首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
—We have developed a least-squares minimization approach to depth determination from magnetic data. By defining the anomaly value T(0) at the origin and the anomaly value T(N) at any other distance (N) on the profile, the problem of depth determination from magnetic data has been transformed into finding a solution to a nonlinear equation of the form f(z)=0. Formulas have been derived for a sphere, horizontal cylinder, dike, and for a geologic contact. Procedures are also formulated to estimate the effective magnetization intensity and the effective magnetization inclination. A scheme for analyzing the magnetic data has been formulated for determining the model parameters of the causative sources. The method is applied to synthetic data with and without random errors. Finally, the method is applied to two field examples from Canada and Arizona. In all cases examined, the estimated depths are found to be in goodagreement with actual values.  相似文献   

2.
In this study a new method is presented to determine model parameters from magnetic anomalies caused by dipping dikes. The proposed method is applied by employing only the even component of the anomaly. First, the maximum of the even component is divided to its value at any distance x in order to obtain S1. Then, theoretical even component values are computed for the minimal depth (h) and half-width (b) values. S2 is obtained by dividing their maximum to the value computed for the same distance x. A set of S2 values is calculated by slowly increasing the half-width, and h and b for the S2 closest to S1 are determined. The same procedure is repeated by increasing the depth. The determined b values are plotted against the corresponding values of h. After repeating the process and plotting curves for different distances, it is possible to determine the actual depth and half-width values.  相似文献   

3.
This paper deals with the interpretation of Bouguer gravity anomalies measured along a 250 km long Suhaitu-Etuokeqi gravity profile located at the transitional zone of the Alxa and Ordos blocks where geophysical characteristics are very complex. The analysis is carried out in terms of the ratio of elevation and Bouguer gravity anomaly, the normalized full gradient of a section of the Bouguer gravity anomaly (G h ) and the crustal density structure reveal that (1) the ratio of highs and lows of elevation and Bouguer gravity anomaly is large between Zhengyiguan fault (F4) and Helandonglu fault (F6), which can be explained due to crustal inhomogeneities related to the uplift of the Qinghai-Tibet block in the northeast; (2) the main active faults correspond to the G h contour strip or cut the local region, and generally show strong deformation characteristics, for example the Bayanwulashan mountain front fault (F1) or the southeast boundary of Alxa block is in accord with the western change belt of G h , a belt about 10 km wide that extends to about 30 km; (3) Yinchuan-Pingluo fault (F8) is the seismogenic structure of the Pingluo M earthquake, and its focal depth is about 15 km; (4) the Moho depth trend and Bouguer gravity anomaly variation indicates that the regional gravity field is strongly correlated with the Moho discontinuity.  相似文献   

4.
We used CHAMP satellite vector data and the latest IGRF12 model to investigate the regional magnetic anomalies over mainland China. We assumed satellite points on the same surface (307.69 km) and constructed a spherical cap harmonic model of the satellite magnetic anomalies for elements X, Y, Z, and F over Chinese mainland for 2010.0 (SCH2010) based on selected 498 points. We removed the external field by using the CM4 model. The pole of the spherical cap is 36N° and 104°E, and its half-angle is 30°. After checking and comparing the root mean square (RMS) error of ΔX, ΔY, and ΔZ and X, Y, and Z, we established the truncation level at K max = 9. The results suggest that the created China Geomagnetic Referenced Field at the satellite level (CGRF2010) is consistent with the CM4 model. We compared the SCH2010 with other models and found that the intensities and distributions are consistent. In view of the variation of F at different altitudes, the SCH2010 model results obey the basics of the geomagnetic field. Moreover, the change rate of X, Y, and Z for SCH2010 and CM4 are consistent. The proposed model can successfully reproduce the geomagnetic data, as other data-fitting models, but the inherent sources of error have to be considered as well.  相似文献   

5.
The electric field generation at the front of the current pulse, which originates in a coronal magnetic loop owing to the development of the Rayleigh–Taylor magnetic instability at loop footpoints, has been considered. During the τAl/V A ≈ 5?25 s time (where l is the plasma plume height entering a magnetic loop as a result of the Rayleigh–Taylor instability), a disturbance related to the magnetic field tension B ?(r,t), “escapes” the instability region with the Alfvén velocity in this case. As a result, an electric current pulse Iz(z ? V A t), at the front of which an induction magnetic field E z, which is directed along the magnetic tube axis and can therefore accelerate particles, starts propagating along a magnetic loop with a characteristic scale of Δξ ≈ l. In the case of sufficiently large currents, when B ? 2/8π > p, an electric current pulse propagates nonlinearly, and a relatively large longitudinal electric field originates E z ≈ 2I z 3 V A/c 4a2Bz 2l, which can be larger than the Dreicer field, depending on the electric current value.  相似文献   

