首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eastern Indonesia is the zone of interaction between three converging megaplates: Eurasia, the Pacific and Indo-Australia. The geological basis for interpretations of the Tertiary tectonic evolution of Eastern Indonesia is reviewed, and a series of plate tectonic reconstructions for this region at 5 million year intervals covering the last 35 million years is presented.The oldest reconstruction predates the onset of regional collisional deformation. At this time a simple plate configuration is interpreted, consisting of the northward-moving Australian continent approaching an approximately E–W oriented, southward-facing subduction zone extending from the southern margin of the Eurasian continent eastwards into the Pacific oceanic domain. Beginning at about 30 Ma the Australian continental margin commenced collision with the subduction zone along its entire palinspastically-restored northern margin, from Sulawesi in the west to Papua New Guinea in the east. From this time until ca 24 Ma, the Australian continent indented the former arc trend, with the northward convergence of Australia absorbed at the palaeo-northern boundary of the Philippine Sea Plate (the present-day Palau-Kyushu Ridge).At ca 24 Ma the present-day pattern of oblique convergence between the northern margin of Australia and the Philippine Sea Plate began to develop. At about this time a large portion of the Palaeogene colliding volcanic arc (the future eastern Philippines) began to detach from the northern continental margin by left-lateral strike slip. From ca 18 Ma oblique southward-directed subduction commenced at the Maramuni Arc in northern New Guinea. At ca 12 Ma the Sorong Fault Zone strike-slip system developed, effectively separating the Philippines from the Indonesian tectonic domain. The Sorong Fault Zone became inactive at ca 6 Ma, since which time the tectonics of eastern Indonesia has been dominated by the anticlockwise rotation of the Bird’s Head structural block by some 30–40°.Contemporaneously with post-18 Ma tectonism, the Banda Arc subduction–collision system developed off the northwestern margin of the Australian continent. Convergence between Indo-Australia and Eurasia was accommodated initially by northward subduction of the Indian Ocean, and subsequently, since ca 8 Ma, by the development of a second phase of arc-continent collision around the former passive continental margin of NW Australia.  相似文献   

2.
中国大别-苏鲁造山带为大陆板块俯冲形成的碰撞造山带,该带北缘和内部产有原岩时代为新元古代-晚古生代的浅变质岩。这些浅变质岩对应于扬子板块北缘前寒武变质基底和扬子板块北缘古生代大陆架沉积物,形成过程于印支期扬子板块向北俯冲过程中的刮削作用密切相关,与大洋板块俯冲过程中刮削形成的加积楔具有类似的动力学过程。对大别-苏鲁造山带浅变质岩的深入研究,不仅有助于揭示大陆板块俯冲过程中高压-超高压岩石形成与折返过程,而且确定了扬子板块与华北板块之间的缝合线位置位于大别造山带北淮阳带的北部和苏鲁造山带的五莲-蓬莱群的北侧。  相似文献   

3.
Shelf, forereef and basin margin (slope) olistoliths (Exotic blocks of limestone) of Permian–Jurassic age are tectonically juxtaposed within the Triassic to Eocene age pre-orogenic, deep abyssal plain turbidites of the Lamayuru. The pre-collision tectonic setting and depositional environment of the limestone olistoliths can be reconstructed from within the neighbouring Zanskar range. The disorganized Ophiolitic Melange Zone, an association of different tectonic rock slivers of Jurassic–Eocene age, is tectonically underlain by the overthrusted Lamayuru Formation and tectonically overlain by the Nindam Formation. Tectonic slivers of Late Jurassic–Early Cretaceous age red radiolarian cherts represent a characteristic lithotectonic unit of the Ophiolitic Melange Zone, those occurring near the contact zone with the Lamayuru Formation, were deposited within the neo-Tethyan deep-ocean floor of the Indian passive margin below the carbonate compensation depth. These tectonic slivers accumulated along the northern margin of the Indus–Yarlung Suture Zone of the Ladakh Indian Himalaya during subduction accretion associated with the initial convergence of the Indian plate beneath the Eurasian plate.  相似文献   

