首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
南京市主城区大气颗粒物来源探讨   总被引:9,自引:0,他引:9  
在2005-05-03——05-27期间,用Anderson九级采样器在南京市两个采样点采集大气气溶胶样品,同时进行了部分排放源的采集。用X射线—荧光光谱仪(XRF)分析得到气样及源样中PM10的化学成分,分析了南京市大气气溶胶的元素质量谱分布,进行了PM10的富集因子分析,并应用化学质量平衡法(CMB)计算各类源对气溶胶PM10的贡献。结果表明,各类污染源对南京市气溶胶PM10的贡献率分别为:建筑尘(35.45%)、煤烟尘(22.13%)、土壤尘(20.27%)、硫酸盐(5.43%)、汽车尘(4.61%)、海盐(1.91%)、冶炼尘(1.69%)、其它源(8.51%)。文中还结合了南京市TSP和PM2.5的来源解析结果,分析了南京市不同粒径气溶胶颗粒物的污染特征。  相似文献   

3.
邢军  孙颖  李德恒 《吉林气象》2012,(1):8-11,26
利用四平中韩沙尘暴监测站颗粒物监测仪器GRIMM180观测的2011年数浓度及ρ(PM10)、ρ(PM2.5)和ρ(PM1.0)数据及台站的常规气象观测资料,分析了该地区数浓度、质量浓度的变化特征及与气象条件的相关性。结果表明,PM2.5和PM10污染存在着明显的季节性变化,季节变化特征基本一致,表现为冬季>春季>秋季>夏季,冬季最重,夏季最轻;颗粒物质量浓度日变化呈现两峰特征,ρ(PM10)、ρ(PM2.5)和ρ(PM1.0)之间有很好的相关性,ρ(PM2.5)/ρ(PM10)的平均值为65.7%,ρ(PM1.0)/ρ(PM2.5)的平均值83.9%,ρ(PM1.0)/ρ(PM10)的平均值55.2%;四平地区年主导风向为SSW,颗粒物质量浓度变化受沙尘移动路径影响较大,采暖期间供热燃煤排放对空气质量有较大程度的影响,其中大风、浮尘等天气条件下颗粒物质量浓度值呈较大突变特性。  相似文献   

4.
利用2013-2016年惠州市5个环保国控站的PM质量浓度和国家基本气象观测站的气象要素观测数据及NCEP/NCAR日平均再分析资料,统计分析了惠州市大气颗粒物质量浓度变化特征及其与气象条件的关系。结果表明:2013-2016年惠州市大气颗粒物质量浓度、污染日数和超标日数均呈明显下降趋势,2016年PM10年平均质量浓度已接近年平均质量浓度限值一级标准,PM2.5年平均质量浓度达到年平均质量浓度限值二级标准。大气颗粒物质量浓度冬季的最高、秋季的次之,非汛期的(10月次年3月)显著高于汛期的(4-9月)。PM2.5污染日均出现在非汛期,尤其是冬季的1和12月,大多出现在晴朗干燥的东北风天气下。分析惠州市20132016年间两次长时间大气颗粒物污染过程发现,这两次大气颗粒物污染过程出现在冷空气减弱、冷高压东移出海后或下一波冷空气来临前,但随着南下冷空气的到来,北风加大或带来明显降水,空气质量明显好转。  相似文献   

5.
利用2015年黄石市5个监测站点可吸入颗粒物(PM10)和细颗粒物(PM2.5)的在线监测数据和风向、风速、气温、气压等常规地面气象要素观测资料,分析了黄石市大气PM10和PM2.5的质量浓度水平分布特征及其与气象参数的关系。结果表明:2015年黄石市5个监测站点大气PM10和PM2.5年均浓度范围分别为95.8—108.6μg·m^-3和64.3—68.9μg·m^-3,均超过国家二级标准;季均质量浓度呈现显著的冬季高夏季低的变化规律,冬季PM10和PM2.5的质量浓度分别为(143.9±62.2)μg·m^-3和(95.5±44.5)μg·m^-3,夏季PM10和PM2.5的质量浓度分别为(75.2±24.0)μg·m^-3和(50.7±17.3)μg·m^-3。5个监测站中,下陆区、西塞山区和铁山区的PM10和PM2.5颗粒物污染较为严重;各站点大气PM10和PM2.5质量浓度显著相关。大气颗粒物浓度与气象因素的分析显示,黄石市大气颗粒物浓度与气温呈显著的负相关关系,与气压呈正相关关系,与风速和相对湿度的相关性不显著,受风向影响变化较大。  相似文献   

