首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
宋维琪  刘仕友 《地震地质》2005,27(2):308-315
由于地震资料是带限的,而井资料约束反演过程中的地震反演频带的展宽也是有一定限度的,使得反演地震波阻抗也是带限的。如何进一步拓宽反演地震波阻抗的频带宽度,提高地震资料的分辨率是文中研究的内容。利用井约束下的地震反演波阻抗资料、地震资料及井资料,借鉴地质模拟技术,研究如何利用地层的空间相对稳定性特征,通过相关函数的分析,估计反演更高分辨率的地震波阻抗资料。考虑到地质体空间的相关性及分辨率,相关半径取相关函数从最大点到第1个极值点的范围。在目标函数的计算过程中,既考虑当前计算点的权系数信息,又考虑井外推时的权系数信息,这样使计算结果更加稳定可靠。通过综合模拟计算,能够识别较小砂体  相似文献   

2.
In order to advance understanding of the relationship between geological properties and their physical expression in reflection images, this study has focused expertise in reflection geophysics, petrophysics and sedimentology on the same geological object, in this case a succession of Upper Jurassic sharp‐based shoreface deposits embedded in offshore marine shales in northern France. This integrated approach to determine firstly the origin and nature of seismic reflections (calibration) and secondly to provide a means of extracting geological information from seismic imagery (inverse calibration) was built on the following analytical steps. Firstly, detailed and extensive petrophysical analyses of outcrop (plug) samples, continuous core and sonic well logs, in combination with a quantification of mineralogical and textural properties, allowed a direct conversion of acoustic properties (impedance) into sedimentological properties, resulting in a quantitative physical sequence stratigraphic model. Secondly, the integration of scale‐dependent acoustic measurements, ranging from 0.01 m and 320 kHz on cores up to the wavelength of field seismic data was established using an averaging algorithm (an effective‐medium‐theory type) as an upscaling approach. This alternative to a VSP or check shot allows an optimized depth–time conversion and hence determination of the origin of the seismic reflections with previously unattainable accuracy. Finally, the shape and scale dependence of impedance contrasts were integrated into so‐called singularity parameters that directly link depositional changes with information from seismic reflections: depositional changes in the shallow‐water domain are generally characterized by step functions, whereas those in more distal depositional environments are represented by spiky functions. This approach allows the recognition of the associated reflection events and, vice versa, it provides a unique opportunity to extract the character of impedance changes, and thus changes in depositional environment, from seismic reflection records in general. This integrated and multiscale characterization of sharp‐based shoreface deposits calibrates the typical reflection patterns for such sedimentary units. These include continuous high‐amplitude smooth and flat tops, discontinuous sharp basal reflections with variable amplitude, and complex sigmoidal high‐amplitude reflections within the compound shoreface deposits. In addition, the results of this study, by detailing the effects of scale and frequency on impedance changes, improve the identification of similar deposits in subsurface seismic data and the extraction of maximum amounts of geological information beyond seismic resolution.  相似文献   

3.
本文针对油气藏储层预测中的不连续及非均质地质信息识别问题,研究基于地震成像数据的稀疏反演方法.由于该类地质体的地震响应特征为弱信号,因此利用平面波破坏滤波器由地震成像数据中去除强反射同相轴.在此基础上,对剩余的地震数据进行非线性加强滤波,并构建L1稀疏反演模型.为有效求解L1模型,采用非光滑泛函L1范数逼近和拟牛顿求解算法.该方法考虑稀疏先验信息,能够提高反演结果信噪比.缝洞模型测试验证该方法在检测断点、微断裂、散射点等小尺度地质体上的有效性,塔北缝洞型碳酸盐岩储层预测的应用效果进一步证实该方法的实用性.  相似文献   