6.
The structure and dynamics of the ionosphere and plasmasphere at low solar activity under quiet geomagnetic conditions on January 15–17, 1985, and July 10–13, 1986, over Millstone Hill station and Argentine Islands ionosonde, the locations of which are approximately magnetically conjugate, have been theoretically calculated. The detected correction of the model input parameters makes it possible to coordinate the measured and calculated anomalous variations in the electron density NmF2 at the height hmF2 of the ionospheric F2 layer over Argentine Islands ionosonde as well as the calculated and measured values of NmF2 and electron temperature at the hmF2 height over Millstone Hill station. It has been shown that vibrationally excited N2 and O2 molecules almost do not influence the formation of the winter anomaly under the conditions of low solar activity. A difference between the influence of electronically excited O+ on N e ions under winter and summer conditions forms not more than 11% of the N e winter anomaly event in the F 2 layer and topside ionosphere. The model without electronically excited O+ ions reduces the duration of the N e winter anomaly event. It has been shown that the seasonal variations in the composition of the neutral atmosphere form mainly the NmF2 winter anomaly event over the Millstone Hill radar at low solar activity.  相似文献   

7.
Analysis of the annual variation of the E-layer critical frequency median foE in the nighttime (22?02 LT) auroral zone by the data of several stations of the Northern Hemisphere has shown the median maximum in winter and minimum in summer, even though the summer contribution of solar radiation to foE is greater. Thus, a new phenomenon was discovered—an foE median winter anomaly in the nighttime auroral zone. Its amplitude (ratio of winter to summer foE figures) can reach 10–15%; however, this anomaly was weakly expressed and statistically insignificant at particular stations located in the auroral zone. The winter anomaly is more distinct for foE avr, the median of the E-layer critical frequency foE caused by the auroral source of atmospheric ionization, i.e., excluding the solar radiation contribution to foE. For foE avr, the amplitude of the winter anomaly can reach 15–20%. Based on the qualitative analysis, it has been found that foE winter anomaly is stipulated by the winter/summer asymmetry of energy flow of accelerated electrons, which induce discrete aurorae in the nighttime auroral zone.  相似文献   

8.
We analyzed receiver function of teleseismic events recorded at twelve Indonesian-GEOFON (IA-GE) broadband stations using nonlinear Neighbourhood Algorithm (NA) inversion and H-k stacking methods to estimate crustal thickness, V p /V s ratios and S-wave velocity structure along Sunda-Banda arc transition zone. We observed crustal thickness of 34–37 km in Timor Island, which is consistent with the previous works. The thick crust (> 30 km) is also found beneath Sumba and Flores Islands, which might be related to the arc-continent collision causing the thickened crust. In Timor and Sumba Islands, we observed high V p /V s ratio (> 1.84) with low velocity zone that might be associated with the presence of mafic and ultramafic materials and fluid filled fracture zone. The high V p /V s ratio observed at Sumbawa and Flores volcanic Islands might be an indication of partial melt related to the upwelling of hot asthenosphere material through the subducted slab.  相似文献   

9.
To alert the public to the possibility of tornado (T), hail (H), or convective wind (C), the National Weather Service (NWS) issues watches (V) and warnings (W). There are severe thunderstorm watches (SV), tornado watches (TV), and particularly dangerous situation watches (PV); and there are severe thunderstorm warnings (SW), and tornado warnings (TW). Two stochastic models are formulated that quantify uncertainty in severe weather alarms for the purpose of making decisions: a one-stage model for deciders who respond to warnings, and a two-stage model for deciders who respond to watches and warnings. The models identify all possible sequences of watches, warnings, and events, and characterize the associated uncertainties in terms of transition probabilities. The modeling approach is demonstrated on data from the NWS Norman, Oklahoma, warning area, years 2000–2007. The major findings are these. (i) Irrespective of its official designation, every warning type {SW, TW} predicts with a significant probability every event type {T, H, C}. (ii) An ordered intersection of SW and TW, defined as reinforced warning (RW), provides additional predictive information and outperforms SW and TW. (iii) A watch rarely leads directly to an event, and most frequently is false. But a watch that precedes a warning does matter. The watch type \(\{SV\), TV, \(PV\}\) is a predictor of the warning type \(\{SW\), RW, \(TW\}\) and of the warning performance: It sharpens the false alarm rate of the warning and the predictive probability of an event, and it increases the average lead time of the warning.  相似文献   

