首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Aki-Utsu method of Gutenberg-Richter (G-R) b value estimation is often misapplied so that estimations not using the G-R histogram are often meaningless because they are not based on adequate samples. We propose a method to estimate the likelihood Pr(b?b m , N, M 1, M 2) that an observed b m estimate, based on a sample of N magnitudes within an [M 1????≤?ΔM/2,?M 2?+?ΔM/2) range, where ΔM?=?0.1 is the usual rounding applied to magnitudes, is due to a “true” source b value, b, and use these likelihoods to estimate source b ranges corresponding to various confidence levels. As an example of application of the method, we estimate the b values before and after the occurrence of a 7.4-magnitude earthquake in the Mexican subduction zone, and find a difference of 0.82 between them with 100% confidence that the b values are different.  相似文献   

2.
The purpose of this work is to define a seismic regionalization of Mexico for seismic hazard and risk analyses. This seismic regionalization is based on seismic, geologic, and tectonic characteristics. To this end, a seismic catalog was compiled using the more reliable sources available. The catalog was made homogeneous in magnitude in order to avoid the differences in the way this parameter is reported by various agencies. Instead of using a linear regression to converts from m b and M d to M s or M w , using only events for which estimates of both magnitudes are available (i.e., paired data), we used the frequency-magnitude relations relying on the a and b values of the Gutenberg-Richter relation. The seismic regions are divided into three main categories: seismicity associated with the subduction process along the Pacific coast of Mexico, in-slab events within the down-going COC and RIV plates, and crustal seismicity associated to various geologic and tectonic regions. In total, 18 seismic regions were identified and delimited. For each, the a and b values of the Gutenberg-Richter relation were determined using a maximum likelihood estimation. The a and b parameters were repeatedly estimated as a function of time for each region, in order to confirm their reliability and stability. The recurrence times predicted by the resulting Gutenberg-Richter relations obtained are compared with the observed recurrence times of the larger events in each region of both historical and instrumental earthquakes.  相似文献   

3.
In this study a new method is presented to determine model parameters from magnetic anomalies caused by dipping dikes. The proposed method is applied by employing only the even component of the anomaly. First, the maximum of the even component is divided to its value at any distance x in order to obtain S1. Then, theoretical even component values are computed for the minimal depth (h) and half-width (b) values. S2 is obtained by dividing their maximum to the value computed for the same distance x. A set of S2 values is calculated by slowly increasing the half-width, and h and b for the S2 closest to S1 are determined. The same procedure is repeated by increasing the depth. The determined b values are plotted against the corresponding values of h. After repeating the process and plotting curves for different distances, it is possible to determine the actual depth and half-width values.  相似文献   

4.
Bayesian probability theory is an appropriate and useful method for estimating parameters in seismic hazard analysis. The analysis in Bayesian approaches is based on a posterior belief, also their special ability is to take into account the uncertainty of parameters in probabilistic relations and a priori knowledge. In this study, we benefited the Bayesian approach in order to estimate maximum values of peak ground acceleration (Amax) also quantiles of the relevant probabilistic distributions are figured out in a desired future interval time in Iran. The main assumptions are Poissonian character of the seismic events flow and properties of the Gutenberg-Richter distribution law. The map of maximum possible values of Amax and also map of 90% quantile of distribution of maximum values of Amax on a future interval time 100 years is presented. According to the results, the maximum value of the Amax is estimated for Bandar Abbas as 0.3g and the minimum one is attributed to Esfahan as 0.03g. Finally, the estimated values in Bayesian approach are compared with what was presented applying probabilistic seismic hazard (PSH) methods based on the conventional Cornel (1968) method. The distribution function of Amax for future time intervals of 100 and 475 years are calculated for confidence limit of probability level of 90%.  相似文献   