4.
The seismic signatures of three reefs of the Upper Elk Point Subgroup (Givetian Stage) of the Western Canada Sedimentary Basin are documented and analysed on the basis of variations in seismic image of particular lithologic units, lateral amplitude and/or phase changes, structural relief and velocity-generated relief, as rendered by the reflection data. The effects on seismic signatures of spatial geological variations resulting from such phenomena as differential compaction, reef-focused salt dissolution, palaeotopography, lateral and vertical facies variations, regional dip, and reservoir morphology are discussed. The usefulness of seismic data in clarifying relationships between reefs and their adjacent sedimentary sections, particularly in cases where well control is sparse, is also considered. Such documentation of seismic signatures from known reefs using geophysical and geological analysis can establish criteria to enable recognition of similar buildups elsewhere. Three example reefs are presented, each typical of a particular area and environment of W. Canada. The first is from the Winnipegosis Formation of SE Saskatchewan, the second and third from the Rainbow Member and Upper Keg River Reef Member, respectively, of the Keg River Formation of NW Alberta. All three of these carbonate buildups developed in the evaporitic Elk Point Basin. However, the degree of salt encasement and subsequent dissolution varied greatly, as do the resulting seismic effects. For these three reef types, the typical elements of their seismic signatures have been compiled and are here summarized.  相似文献   

5.
The organic reef is a special type of carbonate reservoir which always dominates the spatial distribution, reserves and accumulations of natural gas. However, it is difficult to determine the organic reef’s internal structure and gas reservoirs due to numerous adverse factors such as the low resolution of seismic data, depth of burial, strong anisotropy, irregular spatial distribution and complex internal structure. A case study of wavelet decomposition and reconstruction technology applied to elucidate the features of organic reef reservoirs in the Changxing formation from Yuanba gas field shows that the seismic record reconstructed by high frequency signal can adequately describe the internal properties of organic reef reservoirs. Furthermore, the root mean square amplitude ratio of both low and high frequency data obtained from the reconstructed seismic data clearly show spatial distribution of gas and water in reef reservoirs.  相似文献   

6.
This paper discusses and addresses two questions in carbonate reservoir characterization: how to characterize pore‐type distribution quantitatively from well observations and seismic data based on geologic understanding of the reservoir and what geological implications stand behind the pore‐type distribution in carbonate reservoirs. To answer these questions, three geophysical pore types (reference pores, stiff pores and cracks) are defined to represent the average elastic effective properties of complex pore structures. The variability of elastic properties in carbonates can be quantified using a rock physics scheme associated with different volume fractions of geophysical pore types. We also explore the likely geological processes in carbonates based on the proposed rock physics template. The pore‐type inversion result from well log data fits well with the pore geometry revealed by a FMI log and core information. Furthermore, the S‐wave prediction based on the pore‐type inversion result also shows better agreement than the Greensberg‐Castagna relationship, suggesting the potential of this rock physics scheme to characterize the porosity heterogeneity in carbonate reservoirs. We also apply an inversion technique to quantitatively map the geophysical pore‐type distribution from a 2D seismic data set in a carbonate reservoir offshore Brazil. The spatial distributions of the geophysical pore type contain clues about the geological history that overprinted these rocks. Therefore, we analyse how the likely geological processes redistribute pore space of the reservoir rock from the initial depositional porosity and in turn how they impact the reservoir quality.  相似文献   

7.
Paleokarst systems are one of the major factors resulting in carbonate reservoir heterogeneity and compartmentalization. Nevertheless, few effective workflows have been proposed to map the 3D distribution of such systems. We describe a detailed seismic characterization approach integrating core, well log and rock physics analysis, to reveal a complex subsurface paleokarst system in the San Andres Formation, Permian basin, West Texas. In the area of high volume production, the collapsed paleokarst system is characterized by irregularly developed crackle and fracture breccias, mosaic breccias and cave fillings in the Upper San Andres Formation, which are delineated using seismic acoustic impedance. Along the transition from platform to basin, the paleokarst system is marked by a linear collapse including sags and small vertical faults that are recognizable in seismic imaging. Production data indicates that tight paleokarst zones cause reservoir compartmentalization and influence fluid communication between wells. The complex paleokarst system development is explained using a carbonate platform hydrological model, an outcrop analogue similar to modern marine hydrological environments within carbonate islands. Our method of model development for complex subsurface paleokarst systems may be applicable to other paleoenvironments.  相似文献   