10.
To study the prospective areas of upcoming strong-to-major earthquakes, i.e., M w  ≥ 6.0, a catalog of seismicity in the vicinity of the Thailand-Laos-Myanmar border region was generated and then investigated statistically. Based on the successful investigations of previous works, the seismicity rate change (Z value) technique was applied in this study. According to the completeness earthquake dataset, eight available case studies of strong-to-major earthquakes were investigated retrospectively. After iterative tests of the characteristic parameters concerning the number of earthquakes (N) and time window (T w ), the values of 50 and 1.2 years, respectively, were found to reveal an anomalous high Z-value peak (seismic quiescence) prior to the occurrence of six out of the eight major earthquake events studied. In addition, the location of the Z-value anomalies conformed fairly well to the epicenters of those earthquakes. Based on the investigation of correlation coefficient and the stochastic test of the Z values, the parameters used here (N = 50 events and T w  = 1.2 years) were suitable to determine the precursory Z value and not random phenomena. The Z values of this study and the frequency-magnitude distribution b values of a previous work both highlighted the same prospective areas that might generate an upcoming major earthquake: (i) some areas in the northern part of Laos and (ii) the eastern part of Myanmar.  相似文献   

11.
Seismic intensity measures (IMs) perform a pivotal role in probabilistic seismic demand modeling. Many studies investigated appropriate IMs for structures without considering soil liquefaction potential. In particular, optimal IMs for probabilistic seismic demand modeling of bridges in liquefied and laterally spreading ground are not comprehensively studied. In this paper, a coupled-bridge-soil-foundation model is adopted to perform an in-depth investigation of optimal IMs among 26 IMs found in the literature. Uncertainties in structural and geotechnical material properties and geometric parameters of bridges are considered in the model to produce comprehensive scenarios. Metrics such as efficiency, practicality, proficiency, sufficiency and hazard computability are assessed for different demand parameters. Moreover, an information theory based approach is adopted to evaluate the relative sufficiency among the studied IMs. Results indicate the superiority of velocity-related IMs compared to acceleration, displacement and time-related ones. In particular, Housner spectrum intensity (HI), spectral acceleration at 2.0 s (S a-20), peak ground velocity (PGV), cumulative absolute velocity (CAV) and its modified version (CAV 5) are the optimal IMs. Conversely, Arias intensity (I a ) and shaking intensity rate (SIR) which are measures often used in liquefaction evaluation or related structural demand assessment demonstrate very low correlations with the demand parameters. Besides, the geometric parameters do not evidently affect the choice of optimal IMs. In addition, the information theory based sufficiency ranking of IMs shows an identical result to that with the correlation measure based on coefficient of determination (R 2). This means that R 2 can be used to preliminarily assess the relative sufficiency of IMs.  相似文献   

12.
During the ruptures of an earthquake,the strain energy.△E,.will be transferred into,at least,three parts,i.e..the seismic radiation energy(E_s),fracture energy(E_g),and frictional energy(E_f),that is,△E = E_s + E_g + E_f.Friction,which is represented by a velocity- and state-dependent friction law by some researchers,controls the three parts.One of the main parameters of the law is the characteristic slip displacement.D_c.It is significant and necessary to evaluate the reliable value of D_c from observed and inverted seismic data.Since D_c controls the radiation efficiency.η_R = E_s/(E_s+ E_g),the value of η_r is a good constraint of estimating D_c.Integrating observed data and inverted results of source parameters from recorded seismograms.the values of E_s and E_g of an earthquake can be measured,thus leading to the value of η_R.The constraint used to estimate the reliable value of D_c will be described in this work.An example of estimates of D_c.based on the observed and inverted values of source parameters of the September 20,1999 M_S 7.6 Chi-Chi(Ji-Ji).Taiwan region,earthquake will be presented.  相似文献   