4.
《Gondwana Research》2013,24(4):1402-1428
The formation of collisional orogens is a prominent feature in convergent plate margins. It is generally a complex process involving multistage tectonism of compression and extension due to continental subduction and collision. The Paleozoic convergence between the South China Block (SCB) and the North China Block (NCB) is associated with a series of tectonic processes such as oceanic subduction, terrane accretion and continental collision, resulting in the Qinling–Tongbai–Hong'an–Dabie–Sulu orogenic belt. While the arc–continent collision orogeny is significant during the Paleozoic in the Qinling–Tongbai–Hong'an orogens of central China, the continent–continent collision orogeny is prominent during the early Mesozoic in the Dabie–Sulu orogens of east-central China. This article presents an overview of regional geology, geochronology and geochemistry for the composite orogenic belt. The Qinling–Tongbai–Hong'an orogens exhibit the early Paleozoic HP–UHP metamorphism, the Carboniferous HP metamorphism and the Paleozoic arc-type magmatism, but the three tectonothermal events are absent in the Dabie–Sulu orogens. The Triassic UHP metamorphism is prominent in the Dabie–Sulu orogens, but it is absent in the Qinling–Tongbai orogens. The Hong'an orogen records both the HP and UHP metamorphism of Triassic age, and collided continental margins contain both the juvenile and ancient crustal rocks. So do in the Qinling and Tongbai orogens. In contrast, only ancient crustal rocks were involved in the UHP metamorphism in the Dabie–Sulu orogenic belt, without involvement of the juvenile arc crust. On the other hand, the deformed and low-grade metamorphosed accretionary wedge was developed on the passive continental margin during subduction in the late Permian to early Triassic along the northern margin of the Dabie–Sulu orogenic belt, and it was developed on the passive oceanic margin during subduction in the early Paleozoic along the northern margin of the Qinling orogen.Three episodes of arc–continent collision are suggested to occur during the Paleozoic continental convergence between the SCB and NCB. The first episode of arc–continent collision is caused by northward subduction of the North Qinling unit beneath the Erlangping unit, resulting in UHP metamorphism at ca. 480–490 Ma and the accretion of the North Qinling unit to the NCB. The second episode of arc–continent collision is caused by northward subduction of the Prototethyan oceanic crust beneath an Andes-type continental arc, leading to granulite-facies metamorphism at ca. 420–430 Ma and the accretion of the Shangdan arc terrane to the NCB and reworking of the North Qinling, Erlangping and Kuanping units. The third episode of arc–continent collision is caused by northward subduction of the Paleotethyan oceanic crust, resulting in the HP eclogite-facies metamorphism at ca. 310 Ma in the Hong'an orogen and low-P metamorphism in the Qinling–Tongbai orogens as well as crustal accretion to the NCB. The closure of backarc basins is also associated with the arc–continent collision processes, with the possible cause for granulite-facies metamorphism. The massive continental subduction of the SCB beneath the NCB took place in the Triassic with the final continent–continent collision and UHP metamorphism at ca. 225–240 Ma. Therefore, the Qinling–Tongbai–Hong'an–Dabie–Sulu orogenic belt records the development of plate tectonics from oceanic subduction and arc-type magmatism to arc–continent and continent–continent collision.  相似文献   

5.
在内蒙古乌拉特中旗索伦山地区首次发现了中元古代的石英闪长岩岩体。岩石富镁、碱(尤其富钠)和钙,贫硅、钛,属碱性系列岩石。轻稀土富集,重稀土相对亏损,Eu异常不明显。微量元素富集Rb、Ba、Sr等大离子亲石元素,亏损Nb、Ta、Zr、Hf、Ti等高场强元素,显示出与板块俯冲作用有关的弧岩浆特点。岩体形成于与俯冲消减作用有关的火山弧构造环境,其岩浆来源于受俯冲的板片流体/沉积物交代的岩石圈地幔部分熔融,源岩可能为变质玄武岩或变质英云闪长岩。采用LA- ICP- MS锆石U- Pb法获得的207Pb/206Pb加权平均年龄为1410±11Ma,代表了该石英闪长岩体的结晶年龄。结合区域地质背景,认为至少在1410Ma时华北北缘发生了板块俯冲汇聚作用,石英闪长岩可能是板块俯冲汇聚作用的直接产物。该成果为华北板块北缘俯冲汇聚作用开始的时限提供了新证据,同时为华北板块北缘在中元古代构造演化提供了重要依据。  相似文献   