8.
In comparison to high-frequency signals, low-frequency seismic signals suffer less from scattering and intrinsic attenuation during wave propagation, penetrate deeper strata and thus can provide more energy information related to the hydrocarbon reservoirs. Based on the asymptotic representation for the frequency-dependent reflections in the fluid-saturated pore-elastic media, we first derive a novel equation of the reservoir energy density and present an efficient workflow to calculate the reservoir energy density using low-frequency seismic data. Then, within a low-frequency range (from 1 to 30 Hz), we construct an objective function to determine the optimal frequency, using the energy densities calculated from the post-stack seismic traces close to the wells. Next, we can calculate the reservoir energy density using the instantaneous spectra of optimal frequency at the low-frequency end of the seismic spectrum. Tests on examples for synthetic and field data demonstrate that the proposed reservoir energy density can produce high-quality images for the fluid-saturated reservoirs, and it produces less background artefacts caused by elastic layers. This method provides a new way to detect the location of hydrocarbon reservoirs and characterize their spatial distribution.  相似文献   

9.
During the past four or five years, Vertical Seismic Profiles have been run in a large number of wells and in a variety of geological provinces with the object of assisting the seismic data processor and improving the geological interpretation. The special properties of the Vertical Seismic Profile, which allows the separation of the upward and downward travelling components of the recorded waveform, provides a means of studying the acoustic response of the earth in detail. Deconvolution of the data in particular gives a clearer understanding of the mechanics of multiple reflections and the way in which they may obscure primary reflections in the vicinity of the well. The primary reflection response of the earth can be observed with greater resolution than conventional seismic data permits, making correlation with lithology more precise, and allowing a good estimate of the reflection coefficient series to be determined. Inversion of the seismic traces to produce an acoustic impedance log leads to better definition of the sedimentary sequence and is of particular interest in predicting lithologic variations ahead of the drilling bit. In addition, Vertical Seismic Profile data can be used to assess parameters in areas such as deconvolution and signal band width for the evaluation of conventional seismic data.  相似文献   

10.
High‐resolution single‐channel seismic reflection surveys were carried out in the northern Ryukyu Island Arc during an NT05‐14 cruise of the R/V Natsushima. The survey area is located northeast of Amami Oshima and southwest of Kikai Shima immediately south of the current northern limit of coral reef formation in the northwestern Pacific Ocean. The main purpose of the surveys was to ascertain whether coral reefs formed during glacial periods and, if so, to determine their three‐dimensional distribution. We collected 784 km of high‐resolution single‐channel seismic data during the cruise. The acoustic basement is clearly observed under the Amami Spur, off Amami Oshima. The seismic profiles show two anticlines, each with an axis trending northeast to southwest. Thin Quaternary stratified sediment overlies the acoustic basement in the northwestern and southeastern slope areas, as well as between the anticlinal axes. The stratified sediment can be divided into several sedimentary units. The mound‐shaped reflections are found within the stratified sedimentary units in the central to eastern parts of the spur. Because the mound‐shaped reflections are characterized by strong reflections and chaotic internal structures in profiles, they are considered biogenic ‘reefs’ or banks consisting of coarse‐grained bioclasts. They overlie the acoustic basement or stratified sediment and reach 15 m in thickness and 400 m in width. In contrast, irregularly shaped topographic highs were detected at the shelf edge southwest off Kikai Shima, which are likely to be remnants of coral reefs formed during the last glacial period. Our seismic data indicate probable coral reef formation at low stands during glacial stages, such as the Last Glacial Maximum, even in the northern Central Ryukyus. The occurrence of drowned reefs may indicate that their growth rate was not sufficient to keep up with a rapid rise in sealevel after a glacial period.  相似文献   