6.
基于经验公式分析了天津市2013-2017年大气自净能力,以及PM2.5和PM10质量浓度的时空分布特征,并探讨了大气自净能力与大气颗粒物PM2.5质量浓度的关系,以期更好的理解大气环境对污染物浓度变化的影响。结果表明:时间变化上,天津市大气自净能力在午后13-14时最大,夜间最低,一年之中在采暖季(10月至翌年3月)要小于非采暖季,与之相反,天津市PM2.5和PM10质量浓度在采暖季均高于非采暖季。2017年相对于2013年,大气自净能力增加了5%,而PM2.5质量浓度下降了34%,PM10质量浓度则减少了47%。空间分布上,大气自净能力各季节均表现为沿海高于内陆,城区低于郊区的分布,天津市的PM2.5和PM10质量浓度的高值也主要集中在中南部地区,尤其是城区。大气自净能力与颗粒物浓度的分布在空间分布上有着一定的对应关系。分析表明,天津市大气自净能力日均值与PM2.5质量浓度日均值呈负相关,两者的相关系数为-0.34,在采暖季,相关系数有所提高。通过大气自净能力与PM2.5质量浓度变化的分析可知,重污染事件大多数发生在低大气自净能力时。  相似文献   

7.
8.
沙尘天气是造成我国北方春季区域性沙尘型重污染的主要原因,然而目前对此研究并不多见。因此,本文利用中国环保网2014年1月1日-2016年12月31日内蒙古11个城市环境监测站的颗粒物浓度的逐日和逐时资料,首先分析近3年该地区颗粒物污染浓度的年变化特征,然后对比这3年沙尘天气发生的次数及时段,探究颗粒物污染的年变化特征及其与沙尘天气之关系。统计结果表明,近3年春季内蒙古沙尘天气的发生次数是逐年增加的,中西部是沙尘天气频发区,与之相对应,西部颗粒物浓度的年变化高于东部,且造成内蒙古主要城市PM10浓度春季出现全年的最高值,表明沙尘天气频繁发生对当地粗颗粒物污染有显著的影响。对比内蒙古全年3个时间段的PM10浓度值,其排序是:春季沙尘期间>春季非沙尘期间>其他季节;即春季沙尘期间PM10浓度比非沙尘期间高69%,比其他季节高101%。有所不同的是,3个时间段平均PM2.5浓度排序则为:春季沙尘期间>其他季节>春季非沙尘期间;春季沙尘期间PM2.5的平均浓度比其他季节高16%,比春季非沙尘期间高29%;可见,春季沙尘天气对相关城市PM10浓度的影响明显大于对PM2.5浓度的影响。最后对内蒙古地区典型沙尘暴和扬沙个例进行细致研究, 发现沙尘暴个例中PM10浓度的增加倍数在2.3~15.1之间,而扬沙过程PM10浓度的增加倍数在0.8~5.6之间,两者相比可看出,沙尘暴过程对颗粒物污染的影响显著大于扬沙过程。  相似文献   

9.
利用2008-2017年大气颗粒物质量浓度资料和逐日地面气象观测资料,统计分析了丹东市大气颗粒物质量浓度时间变化特征及其与气象要素的关系。结果表明:2008-2017年丹东市大气颗粒物质量浓度年际变化具有一定的波动性,其中2015-2017年大气颗粒物污染状况持续改善明显;质量浓度月和季节变化特征明显,1月和12月最高、7月最低,冬季最高、夏季最低,非汛期显著高于汛期,供暖期显著高于非供暖期;非汛期大气颗粒物质量浓度超标日相较达标日,气温和能见度偏低,降水偏少,风速偏小;非汛期PM2.5、PM1质量浓度与相对湿度呈显著正相关,与风速呈显著负相关,汛期PM2.5、PM1质量浓度与风速呈显著负相关;PM2.5、PM1质量浓度春、秋、冬季与风速的负相关性最显著,冬季与相对湿度的正相关性也十分显著。  相似文献   