6.
We present a review of major gold mineralization events in China and a summary of metallogenic provinces, deposit types, metallogenic epochs and tectonic settings. Over 200 investigated gold deposits are grouped into 16 Au-metallogenic provinces within five tectonic units such as the Central Asian orogenic belt comprising provinces of Northeast China and Tianshan-Altay; North China Craton comprising the northern margin, Jiaodong, and Xiaoqinling; the Qinling-Qilian-Kunlun orogenic belt consisting of the West Qingling, North Qilian, and East Kunlun; the Tibet and Sanjiang orogenic belts consisting of Lhasa, Garzê-Litang, Ailaoshan, and Daduhe-Jinpingshan; and the South China block comprising Youjiang basin, Jiangnan orogenic belt, Middle and Lower Yangtze River, and SE coast. The gold deposits are classified as orogenic, Jiaodong-, porphyry–skarn, Carlin-like, and epithermal-types, among which the first three types are dominant.The orogenic gold deposits formed in various tectonic settings related to oceanic subduction and subsequent crustal extension in the Qinling-Qilian-Kunlun, Tianshan-Altay, northern margin of North China Craton, and Xiaoqinling, and related to the Eocene–Miocene continental collision in the Tibet and Sanjiang orogenic belts. The tectonic periods such as from slab subduction to block amalgamation, from continental soft to hard collision, from intracontinental compression to shearing or extension, are important for the formation of the orogenic gold deposits. The orogenic gold deposits are the products of metamorphic fluids released during regional metamorphism associated with oceanic subduction or continental collision, or related to magma emplacement and associated hydrothermal activity during lithospheric extension after ocean closure. The Jiaodong-type, clustered around Jiaodong, Xiaoqinling, and the northern margin of the North China Craton, is characterized by the involvement of mantle-derived fluids and a temporal link to the remote subduction of the Pacific oceanic plate concomitant with the episodic destruction of North China Craton. The Carlin-like gold metallogenesis is related to the activity of connate fluid, metamorphic fluid, and meteoric water in different degrees in the Youjiang basin and West Qinling; the former Au province is temporally related to the remote subduction of the Tethyan oceanic plate and the later formed in a syn-collision setting. Porphyry–skarn Au deposits are distributed in the Tianshan-Altay, the Middle and Lower Yangtze River region, and Tibet and Sanjiang orogenic belts in both subduction and continental collision settings. The magma for the porphyry–skarn Au deposits commonly formed by melting of a thickened juvenile crust. The epithermal Au deposits, dominated by the low-sulfidation type, plus a few high-sulfidation ones, were produced during the Carboniferous oceaic plate subduction in Tianshan-Altay, during Early Cretaceous and Quaternary oceanic plate subduction in SEt coast of South China Block, and during the Pliocene continental collision in Tibet. The available data of different isotopic systems, especially fluid D–O isotopes and carbonate C–O systems, reveal that the isotopic compositions are largely overlapping for different genetic types and different for the same genetic type in different Au belts. The isotopic compositions are thus not good indicators of various genetic types of gold deposit, perhaps due to overprinting of post-ore alteration or the complex evolution of the fluids.Although gold metallogeny in China was initiated in Cambrian and lasted until Cenozoic, it is mainly concentrated in four main periods. The first is Carboniferous when the Central Asian orogenic belt formed by welding of micro-continental blocks and arcs in Tianshan-Altay, generating a series of porphyry–epithermal–orogenic deposits. The second period is from Triassic to Early Jurassic when the current tectonic mainframe of China started to take shape. In central and southern China, the North China Craton, South China Block and Simao block were amalgamated after the closure of Paleo-Tethys Ocean in Triassic, forming orogenic and Carlin-like gold deposits. The third period is Early Cretaceous when the subduction of the Pacific oceanic plate to the east and that of Neo-Tethyan oceanic plate to the west were taking place. The subduction in eastern China produced the Jiaodong-type deposits in the North China Craton, the skarn-type deposits in the northern margin (Middle to lower reaches of Yangtze River) and the epithermal-type deposits in the southeastern margin in the South China Block. The subduction in western China produced the Carlin-like gold deposits in the Youjiang basin and orogenic ones in the Garzê-Litang orogenic belt. The Cenozoic is the last major phase, during which southwestern China experienced continental collision, generating orogenic and porphyry–skarn gold deposits in the Tibetan and Sanjiang orogenic belts. Due to the spatial overlap of the second and third periods in a single gold province, the Xiaoqinling, West Qinling, and northern margin of the North China Craton have two or more episodes of gold metallogeny.  相似文献   