5.
To study the prospective areas of upcoming strong-to-major earthquakes, i.e., M w  ≥ 6.0, a catalog of seismicity in the vicinity of the Thailand-Laos-Myanmar border region was generated and then investigated statistically. Based on the successful investigations of previous works, the seismicity rate change (Z value) technique was applied in this study. According to the completeness earthquake dataset, eight available case studies of strong-to-major earthquakes were investigated retrospectively. After iterative tests of the characteristic parameters concerning the number of earthquakes (N) and time window (T w ), the values of 50 and 1.2 years, respectively, were found to reveal an anomalous high Z-value peak (seismic quiescence) prior to the occurrence of six out of the eight major earthquake events studied. In addition, the location of the Z-value anomalies conformed fairly well to the epicenters of those earthquakes. Based on the investigation of correlation coefficient and the stochastic test of the Z values, the parameters used here (N = 50 events and T w  = 1.2 years) were suitable to determine the precursory Z value and not random phenomena. The Z values of this study and the frequency-magnitude distribution b values of a previous work both highlighted the same prospective areas that might generate an upcoming major earthquake: (i) some areas in the northern part of Laos and (ii) the eastern part of Myanmar.  相似文献   

6.
Seismic observations exhibit the presence of abnormal b-values prior to numerous earthquakes. The time interval from the appearance of abnormal b-values to the occurrence of mainshock is called the precursor time. There are two kinds of precursor times in use: the first one denoted by T is the time interval from the moment when the b-value starts to increase from the normal one to the abnormal one to the occurrence time of the forthcoming mainshock, and the second one denoted by T p is the time interval from the moment when the abnormal b-value reaches the peak one to the occurrence time of the forthcoming mainshock. Let T* be the waiting time from the moment when the abnormal b-value returned to the normal one to the occurrence time of the forthcoming mainshock. The precursor time, T (usually in days), has been found to be related to the magnitude, M, of the mainshock expected in a linear form as log(T)?=?q?+?rM where q and r are the coefficient and slope, respectively. In this study, the values of T, T p , and T* of 45 earthquakes with 3?≤?M?≤?9 occurred in various tectonic regions are compiled from or measured from the temporal variations in b-values given in numerous source materials. The relationships of T and T p , respectively, versus M are inferred from compiled data. The difference between the values of T and T p decreases with increasing M. In addition, the plots of T*/T versus M, T* versus T, and T* versus T-T* will be made and related equations between two quantities will be inferred from given data.  相似文献   

7.
The study of the Gutenberg-Richter (GR) parameters a and b has been very important to describe and characterize the seismicity over the different seismic provinces around the world. As far as we know, the possible correlation between the GR parameters a and b has not received enough attention. Bayrak et al. reported the a and b values for 27 active seismic regions around the boundaries of the main tectonic plates of the world. From these data, we found that there exists a positive correlation between the a and b parameters (R =?0.85, R2 =?0.72). On the other hand, we made around 150 computer runs of a spring-block model proposed by Olami et al. (Phys Rev Lett 68(8):1244–1247, 1992). This model roughly emulates the interaction between two fault planes and it reaches a self-organized critical state. With these simulations, we also found that the a and b parameters are positively correlated. Motivated by these results, we propose an analytical demonstration that indeed a and b are positively correlated. In addition, we discuss on other possible applications of the spring-block model to actual seismicity and to frictional experiments made with sandpapers.  相似文献   

8.
The time variations in the Gutenberg–Richter b-value are minutely studied based on the data of highly accurate seismological observations at the Garm prognostic site, Tajikistan, where a stationary network of seismic stations of the Complex Seismological Expedition (CSE) of Schmidt Institute of Physics of the Earth (IPE) of the USSR (Russian) Academy of Sciences was in operation from 1955 to 1992. A total of 93035 local earthquakes ranging from 0.0 to 6.3 in the Ml magnitudes are considered. The spatiotemporal fluctuations in the minimal magnitude of completeness of the earthquakes, Mc, are analyzed. The study considers a 25-year interval of the observations at the center of the observation system within which Mc = 0.9. It is shown that in most cases, the b-value and log10E2/3 experience characteristic time variations before the earthquakes with magnitudes higher than the minimal magnitude of the predicted earthquake (MPE). The 6-year anomaly in the parameters’ b-value, log10E2/3, and log10N associated with the single strongest earthquake with M = 6.3 that occurred in the observation region on October 26, 1984 is revealed. The inversely proportional relationship is established between the time variations in the b-value and the time variations in the velocities of seismic waves Vp and Vp/Vs. It is shown that the exponent p in the power function which links the time variations of the b-value and log10E2/3 is higher in the zones of crustal compression than in the zones of extension. It is simultaneously confirmed that the average b-value in the zones of compression is lower than in the zones of extension. It is established that in the case of earthquakes with M ≥ 2.6, the time series of seismic activity log10Ni and the time series of the b-value are highly cross correlated with a coefficient of r ≈ 0.75, whereas in the case of earthquakes with M ≥ 0.9, the coefficient of cross correlation between these time series is close to zero (r ≈ 0.06). The law of variations in the slope of the lines approximating the relationship between the log10Ni time series in the different magnitude ranges (MMci) and b-value time series is obtained. It is hypothesized that the seismic activity of the earthquakes with high magnitudes can be estimated provided that the parameters of the time series of the b-value and time series of the number of earthquakes logNMi) in the range of low magnitudes are known. It is concluded that using the parameter log10N for prognostic estimates of the strong earthquakes only makes sense for earthquakes having moderate and large magnitudes. It is inferred that the time variations in the b-value are predominantly contributed by the time variations of the earthquakes with relatively large magnitudes.  相似文献   