10.
为了监测北京奥运主场馆附近大气颗粒物的污染状况以及评估奥运污染源减排措施对北京大气颗粒物质量浓度变化的影响,利用颗粒物在线监测仪器TEOM于2007年和2008年夏季,在奥运主场馆附近的中国科学院遥感应用研究所办公楼楼顶对大气颗粒物PM10和PM2.5进行了连续同步观测。结果表明,2007年夏季监测点附近大气PM10与PM2.5质量浓度的平均值分别为153.9和71.2μg.m-3,而2008年夏季PM10与PM2.5质量浓度的平均值分别为85.2和52.8μg.m-3。与奥运前一年同时段相比,奥运时段大气PM10和PM2.5的质量浓度分别下降44.5%和25.1%。对比分析奥运前后的2次典型污染过程发现,空气相对湿度的增加和偏南气流输送的共同影响易造成大气颗粒物的累积增长,而降雨的湿清除作用和偏北气流则会使大气颗粒物浓度迅速降低。在相近的气象条件下,奥运前后的污染过程中,大气细粒子的日均增长速率分别为25.1和13.9μg.m-3.d-1,而大气粗粒子的日均增长速率分别为20.8和2.2μg.m-3.d-1,奥运时段污染累积过程中大气粗、细粒子的增长速率分别显著低于和略低于奥运前同时段污染过程中颗粒物的增长速率。污染源减排措施的实施是奥运期间大气颗粒物质量浓度降低的主要原因,从控制效果来看,奥运期间实施的污染源减排措施对大气粗粒子的控制效果明显好于大气细粒子。  相似文献   

11.
基于2015、2016年河南省环境监测中心站获取的郑州市9个监测点颗粒物浓度和逐日气象数据,对气象因素和颗粒物浓度相关性进行了研究。结果表明:郑州市大气颗粒物浓度受季节影响较强,总体呈现冬季高、夏季低的趋势。降水量与大气颗粒物浓度呈现明显的负相关。相对湿度的增高不利于PM_(2. 5)浓度的降低,而PM_(10)的浓度则随着相对湿度的增高有所降低。春夏秋三季的主要风向为东北偏东,当春季风为东南风和西风时,颗粒物浓度最低;当夏季风为东北偏东风时,颗粒物浓度最低;秋季吹东北风时,颗粒物浓度最低。冬季吹西北风(郑州冬季盛行风向)时,大气颗粒物质量浓度最低。  相似文献   

12.
13.
天津大气能见度与相对湿度、PM10及PM2.5的关系   总被引:7,自引:0,他引:7       下载免费PDF全文
为研究大气气溶胶及空气中水汽与大气能见度下降的关系,利用2009年天津大气边界层观测站大气能见度资料和同期观测的相对湿度、PM10及PM2.5资料,对三者与大气能见度的关系进行了分析。结果表明:大气能见度与相对湿度线性相关系数最高,PM2.5次之;大气能见度随相对湿度的增大而明显降低。相对湿度低于60 %时,大气能见度与PM2.5的非线性相关性较好,与PM10次之,与PM10与PM2.5差值的相关性最差。相对湿度高于60 %时,大气能见度与PM10的非线性相关性较好,与PM10-PM2.5差值的相关性次之。大气能见度与相对湿度非线性相关系数高于线性相关系数。利用相对湿度、PM10及PM2.5数据计算得到了具有季节变化的非线性大气能见度拟合公式,经验证,该公式能较好地模拟天津地区的大气能见度。  相似文献   

14.
沈阳冬夏季可吸入颗粒物浓度及尺度谱分布特征   总被引:15,自引:0,他引:15       下载免费PDF全文
利用沈阳大气成分监测站颗粒物监测仪 (Grimm 180) 连续测得的夏季 (2006年8月)、冬季 (2006年12月和2007年1月) 可吸入颗粒物的数浓度和质量浓度数据, 分析了沈阳市可吸入颗粒物浓度日变化、谱分布及污染特征, 在此基础上结合沈阳市常规气象资料, 分析了气象要素和颗粒物污染之间的关系。结果表明:沈阳市冬、夏季部分时段可吸入颗粒物浓度存在明显的日变化和日际变化; 谱分布较好地符合Junge分布; 沈阳冬季PM10超标日数占冬季观测总天数的77%, PM2.5超标日数 (按美国EPA日均标准) 占冬季观测总天数的87%, PM10平均数浓度为6668.7个/cm3, 平均质量浓度达252.8μg/m3, 分别是夏季的3.0和2.4倍; 冬、夏季PM2.5/PM10平均质量分数分别为0.647和0.603, PM2.5占可吸入颗粒物总数量的99%以上; 浓度变化在很大程度上受到各种气象要素的影响, 与温度、风速负相关, 与湿度正相关, 降雨、降雪过程使得颗粒物浓度明显降低, 近地层逆温和雾是颗粒物增多的一个重要因素。颗粒物污染对城市能见度影响较大。  相似文献   