7.
《地学前缘(英文版)》2020,11(4):1219-1229
We investigate the effect of the westerly rotation of the lithosphere on the active margins that surround the Americas and find good correlations between the inferred easterly-directed mantle counterflow and the main structural grain and kinematics of the Andes and Sandwich arc slabs.In the Andes,the subduction zone is shallow and with low dip,because the mantle flow sustains the slab;the subduction hinge converges relative to the upper plate and generates an uplifting doubly verging orogen.The Sandwich Arc is generated by a westerly-directed SAM(South American) plate subduction where the eastward mantle flow is steepening and retreating the subduction zone.In this context,the slab hinge is retreating relative to the upper plate,generating the backarc basin and a low bathymetry single-verging accretionary prism.In Central America,the Caribbean plate presents a more complex scenario:(a) To the East,the Antilles Arc is generated by westerly directed subduction of the SAM plate,where the eastward mantle flow is steepening and retreating the subduction zone.(b) To the West,the Middle America Trench and Arc are generated by the easterly-directed subduction of the Cocos plate,where the shallow subduction caused by eastward mantle flow in its northern segment gradually steepens to the southern segment as it is infered by the preexisting westerly-directed subduction of the Caribbean Plateau.In the frame of the westerly lithospheric flow,the subduction of a divergent active ridge plays the role of introducing a change in the oceanic/continental plate's convergence angle,such as in NAM(North American)plate with the collision with the Pacific/Farallon active ridge in the Neogene(Cordilleran orogenic type scenario).The easterly mantle drift sustains strong plate coupling along NAM,showing at Juan de Fuca easterly subducting microplate that the subduction hinge advances relative to the upper plate.This lower/upper plate convergence coupling also applies along strike to the neighbor continental strike slip fault systems where subduction was terminated(San Andreas and Queen Charlotte).The lower/upper plate convergence coupling enables the capture of the continental plate ribbons of Baja California and Yakutat terrane by the Pacific oceanic plate,transporting them along the strike slip fault systems as para-autochthonous terranes.This Cordilleran orogenic type scenario,is also recorded in SAM following the collision with the Aluk/Farallon active ridge in the Paleogene,segmenting SAM margin into the eastwardly subducting Tupac Amaru microplate intercalated between the proto-LiquineOfqui and Atacama strike slip fault systems,where subduction was terminated and para-autochthonous terranes transported.In the Neogene,the convergence of Nazca plate with respect to SAM reinstalls subduction and the present Andean orogenic type scenario.  相似文献   

8.
Within the northern fringe of the western (Khangai) flank of the Mongol–Okhotsk fold belt, magmatic complexes of intermediate to moderately acidic rocks occur. They comprise widely distributed gabbro–diorites, diorites, tonalites, and granodiorites. Geochronological studies have demonstrated that these rocks were formed in the time span of 437 to 375 Ma. The geochemical affinities of the rocks suggest their formation in subduction tectonic settings; hence, their paleotectonic position corresponds to the continental margin of the Mongol–Okhotsk paleoocean. It has been concluded that this Middle Paleozoic igneous activity occurred in the active continental margin settings, formed by subduction of the paleooceanic plate under the Siberian continent.  相似文献   

9.
The Antarctic Ross Orogen was built up during the early Paleozoic in the framework of the convergence between the Paleo-Pacific oceanic plate and the Gondwana continental margin. Models for the Ross Orogen in northern Victoria Land are based on terranes having a variable provenance with respect to the margin. However, recent studies provide evidence for the occurrence of different pieces of the lithospheric puzzle: (i) the Wilson continental magmatic arc, representing the main part of the active Gondwana margin, (ii) the Bowers arc–backarc system, (iii) the Admiralty crustal ribbon including continental material of the Wilson forearc, and (iv) the newly discovered, Cambrian oceanic magmatic Tiger arc, along the Ross Sea coast. An updated model is presented in which, after the Early Cambrian magmatic activity of the Wilson arc, a retreat of the subduction zone in the Early–Middle Cambrian gave way to boudinage of the Wilson forearc, trenchward arc migration, opening of the Bowers backarc basin and inception of the outboard Tiger subduction zone. Renewed convergence resulted in the development of the Middle Cambrian Bowers arc, closure of the backarc and deep underthrusting of portions of it at the Middle–Late Cambrian. Finally, in the latest Cambrian to earliest Ordovician, fast exhumation was coupled in the north with erosion and sediment shed to the northeast, and with extension and potassic magmatism in central and southern Victoria Land.  相似文献   