9.
Analysis of the frequency dependence of the attenuation coefficient leads to significant changes in interpretation of seismic attenuation data. Here, several published surface-wave attenuation studies are revisited from a uniform viewpoint of the temporal attenuation coefficient, denoted by χ. Theoretically, χ( f) is expected to be linear in frequency, with a generally non-zero intercept γ?=?χ(0) related to the variations of geometrical spreading, and slope dχ/df = π/Q e caused by the effective attenuation of the medium. This phenomenological model allows a simple classification of χ( f) dependences as combinations of linear segments within several frequency bands. Such linear patterns are indeed observed for Rayleigh waves at 500–100-s and 100–10-s periods, and also for Lg from ~2 s to ~1.5 Hz. The Lg χ( f) branch overlaps with similar linear branches of body, Pn, and coda waves, which were described earlier and extend to ~100 Hz. For surface waves shorter than ~100 s, γ values recorded in areas of stable and active tectonics are separated by the levels of \(\gamma _{D} \approx 0.2 \times 10^{-3}\) s???1 (for Rayleigh waves) and 8 ×10???3 s???1 (for Lg). The recently recognized discrepancy between the values of Q measured from long-period surface waves and normal-mode oscillations could also be explained by a slight positive bias in the geometrical spreading of surface waves. Similarly to the apparent χ, the corresponding linear variation with frequency is inferred for the intrinsic attenuation coefficient, χ i , which combines the effects of geometrical spreading and dissipation within the medium. Frequency-dependent rheological or scattering Q is not required for explaining any of the attenuation observations considered in this study. The often-interpreted increase of Q with frequency may be apparent and caused by using the Q-based model of attenuation and following preferred Q( f) dependences while ignoring the true χ( f) trends within the individual frequency bands.  相似文献   

10.
Seismic strain and b value are used to quantify seismic potential in the Zagros region (Iran). Small b values (0.69 and 0.69) are related to large seismic moment rates (9.96×1017 and 4.12×1017) in southern zones of the Zagros, indicating more frequent large earthquakes. Medium to large b values (0.72 and 0.92) are related to small seismic moment rates (2.94×1016 and 6.80×1016) in middle zones of the Zagros, indicating less frequent large earthquakes. Small b value (0.64) is related to medium seismic moment rate (1.38×1017) in middle to northern zone of the Zagros, indicating frequent large earthquakes. Large b value (0.87) is related to large seismic moment rate (2.29×1017) in northwestern zone, indicating more frequent large earthquakes. Recurrence intervals of large earthquakes (M > 6) are short in southern (10 and 14 years) and northwestern (13 years) zones, while the recurrence intervals are long in the middle (46 and 114 years) and middle to northern (25 years) zones.  相似文献   

11.
This paper investigated the effects of basin geometry and material property on the response of 2D trapezoidal sediment-filled basin to incident plane SH waves. Ten basin configurations with different geometries were developed, and then their seismic responses to both Ricker wavelets and seismic records were simulated by using an explicit finite difference scheme. The definition of deep/shallow basin, the precondition for the observation of prominent surface waves and the influential area of edge effects of the shallow basin were discussed quantitatively in this study. The followings were concluded: in the common velocity contrast range (v s1/v s2 < 10), the fundamental frequency a basin with W/H > 3.0 can be estimated approximately by 1D theory. The complexity of peak ground acceleration distribution pattern, the width of the most affected section as well as the amplitude of ground motion in the Edge Region increase with incident frequency. Prominent surface waves can only be observed when the incident wavelength is shorter than the critical wavelength λ c . The interaction between incident wave and basin dynamic property plays a dominant role on the peak ground acceleration amplitude while the interaction between incident wave and geometry plays a more significant role on the peak ground acceleration distribution. For very shallow basin, different areas along the basin width are affected to different extents. Only a limited area close to the basin edge is influenced significantly. It is more feasible to propose spectral aggravation factor for different surface zones respectively than a uniform constant as a tool to calibrate the 1D-based design spectrum so as to take the basin effects into account.  相似文献   