13.
The time variations in three parameters during the last decades are considered. R(foF2) is the correlation coefficient between the nighttime and daytime values of foF2 for the same day. Stable trends are found for the minimum (R(foF2)(max)) and maximum (R(foF2)(min)) values of R(foF2) during a year. The foF2(night)/foF2(day) ratio demonstrates both, negative and positive trends, and the trend sign depends on the inclination I and declination D of the magnetic field. The correlation coefficient r(h, fo) between foF2 and the 100 hP level in the stratosphere demonstrates a decrease (in the years of maximum and minimum solar activity) from the 1980s to the 1990s. The trends in all three groups of data are considered under the assumption of long-term changes in the circulation in the upper atmosphere.  相似文献   

14.
The degree of closeness of ionospheric parameters during one magnetic storm and of the same parameters during another, similar, storm is estimated. Overall, four storms—two pairs of storms close in structure and appearance according to recording of the magnetic field Х-component—were analyzed. The examination was based on data from Sodankyla observatory (Finland). The f-graphs of the ionospheric vertical sounding, magnetometer data, and riometer data on absorption were used. The main results are as follows. The values of the critical frequencies foF2, foF1, and foE for different but similar magnetic storms differ insignificantly. In the daytime, the difference is on average 6% (from 0 to 11.1%) for all ionospheric layers. In the nighttime conditions, the difference for foF2 is 4%. The nighttime values of foEs differ on average by 20%. These estimates potentially make it possible to forecast ionospheric parameters for a particular storm.  相似文献   

15.
Simultaneous observations of high-latitude long-period irregular pulsations at frequencies of 2.0–6.0 mHz (ipcl) and magnetic field disturbances in the solar wind plasma at low geomagnetic activity (Kp ~ 0) have been studied. The 1-s data on the magnetic field registration at Godhavn (GDH) high-latitude observatory and the 1-min data on the solar wind plasma and IMF parameters for 2011–2013 were used in an analysis. Ipcl (irregular pulsations continuous, long), which were observed against a background of the IMF Bz reorientation from northward to southward, have been analyzed. In this case other solar wind plasma and IMF parameters, such as velocity V, density n, solar wind dynamic pressure P = ρV2 (ρ is plasma density), and strength magnitude B, were relatively stable. The effect of the IMF Bz variation rate on the ipcl spectral composition and intensity has been studied. It was established that the ipcl spectral density reaches its maximum (~10–20 min) after IMF Bz sign reversal in a predominant number of cases. It was detected that the ipcl average frequency (f) is linearly related to the IMF Bz variation rate (ΔBzt). It was shown that the dependence of f on ΔBzt is controlled by the α = arctan(By/Bx) angle value responsible for the MHD discontinuity type at the front boundary of magnetosphere. The results made it possible to assume that the formation of the observed ipcl spectrum, which is related to the IMF Bz reorientation, is caused by solar wind plasma turbulence, which promotes the development of current sheet instability and surface wave amplification at the magnetopause.  相似文献   

16.
Solutions of P-SV equations of motion in a homogeneous transversely isotropic elastic layer contain a factor exp(±ν j z), where z is the vertical coordinate and j?=?1, 2. For computing Rayleigh wave dispersion in a multi-layered half space, ν j is computed at each layer. For a given phase velocity (c), ν j becomes complex depending on the transversely isotropic parameters. When ν j is complex, classical Rayleigh waves do not exist and generalised Rayleigh waves propagate along a path inclined to the interface. We use transversely isotropic parameters as α H , β V , ξ, ? and η and find their limits beyond which ν j becomes complex. It is seen that ν j depends on ? and η, but does not depend on ξ. The complex ν j occurs when ? is small and η is large. For a given c/β V , the region of complex ν j in a ? -η plane increases with the increase of α H /β V . Further, for a given α H /β V , the complex region of ν j increases significantly with the decrease of c/β V . This study is useful to compute dispersion parameters of Rayleigh waves in a layered medium.  相似文献   