10.
秦岭洛南-栾川断裂带具有左旋斜向俯冲的运动学特征,其产状一般为107°/N∠65°。华南板块的俯冲方向为80°,俯冲角度为42°;华南板块运动方向为42°,运动方向与华北板块南部边界的夹角为65°,汇聚角25°。秦岭北缘强变形带内褶皱枢纽延伸方向为290°,与洛南-栾川断裂带存在15°的夹角。逆冲断层走向与褶皱的枢纽方向基本一致,大多数断层与洛南-栾川断裂带有相同的运动学极性,性质为左行平移逆断层。平移正断层走向主要为NE SW,断层性质、展布方向、运动学特征与板块汇聚的应力作用方式吻合;片理、片麻理走向117°,与洛南-栾川断裂带走向夹角为10°。在垂直剪切带的剖面上,系统观察岩石变形特征,测量面理产状,进行岩石有限应变测量,岩石非共轴递进变形分析结果表明:秦岭北缘强变形带内由南向北面理走向与剪切带走向的夹角逐渐增大,岩石剪应变量依次递减,造山带变形具有“三斜对称”特点。  相似文献   

11.
《Earth》1999,45(3-4):167-208
Subduction zones appear primarily controlled by the polarity of their direction, i.e., W-directed or E- to NNE-directed, probably due to the westward drift of the lithosphere relative to the asthenosphere. The decollement planes behave differently in the two end-members. In the W-directed subduction zone, the decollement of the plate to the east is warped and subducted, whereas in the E- to NNE-directed, it is ramping upward at the surface. There are W-directed subduction zones that work also in absence of active convergence like the Carpathians or the Apennines. W-directed subduction zones have shorter life (30–40 Ma) than E- or NE-directed subduction zones (even longer than 100 Ma). The different decollements in the two end-members of subduction should control different PTt paths and, therefore, generate variable metamorphic assemblages in the associated accretionary wedges and orogens. These asymmetries also determine different topographic and structural evolutions that are marked by low topography and a fast `eastward' migrating structural wave along W-directed subduction zones, whereas the topography and the structure are rapidly growing upward and expanding laterally along the opposite subduction zones. The magmatic pair calc-alkaline and alkaline–tholeiitic volcanic products of the island arc and the back-arc basin characterise the W-directed subduction zones. Magmatic rocks associated with E- or NE-directed subduction zones have higher abundances of incompatible elements, and mainly consist of calc-alkaline–shoshonitic suites, with large volumes of batholithic intrusions and porphyry copper ore deposits. The subduction zones surrounding the Adriatic plate in the central Mediterranean confirm the differences among subduction zones as primarily controlled by the geographic polarity of the main direction of the slab. The western margin of the Adriatic plate contemporaneously overridden and underthrust Europe toward the `west' to generate, respectively, the Alps and the Apennines, while the eastern margin subducted under the Dinarides–Hellenides. These belts confirm the characters of the end-members of subduction zones as a function of their geographic polarity similarly to the Pacific subduction zones.  相似文献   

12.
Thomson 《地学学报》1998,10(1):32-36
Fission-track thermochronology applied to the nappe pile of the Calabrian Arc of southern Italy, particularly within the continental basement rocks, has provided important new constraints on the nature of some of the tectonic contacts. In southern Calabria an important phase of lower Miocene crustal extension is indicated. In northern Calabria no Oligocene or younger extension is seen. Here, the emplacement of continental basement rocks with Alpine metamorphism over ophiolitic rocks with little or no metamorphism is constrained as a thrust of lower to middle Miocene age related to collision of the Calabrian Arc with the Adria plate margin. It is proposed that reduction in the plate convergence velocity during collision of a retreating subduction zone with a continental margin is, at least partly, an explanation for the onset of extension in southern Calabria during the Miocene.  相似文献   