12.
In this study, two different historical structures built in Trabzon have been processed by ambient vibrations and seismic refraction measurements. One of the investigated historical structures is the Atatürk Pavilion built in the nineteenth century, and the other one is Hagia Sophia which was built in the thirteenth century. These two buildings are among the most important historical buildings in Trabzon and are very important for the tourism of the city. In order to determine peak/s frequency and amplitude from the horizontal-to-vertical spectral ratios (HVSRs), we have performed several measurements of ambient vibrations both inside (at different floors) and outside (on the ground) of structures. We have also conducted seismic prospecting to evaluate the vertical 1D and 2D profile of longitudinal and shear seismic waves, Vp and Vs, respectively. To this purpose, we have performed seismic refraction tomography and MASW. Ambient vibrations and seismic measurements were compared with each other. The results show that average predominant frequencies and HVSR amplitudes of inside and outside of Atatürk Pavilion are 4.0 Hz, 7.8 Hz and 2.6, 2.3, respectively. The Vp values vary from 300 to 2070 m/s, and the Vs for maximum effective depth is up to 790 m/s in Atatürk Pavilion. On the other hand, average predominant frequencies and HVSR amplitudes of inside and outside of Hagia Sophia and its tower are 4.7, 4.4 and 2.4 Hz and 1.6, 1.8 and 6.9, respectively. Vp values range from 450 to 2200 m/s, and Vs for maximum effective depth is also up to 1000 m/s in Hagia Sophia. The frequency values (F0?=?Vs/4 h) calculated from the velocities up to the maximum effective depth for Atatürk Pavilion are in good agreement with the predominant frequency values determined from ambient vibrations. Atatürk Pavilion and Hagia Sophia soils have been classed according to Eurocode 8 by using VS30 values. The class was defined as “B.” Moreover, the bedrock in studied area is basalt. The high Vp and Vs values are also compatible with the lithology. The HVSR curves measured at the Hagia Sophia show the presence of clear peaks when compared to the Atatürk Pavilion. At the same time, there are marked velocity changes in the Vs sections calculated in both areas. As a result, in both areas there are significant impedance contrasts in the subsoil. However, this impedance contrast is more evident in Hagia Sophia. This could be also compatible with a lithological transition. The possible soil–structure interaction was investigated by using all the results and evaluated in terms of resonance risk. It is thought that the probability of resonance risk at Atatürk Pavilion is low according to the ambient vibrations measurements. However, resonance risk should be taken into consideration at Hagia Sophia site since the predominant frequency values are very close to each other. Finally, this site should be investigated in detail and necessary precautions should be taken against the risk of resonance.  相似文献   

13.
The 2017 Guptkashi earthquake occurred in a segment of the Himalayan arc with high potential for a strong earthquake in the near future. In this context, a careful analysis of the earthquake is important as it may shed light on source and ground motion characteristics during future earthquakes. Using the earthquake recording on a single broadband strong-motion seismograph installed at the epicenter, we estimate the earthquake’s location (30.546° N, 79.063° E), depth (H?=?19 km), the seismic moment (M0?=?1.12×1017 Nm, M w 5.3), the focal mechanism (φ?=?280°, δ?=?14°, λ?=?84°), the source radius (a?=?1.3 km), and the static stress drop (Δσ s ~22 MPa). The event occurred just above the Main Himalayan Thrust. S-wave spectra of the earthquake at hard sites in the arc are well approximated (assuming ω?2 source model) by attenuation parameters Q(f)?=?500f0.9, κ?=?0.04 s, and fmax?=?infinite, and a stress drop of Δσ?=?70 MPa. Observed and computed peak ground motions, using stochastic method along with parameters inferred from spectral analysis, agree well with each other. These attenuation parameters are also reasonable for the observed spectra and/or peak ground motion parameters in the arc at distances ≤?200 km during five other earthquakes in the region (4.6?≤?M w ?≤?6.9). The estimated stress drop of the six events ranges from 20 to 120 MPa. Our analysis suggests that attenuation parameters given above may be used for ground motion estimation at hard sites in the Himalayan arc via the stochastic method.  相似文献   