11.
Common shot ray tracing and finite difference seismic modelling experiments were undertaken to evaluate variations in the seismic response of the Devonian Redwater reef in the Alberta Basin, Canada after replacement of native pore waters in the upper rim of the reef with CO2. This part of the reef is being evaluated for a CO2 storage project. The input geological model was based on well data and the interpretation of depth‐converted, reprocessed 2D seismic data in the area. Pre‐stack depth migration of the ray traced and finite difference synthetic data demonstrate similar seismic attributes for the Mannville, Nisku, Ireton, Cooking Lake, and Beaverhill Lake formations and clear terminations of the Upper Leduc and Middle Leduc events at the reef margin. Higher amplitudes at the base of Upper‐Leduc member are evident near the reef margin due to the higher porosity of the foreslope facies in the reef rim compared to the tidal flat lagoonal facies within the central region of the reef. Time‐lapse seismic analysis exhibits an amplitude difference of about 14% for Leduc reflections before and after CO2 saturation and a travel‐time delay through the reservoir of 1.6 ms. Both the ray tracing and finite difference approaches yielded similar results but, for this particular model, the latter provided more precise imaging of the reef margin. From the numerical study we conclude that time‐lapse surface seismic surveys should be effective in monitoring the location of the CO2 plume in the Upper Leduc Formation of the Redwater reef, although the differences in the results between the two modelling approaches are of similar order to the effects of the CO2 fluid replacement itself.  相似文献   

12.
纵横波弹性阻抗联立反演在GD地区的应用   总被引:2,自引:0,他引:2  
在GD油田复杂油藏描述中应用叠前纵横波弹性阻抗反演,精确地进行了油藏岩性的划分。利用三个或三个以上部分叠加数据,进行纵横波弹性阻抗联立反演,既克服了因叠后地震反演结果单一而不能满足复杂储层描述的需求,又避免了由于叠前道集信噪比低造成反演结果不稳定的缺陷。本文论述了叠前弹性波阻抗反演的基本原理,结合GD地区实际资料,对反演过程中涉及的角道集子波提取、层位标定、横波速度预测、弹性参数提取与解释等关键步骤进行了详细研究,指出基于测井资料分析的多种弹性参数综合解释是提高叠前地震反演应用效果的关键。  相似文献   

13.
基于吸收滤波技术的储层气水性质识别方法   总被引:1,自引:0,他引:1       下载免费PDF全文
目前,人们主要从岩性、物性、电性、弹性阻抗等角度,对储层中气水的性质进行预测,然而成功率却并非很高.其实,从频率或能量响应的角度出发,或许能提高气水识别的成功率.由于频率是物质的固有属性,地震波经过含气或含水的储层后,在不同的频段将有不同的响应特征,但在原始地震剖面上却很不容易发现.利用基于ARMA模型时间序列分析方法和Prony信号分析理论的吸收滤波技术,结合测井、岩石物理、地质、地震等资料,分析含气储层和含水储层的不同吸收衰减特征和响应差异.由此可以实现气水性质的有效识别,最终达到直观、快捷的预测优质含气储层的目的.将该技术应用到气水裂缝理论模型的试算和川西坳陷深层须家河组气藏的含气性识别中,均获得了良好的应用效果.  相似文献   