13.
通过深地震反射剖面,宽频天然深地震探测,广角折射、反射剖面,结合地表地质观察、岩石矿物和地球化学研究,以及弹性模拟计算等,对当前国际上流行的所谓高原北缘向南呈A型俯冲,南缘向北俯冲构成的青藏高原地壳加厚、隆升的“双俯冲”(two-sidedsubduction)模式提出质疑,认为高原北缘至少在西昆仑与塔里木(欧亚板块)之间不存在长距离的俯冲,在新生代以来的强劲挤压中,塔里木起到了一定的阻挡作用,在这里呈现南北向挤压应力场,因而青藏高原西北缘陆-陆碰撞造山、盆山的形成受到“南北双向挤压模式”所控制,也是造成青藏高原西北缘新生代期地壳加厚、隆升的重要动力因素  相似文献   

14.
王雷  刘俊来  滕超  常玉巧 《地质论评》2021,67(1):251-264
晚古生代—早中生代古亚洲洋板块俯冲华北板块在辽北法库地区形成大型产状近水平的韧性剪切带.剪切带发展伴随着多期幔源及壳源的岩浆侵入,侵入岩在韧性剪切作用下发生韧性变形,记录了韧性剪切带变形历史.详细的野外地质调查结合岩石的宏观变形、显微构造及石英c轴组构特征分析,揭示了法库韧性剪切带内五龙山杂岩、高丽沟杂岩、早期十间房超...  相似文献   

15.
赵佳楠  刘正军 《中国地质》2014,41(1):92-107
位于塔里木地块西南缘、西昆仑造山带北缘的帕什托克侵入序列由石英闪长岩-石英二长闪长岩组成,类似TTG组合,形成于中元古代晚期。本文从帕什托克侵入序列的地球化学分析出发,通过对该侵入序列两期侵入岩的主量元素和微量元素的研究,讨论了该侵入序列的成因、构造环境和与其相关的板块间地球动力学模式,认为该侵入序列为I型准铝质高钾钙碱性花岗闪长岩系列,属活动板块边缘碰撞前大陆弧花岗岩类,两期侵入岩为同源岩浆演化,母岩浆属壳幔混合源,且岩浆向酸性演化。根据岩浆演化的物理环境和构造环境,推测早古生代库地洋的完全闭合与库地洋壳向塔里木古陆块俯冲消减有关,是塔里木古陆块和柴达木古陆块在Rodinia超级大陆汇聚过程中的产物。  相似文献   

16.
南海西缘新生代沉积盆地形成动力学探讨   总被引:5,自引:3,他引:5  
通过对南海西缘新生代沉积盆地伸展作用、沉降、构造变形等特征分析,检查印支地块多条近北西向走滑断裂时间、幅度等特征以及与盆地之间联系,结果表明印度-欧亚碰撞引起的逃逸作用与南海西缘新生代盆地没有直接的成因联系;两个与俯冲有关的不同扩张机制与南海西缘新生代盆地有成因联系,即(1)太平洋板块在古新世到始新世的滚动后退,太平洋-欧亚板块汇聚速率的降低驱使这些盆地产生初始伸展作用;(2)渐新世到中中新世古南海南倾俯冲板块的拖曳力,进一步驱使这些盆地的伸展及接着的南海扩张.  相似文献   

17.
We present three 3D numerical models of deep subduction where buoyant material from an oceanic plateau and a plume interact with the overriding plate to assess the influence on subduction dynamics,trench geometry,and mechanisms for plateau accretion and continental growth.Transient instabilities of the convergent margin are produced,resulting in:contorted trench geometry;trench migration parallel with the plate margin;folding of the subducting slab and orocline development at the convergent margin;and transfer of the plateau to the overriding plate.The presence of plume material beneath the oceanic plateau causes flat subduction above the plume,resulting in a "bowed" shaped subducting slab.In plateau-only models,plateau accretion at the edge of the overriding plate results in trench migration around the edge of the plateau before subduction is re-established directly behind the trailing edge of the plateau.The plateau shortens and some plateau material subducts.The presence of buoyant plume material beneath the oceanic plateau has a profound influence on the behaviour of the convergent margin.In the plateau + plume model,plateau accretion causes rapid trench advance.Plate convergence is accommodated by shearing at the base of the plateau and shortening in the overriding plate.The trench migrates around the edge of the plateau and subduction is re-established well behind the trailing edge of the plateau,effectively embedding the plateau into the overriding plate.A slab window forms beneath the accreted plateau and plume material is transferred from the subducting plate to the overriding plate through the window.In all of the models,the subduction zone maintains a relatively stable configuration away from the buoyancy anomalies within the downgoing plate.The models provide a dynamic context for plateau and plume accretion in Phanerozoic accretionary orogenic systems such as the East China Orogen and the Central Asian Orogen(Altiads),which are characterised by accreted ophiolite complexes with diverse geochemical affinities,and a protracted evolution of accretion of exotic terranes including oceanic plateau and terranes with plume origins.  相似文献   