15.
AERMOD模型是《环境影响评价技术导则—大气环境》中的推荐模式。为了更好地验证颗粒物干沉降作用对该模型预测结果的影响,选取福州市的煤堆场作为面源污染源,对预测范围内所有网格点PM10、TSP最大地面浓度进行预测。结果表明:所有网格点TSP地面浓度考虑干沉降时,约为不考虑干沉降时的0.13;PM10地面浓度考虑干沉降时,约为不考虑干沉降时的0.70,干沉降对TSP的影响大于PM10。同一粒径分布下,密度对颗粒物干沉降的影响较大,密度增加对可吸入颗粒物干沉降的影响大于总悬浮颗粒物,当密度大于3 g.cm-3时,所有网格点PM10与TSP地面浓度比值的平均值接近于0.98,认为粒径大于10μm的颗粒物基本完全沉降。此后,随着密度增加网格点处地面浓度的减小主要由PM10的沉降引起。AERMOD考虑干沉降时,距离污染源中心500 m外的网格点处地面浓度,PM10/TSP〉0.98,大于10μm的粗颗粒几乎完全沉降。  相似文献   

16.
利用2018年10月1日至2019年9月30日沈阳地区三个高度大气颗粒物浓度和气象要素逐时观测资料,分析了不同高度颗粒物浓度时间变化特征及其与气象要素的关系.结果表明:不同高度的颗粒物浓度均存在明显的季节变化,秋冬季数值明显高于春夏季.冬季,三个高度的PM2.5平均浓度为54.98±12.67μg·m-3、63.77±...  相似文献   

17.
利用GRIMM180气溶胶粒谱分析仪采集乌鲁木齐市PM10、PM2.5和PM1.0数据,研究表明:乌鲁木齐市气溶胶颗粒物质量浓度在进入采暖季后急剧增加,冬季颗粒物中细粒子含量最高,PM2.5/PM10可达77.6%,PM2.5/PM10,PM1.0/PM10,PM1.0/PM2.5三比值体现了颗粒物的分布特征,四季污染程度越高,细粒子含量越高。四季无降水日PM10、PM2.5、PM1.0的质量浓度和分布的日变化基本呈三峰三谷型,出现早—午—晚峰值,上午—下午—午夜后谷值,各季节峰谷值具体出现时间略有差别,由于冬季逆温层顶盖等因素的影响,冬季质量浓度和分布的日变化在此基础上多了两次波动。降水的发生对冬、春季质量浓度的影响大于夏、秋季,对不同粒径段粒子的分布影响有一定差别。  相似文献   

18.
北京上甸子秋冬季大气气溶胶的散射特征   总被引:6,自引:3,他引:6  
柯宗建  汤洁 《大气科学》2007,31(3):553-559
分析了北京上甸子秋冬季气溶胶散射系数的变化特征、散射系数与PM2.5质量浓度的关系, 结合气象资料分析了风场对气溶胶散射系数变化的影响。通过研究得出, 上甸子秋冬季气溶胶散射系数平均值和标准差分别为179.7 Mm-1和253.2 Mm-1;阴天条件下的散射系数明显高于晴天;散射系数与PM2.5质量浓度之间有较好的相关性, 其相关系数为0.93;此外, 由于上甸子特殊的地理位置, 风场对气溶胶散射系数的影响显著, 不同风向条件下气溶胶散射系数差别很大。  相似文献   

19.
银川市PM10等气象条件分析   总被引:4,自引:0,他引:4  
利用银川市大气自动监测站首年连续24h观测资料,从大气逆温、大气降水和大风扬尘的不同角度,分析其各自对大气污染物的增加和减少所做的贡献,进而给出贡献率。  相似文献   

20.
利用福州市PM2.5、PM10和气象资料,分析PM2.5、PM2.5/PM10的分布特征及与气象条件的关系。结果表明:福州市细粒子污染程度较轻,春季PM2.5和PM2.5/PM10值均是四季中最高的,其次是冬季,夏季最低;影响PM2.5浓度出现高值的天气系统有:暖区辐合与高空槽前、大陆高压后部和暖区降水三种系统,其中暖区降水天气形势下的PM2.5平均浓度最高,超标率为25.5%;影响PM2.5浓度出现低值的天气系统有:冷高压脊、高压底部和高空槽后,副热带高压及边缘,台风(热带辐合带)及外围系统,在后两种天气系统影响下的PM2.5平均浓度最低,超标率为0;剔除因降水、雾等低能见度个例,PM2.5浓度与能见度的相关系数为-0.626,冬春季的相关系数是夏秋季的1.4倍;PM2.5浓度与单一气象要素(如温度、相对湿度、风速等)相关性不明显,但不同季节、不同气象要素变化的组合对PM2.5浓度有直接影响。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号