14.
Seismic detection of faults, dykes, potholes and iron-rich ultramafic pegmatitic bodies is of great importance to the platinum mining industry, as these structures affect safety and efficiency. The application of conventional seismic attributes (such as instantaneous amplitude, phase and frequency) in the hard-rock environment is more challenging than in soft-rock settings because the geology is often complex, reflections disrupted and the seismic energy strongly scattered. We have developed new seismic attributes that sharpen seismic reflections, enabling additional structural information to be extracted from hard-rock seismic data. The symmetry attribute is based on the invariance of an object with respect to transformations such as rotation and reflection; it is independent of the trace reflection amplitude, and hence a better indicator of the lateral continuity of thin and weak reflections. The reflection-continuity detector attribute is based on the Hilbert transform; it enhances the visibility of the peaks and troughs of the seismic traces, and hence the continuity of weak reflections. We demonstrate the effectiveness of these new seismic attributes by applying them to a legacy 3D seismic data set from the Bushveld Complex in South Africa. These seismic attributes show good detection of deep-seated thin (∼1.5 m thick) platinum ore bodies and their associated complex geological structures (faults, dykes, potholes and iron-rich ultramafic pegmatites). They provide a fast, cost-effective and efficient interpretation tool that, when coupled with horizon-based seismic attributes, can reveal structures not seen in conventional interpretations.  相似文献   

15.
16.
南海岛礁场地地震稳定性研究中的关键问题探讨   总被引:1,自引:0,他引:1       下载免费PDF全文
目前我国针对陆域地区的建筑物和构筑物已建立了比较完备的抗震设计理论和技术体系,但对于海洋工程的抗震研究工作开展得不充分,尤其是海洋岛礁场地的地震反应分析尚属空白。伴随着近年来我国南海地区的迅速开发建设,有必要对南海岛礁的地震危险性分析和抗震设计展开研究。介绍南海岛礁场地的特殊工程地质条件和地震活动性特征,通过比较目前国内外常用的场地地震反应分析方法,针对岛礁这一特殊工程地质体,提出岛礁场地地震反应分析中需要考虑的四个显著因素,包括(1)南海岛礁体的特殊地形;(2)南海岛礁特殊的岩土工程材料;(3)海水-岛礁体动力相互作用;(4)南海地区海底输入地震动的确定,并探讨解决这些问题的思路。为分析地震作用下岛礁场地的稳定性、场地反应分析提供研究思路,同时为南海岛礁建设中的地震危险性分析提供参考。  相似文献   

17.
Seismic data processing typically deals with seismic wave reflections and neglects wave diffraction that affect the resolution. As a general rule, wave diffractions are treated as noise in seismic data processing. However, wave diffractions generally originate from geological structures, such as fractures, karst caves, and faults. The wave diffraction energy is much weaker than that of the reflections. Therefore, even if wave diffractions can be traced back to their origin, their energy is masked by that of the reflections. Separating and imaging diffractions and reflections can improve the imaging accuracy of diffractive targets. Based on the geometrical differences between reflections and diffractions on the plane-wave record; that is, reflections are quasi-linear and diffractions are quasi-hyperbolic, we use plane-wave prediction filtering to separate the wave diffractions. First, we estimate the local slope of the seismic event using planewave destruction filtering and, then, we predict and extract the wave reflections based on the local slope. Thus, we obtain the diffracted wavefield by directly subtracting the reflected wavefield from the entire wavefield. Finally, we image the diffracted wavefield and obtain high-resolution diffractive target results. 2D SEG salt model data suggest that the plane-wave prediction filtering eliminates the phase reversal in the plane-wave destruction filtering and maintains the original wavefield phase, improving the accuracy of imaging heterogeneous objects.  相似文献   

