a two-dimensional stratified aquifer cross-section where the water table is well-characterized. The aquifer system may have any number of contiguous or non-contiguous layers and the geometry of each layer is restricted only by the requirement that the elevation of the stratigraphic unconformities between layers is a function of the x-coordinate alone. Various techniques may be used to handle pinching layers, faults, and other discontinuities. The solutions are obtained by minimizing head and flow continuity errors between layers and errors in the Dirichlet surface at a set of control points along these unconformities; the governing equation is met exactly. The solutions are derived and demonstrated on multiple test cases. The errors for some specific, geometrically challenging cases are assessed and discussed.  相似文献   

16.
Close M  Bright J  Wang F  Pang L  Manning M 《Ground water》2008,46(6):814-828
Two large-scale (9.5 m long, 4.7 m wide, 2.6 m deep), three-dimensional artificial aquifers were constructed to investigate the influence of spatial variations in aquifer properties on contaminant transport. One aquifer was uniformly filled with coarse sand media (0.6 to 2.0 mm) and the other was constructed as a heterogeneous aquifer using blocks of fine, medium, and coarse sands. The key features of these artificial aquifers are described. An innovative deaeration tower was constructed to overcome a problem of the aquifers becoming blocked with excess air from the ground water source. A series of tracer injection experiments were conducted to test the homogeneity of the first aquifer that was purposely built as a homogeneous aquifer and to calculate values of aquifer parameters. Experimental data show that the aquifer is slightly heterogeneous, and hydraulic conductivity values are significantly higher down one side of the aquifer compared to the mean value. There was very good agreement in estimated dispersivity values between the plume area ratio methods and the curve fitting of tracer breakthrough curves. Dispersivity estimates from a full areal source injection (12.2 m2) experiment using a 1D analytical model were higher than estimates from a limited source injection (0.2 m2) experiment using a 3D model, possibly because the 1D model does not take account of the heterogeneity of hydraulic conductivity in the aquifer, thus overestimating dispersivity. Transverse and vertical dispersivity values were about five times less than the longitudinal dispersivity. There was slight sorption of Rhodamine WT onto the aquifer media.  相似文献   

17.
The234U and238U concentration in brine from six Gulf Coast geopressured aquifers has been determined. The results reveal very low uranium concentrations (from 0.003 to 0.03 μg/l) and uranium activity ratios slightly greater than unity (from 1.06 to 1.62). Reducing conditions within the aquifers are responsible for the low uranium concentrations. The uranium activity ratios observed are well below those calculated using theoretical considerations of alpha-particle recoil effects. This can be explained by interference with alpha-recoil nuclides entering the liquid phase as a result of quartz overgrowths on sand grains and high-temperature re-equilibration that tends to minimize the effects of the alpha-recoil process.The fact that the uranium activity ratios of the brines are slightly greater than unity instead of the equilibrium value of 1.000 indicates that either the alpha particle recoil blocking and re-equlibration effects are not complete or that another process is operative that enriches the fluid in excess234U by selectively removing uranium from radiation induced damage sites in the mineral (sand grain) matrix.  相似文献   

18.
A new method for the interpretation of pumping tests in leaky aquifers   总被引:4,自引:0,他引:4  
A novel methodology for the interpretation of pumping tests in leaky aquifer systems, referred to as the double inflection point (DIP) method, is presented. The method is based on the analysis of the first and second derivatives of the drawdown with respect to log time for the estimation of the flow parameters. Like commonly used analysis procedures, such as the type-curve approach developed by Walton (1962) and the inflection point method developed by Hantush (1956), the mathematical development of the DIP method is based on the assumption of homogeneity of the leaky aquifer layers. However, contrary to the two methods developed by Hantush and Walton, the new method does not need any fitting process. In homogeneous media, the two classic methods and the one proposed here provide exact results for transmissivity, storativity, and leakage factor when aquifer storage is neglected and the recharging aquifer is unperturbed. The real advantage of the DIP method comes when applying all methods independently to a test in a heterogeneous aquifer, where each method yields parameter values that are weighted differently, and thus each method provides different information about the heterogeneity distribution. Therefore, the methods are complementary and not competitive. In particular, the combination of the DIP method and Hantush method is shown to lead to the identification of contrasts between the local transmissivity in the vicinity of the well and the equivalent transmissivity of the perturbed aquifer volume.  相似文献   

19.
Hydrologic models of irrigated lands generally adopt either a basin-scale or a root-zone perspective. While basin-wide macro-scale models rely on the aggregation of important spatial and temporal data across large areas, micro-scale root-zone models depend on the definition of rigid boundaries around the zone of plant–soil–water interaction. In reality, irrigation management decisions are made on a field by field basis and can interact across field boundaries. This paper first describes a shallow water table model, based on deforming finite element (DFE) framework, to characterize the near-surface field-to-field hydrologic response to various irrigation and drainage management regimes along a gently sloping alluvial fan. The model is then enhanced through changing geometry of a fluctuating water table below a series of irrigated fields. Such an enhancement also offers computational flexibility relative to the saturated–unsaturated models commonly used in micro-scale studies. The model is designed with the alluvial fan aquifers of California’s western San Joaquin Valley as reference systems.  相似文献   

20.
Estimates of contaminant fluxes from DNAPL sources as a function of time and DNAPL mass reduction are important to assess the long-term sustainability and costs of monitored natural attenuation and to determine the benefits of partial source removal. We investigate the accuracy of the upscaled mass transfer function (MTF) proposed by Parker and Park [Parker JC, Park E. Modeling field-scale dense nonaqueous phase liquid dissolution kinetics in heterogeneous aquifers. WRR 2004;40:W05109] to describe field-scale dissolved phase fluxes from DNAPL sources for a range of scenarios generated using high-resolution 3-D numerical simulations of DNAPL infiltration and long-term dissolved phase transport. The results indicate the upscaled MTF is capable of accurately describing field-scale DNAPL dissolution rates as a function of time. For finger-dominated source regions, an empirical mass depletion exponent in the MTF takes on values greater than one which results in predicted mass flux rates that decrease continuously with diminishing DNAPL mass over time. Lens-dominated regions exhibit depletion exponents less than one, which results in more step-function like mass flux versus time behavior. Mass fluxes from DNAPL sources exhibiting both lens- and finger-dominated subregions were less accurately described by the simple MTF, but were well described by a dual-continuum model of the same form for each subregion. The practicality of calibrating a dual-continuum model will likely depend on the feasibility of obtaining spatially resolved field measurements of contaminant fluxes or concentrations associated with the subregions using multilevel sampling or some other means.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号