18.
南海北部发育了一系列的新生代盆地,该类盆地记录了新生代早期南海北缘应力场顺时针旋转过程,西江凹陷位于珠江口盆地内,记录了这一过程.利用丰富的二维、三维地震资料,针对西江凹陷断裂体系的演化过程进行了研究.凹陷基底在新生代之前作为华南陆缘的一部分,经历了多期次复杂的构造演化,形成了NE和NW两个方向的基底断层; 早-中始新世,NE向先存断裂优先复活,由太平洋板块俯冲后撤在研究区产生的NW-SE向伸展应力所致; 晚始新世-早渐新世,近EW向断裂大量发育,NW向断裂以走滑方式复活,该时期断层演化主要受太平洋俯冲方向的变化、印度板块碰撞及古南海的拖拽导致该地区应力场顺时针转变为近NS向的影响; 进一步通过物理模拟实验验证了断裂的演化机制,NE向先存断裂施加NS向拉张应力,先存NE向断裂局部复活,大量近EW向断层沿着NE向先存断裂展布位置形成,剖面上表现为正断层; NW向断裂在NS向拉张应力条件下,可见NW向走滑大量复活,局部发育少量的近EW向断裂.该研究对南海北缘新生代应力转变过程研究具有重要的借鉴意义.   相似文献   

19.
In the Lesser Caucasus and NE Anatolia, three domains are distinguished from south to north: (1) Gondwanian-derived continental terranes represented by the South Armenian Block (SAB) and the Tauride–Anatolide Platform (TAP), (2) scattered outcrops of Mesozoic ophiolites, obducted during the Upper Cretaceous times, marking the northern Neotethys suture, and (3) the Eurasian plate, represented by the Eastern Pontides and the Somkheto-Karabagh Arc. At several locations along the northern Neotethyan suture, slivers of preserved unmetamorphozed relics of now-disappeared Northern Neotethys oceanic domain (ophiolite bodies) are obducted over the northern edge of the passive SAB and TAP margins to the south. There is evidence for thrusting of the suture zone ophiolites towards the north; however, we ascribe this to retro-thrusting and accretion onto the active Eurasian margin during the latter stages of obduction. Geodynamic reconstructions of the Lesser Caucasus feature two north dipping subduction zones: (1) one under the Eurasian margin and (2) farther south, an intra-oceanic subduction leading to ophiolite emplacement above the northern margin of SAB. We extend our model for the Lesser Caucasus to NE Anatolia by proposing that the ophiolites of these zones originate from the same oceanic domain, emplaced during a common obduction event. This would correspond to the obduction of non-metamorphic oceanic domain along a lateral distance of more than 500?km and overthrust up to 80?km of passive continental margin. We infer that the missing volcanic arc, formed above the intra-oceanic subduction, was dragged under the obducting ophiolite through scaling by faulting and tectonic erosion. In this scenario part of the blueschists of Stepanavan, the garnet amphibolites of Amasia and the metamorphic arc complex of Erzincan correspond to this missing volcanic arc. Distal outcrops of this exceptional object were preserved from latter collision, concentrated along the suture zones.  相似文献   

20.
New data on the petrology and structure of the Aracena metamorphic belt shows that this is a subduction-related, low-pressure/high-temperature complex developed by plate convergence at the north margin of Gondwana during the Paleozoic. The low-pressure, inverted metamorphic gradient in MORB-derived amphibolites resulted from heating from the continental hanging wall during subduction. This implies that the previous heating of the continental rocks was related to subduction of an oceanic ridge and the creation of a slab window beneath the continental margin. This slab window brought the asthenosphere in contact with the continental margin inducing a shallow thermal anomaly and partial melting of the lithospheric mantle resulting in boninite magmatism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号