18.
Accurate well ties are essential to practical seismic lithological interpretation. As long as the geology in the vicinity of the reservoir is not unduly complex, the main factors controlling this accuracy are the processing of the seismic data and the construction of the seismic model from well logs. This case study illustrates how seismic data processing to a near-offset stack, quality control of logs and petrophysical modelling improved a well tie at an oil reservoir. We demonstrate the application of a predictive petrophysical model in the preparation and integration of the logs before building the seismic model and we quantify our improvements in well-tie accuracy. The data for the study consisted of seismic field data from a 3D sail line through a well in a North Sea oilfield and a suite of standard logs at the well. A swathe of fully processed 3D data through the well was available for comparison. The well tie in the shallow section from first-pass seismic data processing and a routinely edited sonic log was excellent. The tie in a deeper interval containing the reservoir was less satisfactory: the phase errors within the bandwidth of the seismic wavelet were of the order of 20°, which we consider too large for subsequent transformation of the data to seismic impedance. Reprocessing the seismic data and revision of the well-log model reduced these phase errors to less than 10° and improved the consistency of the deep and shallow well ties. The reprocessing included densely picked iterative velocity analysis, prestack migration, beam-forming multiple attenuation, stacking the near-offset traces and demigration and remigration of the near-offset data. The petrophysical model was used to monitor and, where necessary, replace the P-wave sonic log with predictions consistent with other logs and to correct the sonic log for mud-filtrate invasion in the hydrocarbon-bearing sand. This editing and correction of the P-wave transit times improved the normal-incidence well tie significantly. The recordings from a monopole source severely underestimated the S-wave transit times in soft shale formations, including the reservoir seal, where the S-wave velocity was lower than the P-wave velocity in the drilling mud. The petrophysical model predicted an S-wave log that matched the valid recordings and interpolated between them. The subsequent seismic modelling from the predicted S-wave log produced a class II AVO anomaly seen on the CDP gathers around the well.  相似文献   

19.
The cross‐calibration of different vintage data is an important prerequisite in attempting to determine the time‐lapse seismic effects induced by hydrocarbon production in a reservoir. This paper reports the preprocessing and cross‐calibration procedures adopted to modify the data of four seismic vintages (1982, 1989, 1992 and 1999) from the Oseberg field in the North Sea, for optimal conditions for a time‐lapse seismic amplitude analysis. The final results, in terms of time‐lapse variations, of acoustic impedance and of amplitude‐versus‐offset, are illustrated for selected data sets. The application of preprocessing to each individual vintage data set reduces the effects of the different acquisition and noise conditions, and leads to consistency in the amplitude response of the four vintages. This consistency facilitates the final amplitude cross‐calibration that is carried out using, as reference, the Cretaceous horizon reflections above the Brent reservoir. Such cross‐calibration can be considered as vintage‐consistent residual amplitude correction. Acoustic impedance sections, intercept and gradient amplitude‐versus‐offset attributes and coherent amplitude‐versus‐offset estimates are computed on the final cross‐calibrated data. The results, shown for three spatially coincident 2D lines selected from the 1982, 1989 and 1999 data sets, clearly indicate gas‐cap expansion resulting from oil production. Such expansion is manifested as a decrease in acoustic impedance and a modification of the amplitude‐versus‐offset trends in the apical part of the reservoir.  相似文献   

20.
Obtaining high-resolution images of the geology and hydrogeology of the subsurface in the depth range from ground level to 50 m is one of the major challenges of modern geophysics. The methods which are commonly used (such as compressional-wave surveys and ground-penetrating radar) often suffer from adverse effects caused by the near-surface conditions, changes in water saturation and various sources of noise. This paper demonstrates some of the advantages offered by the use of shear-wave seismology and by the combination of shear- and compressional-wave seismic methods in shallow subsurface investigations.
Multicomponent shallow seismic tests were carried out at four different sites to examine the effectiveness of different acquisition geometries under a variety of near-surface geological conditions. Near-surface conditions encountered at the sites included thick clays, clay/sand sequences overlying Chalk, mudstone overlying granodiorite bedrock and landfill material.
Under all conditions, shear-wave data acquisition was found to have advantages over compressional-wave acquisition for the investigation of the shallow subsurface. Shear head waves, being unaffected by water saturation, achieved penetration to greater depths at a site in Crewkerne, Dorset where compressional head-wave penetration was limited to the near-surface layers. Better vertical resolution was achieved at shallow depths using shear-wave reflection energy at a landfill site. Shear-wave reflections from shallow interfaces were in some cases less affected by noise compared with the equivalent compressional-wave reflections. Combinations of shear- and compressional-wave data recording allowed the measurement of a Poisson's ratio log and gave indications of seismic anisotropy at two sites where dipping clay layers were present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号