17.
Selecting three half orbits near the epicenter of Pu’er earthquake, we analyzed the Ne data recorded in their revisited orbits during a year before this earthquake, and extracted Ne precursors. The results show that: ① There are significant seasonal variations of ionospheric Ne in night time, which exhibit different shapes respectively in four seasons; ② There are three main shapes of Ne: single-peak, saddle-shaped and even-shaped, all of which may occur in four seasons, but each season with its typical shape relatively; ③ Spatial images of Ne showed high values near the epicenter in 30 days before the earthquake, and there is a good correlation between anomaly and distribution of earthquake in space and time, which reflects that these spatial anomalies were indeed concerned with the earthquake; ④ There shows a certain similarity of the Ne curves among revisited orbits, which can provide background information for distinguishing and identification of seismic anomaly.  相似文献   

18.
The 2017 Guptkashi earthquake occurred in a segment of the Himalayan arc with high potential for a strong earthquake in the near future. In this context, a careful analysis of the earthquake is important as it may shed light on source and ground motion characteristics during future earthquakes. Using the earthquake recording on a single broadband strong-motion seismograph installed at the epicenter, we estimate the earthquake’s location (30.546° N, 79.063° E), depth (H?=?19 km), the seismic moment (M0?=?1.12×1017 Nm, M w 5.3), the focal mechanism (φ?=?280°, δ?=?14°, λ?=?84°), the source radius (a?=?1.3 km), and the static stress drop (Δσ s ~22 MPa). The event occurred just above the Main Himalayan Thrust. S-wave spectra of the earthquake at hard sites in the arc are well approximated (assuming ω?2 source model) by attenuation parameters Q(f)?=?500f0.9, κ?=?0.04 s, and fmax?=?infinite, and a stress drop of Δσ?=?70 MPa. Observed and computed peak ground motions, using stochastic method along with parameters inferred from spectral analysis, agree well with each other. These attenuation parameters are also reasonable for the observed spectra and/or peak ground motion parameters in the arc at distances ≤?200 km during five other earthquakes in the region (4.6?≤?M w ?≤?6.9). The estimated stress drop of the six events ranges from 20 to 120 MPa. Our analysis suggests that attenuation parameters given above may be used for ground motion estimation at hard sites in the Himalayan arc via the stochastic method.  相似文献   

19.
In this paper, I introduce a novel approach to modelling the individual random component (also called the intra-event uncertainty) of a ground-motion relation (GMR), as well as a novel approach to estimating the corresponding parameters. In essence, I contend that the individual random component is reproduced adequately by a simple stochastic mechanism of random impulses acting in the horizontal plane, with random directions. The random number of impulses was Poisson distributed. The parameters of the model were estimated according to a proposal by Raschke J Seismol 17(4):1157–1182, (2013a), with the sample of random difference ξ?=?ln(Y 1 )-ln(Y 2 ), in which Y 1 and Y 2 are the horizontal components of local ground-motion intensity. Any GMR element was eliminated by subtraction, except the individual random components. In the estimation procedure, the distribution of difference ξ was approximated by combining a large Monte Carlo simulated sample and Kernel smoothing. The estimated model satisfactorily fitted the difference ξ of the sample of peak ground accelerations, and the variance of the individual random components was considerably smaller than that of conventional GMRs. In addition, the dependence of variance on the epicentre distance was considered; however, a dependence of variance on the magnitude was not detected. Finally, the influence of the novel model and the corresponding approximations on PSHA was researched. The applied approximations of distribution of the individual random component were satisfactory for the researched example of PSHA.  相似文献   

20.
We consider a transversely isotropic medium with vertical axis of symmetry (VTI). Rayleigh wave displacement components in a homogeneous VTI medium contain exp(±krjz), where z is the vertical coordinate, k is the wave number, and j?=?1, 2; rj may be considered as depth-decay factor. In a VTI medium, rj can be a real or imaginary as in an isotropic medium, or it can be a complex depending on the elastic parameters of the VTI medium; if complex, r1 and r2 are complex conjugates. In a homogeneous VTI half space, Rayleigh wave displacement is significantly modified with a phase shift when rj changes from real to complex with variation of VTI parameters; at the transition, the displacement becomes zero when r1?=?r2. In a liquid layer over a VTI half space, Rayleigh waves are dispersive. Here, also Rayleigh wave displacement significantly modified with a phase shift when rj changes from real to complex with a decrease of period. At very low period, phase velocity of Rayleigh waves becomes less than P-wave velocity in the liquid layer giving rise to Scholte waves (interface waves). The amplitudes of Scholte waves with a VTI half space are found to be significantly larger than those with an isotropic half space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号