14.
Spatiotemporal mapping the minimum magnitude of completeness Mc and b-value of the Gutenberg–Richter law is conducted for the earthquake catalog data of Greece. The data were recorded by the seismic network of the Institute of Geodynamics of the National Observatory of Athens (GINOA) in 1970–2010 and by the Hellenic Unified Seismic Network (HUSN) in 2011–2014. It is shown that with the beginning of the measurements at HUSN, the number of the recorded events more than quintupled. The magnitude of completeness Mc of the earthquake catalog for 1970–2010 varies within 2.7 to 3.5, whereas starting from April 2011 it decreases to 1.5–1.8 in the central part of the region and fluctuates around the average of 2.0 in the study region overall. The magnitude of completeness Mc and b-value for the catalogs of the earthquakes recorded by the old (GINOA) and new (HUSN) seismic networks are compared. It is hypothesized that the magnitude of completeness Mc may affect the b-value estimates. The spatial distribution of the b-value determined from the HUSN catalog data generally agrees with the main geotectonic features of the studied territory. It is shown that the b-value is below 1 in the zones of compression and is larger than or equal to 1 in the zones dominated by extension. The established depth dependence of the b-value is pretty much consistent with the hypothesis of a brittle–ductile transition zone existing in the Earth’s crust. It is assumed that the source depth of a strong earthquake can probably be estimated from the depth distribution of the b-value, which can be used for seismic hazard assessment.  相似文献   

15.
We analyzed the most relevant seismic sequences that occurred from 1977 to 2007 in the Friuli-Venezia Giulia region (northeastern Italy) and western Slovenia. The eight aftershock sequences were triggered by low- to moderate-magnitude earthquakes with mainshock duration magnitude ranging from 3.7 to 5.6. The b-value of the Gutenberg–Richter law varies from 0.8 to 1.1. The modified Omori’s modeling of the sequences evidences values of the p exponent ranging from 0.8 to 1.0. Using the Reasenberg and Jones (Science 243:1173–1176, 1989; Science 265:1251–1252, 1994) approach, we computed the probabilistic estimate of the aftershock rates and the largest aftershock in given time intervals. The difference in magnitude between the mainshock and the largest aftershock is calculated according to the modified Båth law and using an approach that considers the partitioning of the radiated seismic energy between mainshock and aftershocks. The partitioning of the radiated seismic energy appears to play a significant role in the evolution of the sequences. We define the parameter R ES as the ratio between the radiated seismic energy of the mainshock and the summation of the seismic energy radiated by the aftershocks. The difference in magnitude between the mainshock and the largest aftershock, calculated with the parameter R ES, agrees well with the observed difference. In most sequences, the parameter R ES decreases very quickly until the occurrence of the largest aftershock and then becomes constant. By analyzing the values of R ES during the early hours following the mainshock, we found that the R ES values after 24 h are well related to the final ones, calculated on the whole sequence, and to the differences in magnitude between the mainshock and the largest aftershock.  相似文献   

16.
The structure and dynamics of the ionosphere and plasmasphere at low solar activity under quiet geomagnetic conditions on January 15–17, 1985, and July 10–13, 1986, over Millstone Hill station and Argentine Islands ionosonde, the locations of which are approximately magnetically conjugate, have been theoretically calculated. The detected correction of the model input parameters makes it possible to coordinate the measured and calculated anomalous variations in the electron density NmF2 at the height hmF2 of the ionospheric F2 layer over Argentine Islands ionosonde as well as the calculated and measured values of NmF2 and electron temperature at the hmF2 height over Millstone Hill station. It has been shown that vibrationally excited N2 and O2 molecules almost do not influence the formation of the winter anomaly under the conditions of low solar activity. A difference between the influence of electronically excited O+ on N e ions under winter and summer conditions forms not more than 11% of the N e winter anomaly event in the F 2 layer and topside ionosphere. The model without electronically excited O+ ions reduces the duration of the N e winter anomaly event. It has been shown that the seasonal variations in the composition of the neutral atmosphere form mainly the NmF2 winter anomaly event over the Millstone Hill radar at low solar activity.  相似文献   

17.
With the medians of the E-layer critical frequency foE measured at Resolute Bay and Casey ionospheric stations located in the polar caps of the Northern and Southern Hemispheres, it is found that these medians are higher at the nighttime hours (2100–0300 LT) in the local winter than in local summer. For Resolute Bay station, which is located above the Arctic Circle, the latter means that the foE median is higher at polar night than at polar day. Thus, the effect of a winter anomaly in the foE median in the nighttime polar cap is detected. The amplitude of that anomaly (the ratio of the local winter foE values to local summer values) could reach 15–20% and 10–15% for Resolute Bay and Casey stations, respectively. It is assumed that the winter anomaly in the foE median in the nighttime polar cap is caused by the winter–summer asymmetry in the accelerated electron energy fluxes precipitating into this region.  相似文献   

18.
The Reviewed Event Bulletin (REB) of the International Data Center (IDC) has been used in order to investigate the seismicity of the Northwest Himalaya and its neighboring region for the time period June 1999 to March 2015 within the geographical coordinates 25–40° N latitude and 65–85° E longitude. We have used a very precisely located earthquake dataset recorded by the International Monitoring System (IMS) Network containing 7,583 events with body wave magnitudes from 2.5 to 6.3. The study area has been subdivided into six regions based on the Flinn-Engdahl (F-E) seismic and geographical regionalization scheme, which was used as the region classifications of the International Data Center catalog. The examined region includes NW India, Pakistan, Nepal, Xizang, Kashmir, and Hindukush. For each region, Magnitudes of completeness (Mc) and Gutenberg-Richter (GR) recurrence parameters (a and b values) have been estimated. The Gutenberg-Richter analysis is preceded by an overview of the seismotectonics of the study area. The obtained Mc values vary from 3.5 to 3.9. The lower value of Mc was found mainly in Xizang region whereas the higher Mc threshold is evident in Pakistan region. However, the b values vary from 1.19 to 1.48. The lowest b value is recorded in Xizang region, which is mostly related to the Main Karakoram Thrust (MKT) fault, whereas the highest b values are recorded in NW India and Kashmir regions, which are mostly related to the Main Frontal Thrust (MFT) fault. The REB for the selected period has been compared to the most renowned bulletin of global seismicity, namely that issued by the National Earthquake Information Center (NEIC) of the United States Geological Survey (USGS). A study of 4,821 events recorded by USGS in the study region indicates that about 36 % of seismic events were missed and the catalog is considered as complete for events with magnitudes ≥4.0. However, both a and b values are obviously higher than those of IMS catalog. The a and b parameters in the Gutenberg-Richter magnitude–frequency relationship have been utilized to forecast the probability of future earthquakes of different magnitudes and returned periods (recurrence intervals).  相似文献   

19.
The Aki-Utsu maximum likelihood method is widely used for estimation of the Gutenberg-Richter b-value, but not all authors are conscious of the method’s limitations and implicit requirements. The Aki/Utsu method requires a representative estimate of the population mean magnitude; a requirement seldom satisfied in b-value studies, particularly in those that use data from small geographic and/or time windows, such as b-mapping and b-vs-time studies. Monte Carlo simulation methods are used to determine how large a sample is necessary to achieve representativity, particularly for rounded magnitudes. The size of a representative sample weakly depends on the actual b-value. It is shown that, for commonly used precisions, small samples give meaningless estimations of b. Our results give estimates on the probabilities of getting correct estimates of b for a given desired precision for samples of different sizes. We submit that all published studies reporting b-value estimations should include information about the size of the samples used.  相似文献   

20.
A preliminary study of b value of rocks with two kinds of structural models has been made on the base of a new acoustic emission recording system. It shows that b value of the sample decreases obviously when the sample with compressive en echelon faults changes into a tensile one after interchange occurs between stress axis σ 1 and σ 2. A similar experiment is observed when the sample with tensile en echelon faults changes into that with a bend fault after two segments of the en echelon fault linking up. These facts indicate that the variation of b value may contain the information of the regional dominant structural model. Therefore, b-value analyses could be a new method for studying regional dominant structural models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号