首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our blue planet Earth has long been regarded to carry full of nutrients for hosting life since the birth of the planet.Here we speculate the processes that led to the birth of early life on Earth and its aftermath, finally leading to the evolution of metazoans.We evaluate:(1) the source of nutrients,(2) the chemistry of primordial ocean,(3) the initial mass of ocean,and(4) the size of planet.Among the life-building nutrients,phosphorus and potassium play a key role.Only three types of rocks can serve as an adequate source of nutrients:(a) continent-forming TTG(granite),enabling the evolution of primitive life to metazoans;(b) primordial continents carrying anorthosite with KREEP(Potassium,Rare Earth Elements, and Phosphorus) basalts,which is a key to bear life;(c) carbonatite magma,enriched in radiogenic elements such as U and Th,which can cause mutation to speed up evolution and promote the birth of new species in continental rift settings.The second important factor is ocean chemistry.The primordial ocean was extremely acidic(pH = 1-2) and enriched in halogens(CI,F and others),S,N and metallic elements(Cd,Cu,Zn,and others),inhibiting the birth of life.Plate tectonics cleaned up these elements which interfered with RNA.Blue ocean finally appeared in the Phanerozoic with pH = 7 through extensive interaction with surface continental crust by weathering,erosion and transportation into ocean.The initial ocean mass was also important.The birth of life and aftermath of evolution was possible in the habitable zone with 3-5 km deep ocean which was able to supply sufficient nutrients. Without a huge landmass,nutrients cannot be supplied into the ocean only by ridge-hydrothermal circulation in the Hadean.Finally,the size of the planet plays a crucial role.Cooling of massive planets is less efficient than smaller ones,so that return-flow of seawater into mantle does not occur until central stars finish their main sequence.Due to the suitable size of Earth,the dawn of Phanerozoic witnessed the initiation of return-flow of seawater into the mantle,leading to the emergence of huge landmass above sea-level,and the distribution of nutrients on a global scale.Oxygen pump also played a critical role to keep high-PO2 in atmosphere since then,leading to the emergence of ozone layer and enabling animals and plants to invade the land. To satisfy the tight conditions to make the Earth habitable,the formation mechanism of primordial Earth is an important factor.At first,a ’dry Earth’ must be made through giant impact,followed by magma ocean to float nutrient-enriched primordial continents(anorthosite + KREEP).Late bombardment from asteroid belt supplied water to make 3-5 km thick ocean,and not from icy meteorites from Kuiper belt beyond cool Jupiter.It was essential to meet the above conditions that enabled the Earth as a habitable planet with evolved life forms.The tight constraints that we evaluate for birth and evolution of life on Earth would provide important guidelines for planetary scientists hunting for life in the exosolar planets.  相似文献   

2.
《Gondwana Research》2014,25(3):945-965
The birth of modern life on Earth can be linked to the adequate supply of nutrients into the oceans. In this paper, we evaluate the relative supply of nutrients into the ocean. These nutrients entered the ocean through myriad passageways, but primarily through accelerated erosion due to uplift. In the ‘second ecosystem’, uplift is associated with plume-generation during the breakup of the Rodinia supercontinent. Although the evidence is somewhat cryptic, it appears that the second ecosystem included the demospongia back into the Cryogenian (~ 750 Ma). During the Ediacaran–Cambrian interval, convergent margin magmatism, arc volcanism and the closure of ocean basins provided a second pulse of nutrient delivery into the marine environment. A major radiation of life forms begins around 580 Ma and is represented by the diverse and somewhat enigmatic Ediacaran fauna followed by the Cambrian Explosion of modern phyla during the 540–520 Ma interval. Tectonically, the Ediacaran–Cambrian time interval is dominated by the formation of ultra-high pressure (UHP), high pressure (HP) and ultra-high temperature (UHT) orogenic belts during Gondwana orogenesis. Erosion of this extensive mountainous region delivered vast nutrients into the ocean and enhanced the explosiveness of the Cambrian radiation. The timing of final collisional orogeny and construction of the mountain belts in many of the Gondwana-forming orogens, particularly some of those in the central and eastern belts, post-date the first appearance of modern life forms. We therefore postulate that a more effective nutrient supply for the Cambrian radiation was facilitated by plume-driven uplift of TTG crust, subsequent rifting, and subduction-related nutrient systems prior to the assembly of Gondwana. In the outlined scenario, we propose that the birth of the ‘second ecosystem’ on our planet is plume-driven.  相似文献   

3.
The Moon has an anorthositic primordial continental crust. Recently anorthosite has also been discovered on the Martian surface. Although the occurrence of anorthosite is observed to be very limited in Earth's extant geological record,both lunar and Martian surface geology suggest that anorthosite may have comprised a primordial continent on the early Earth during the first 600 million years after its formation. We hypothesized that differences in the presence of an anorthositic continent on an Earthlike planet are due to planetary size. Earth likely lost its primordial anorthositic continent by tectonic erosion through subduction associated with a kind of proto-plate tectonics(PPT). In contrast, Mars and the Moon, as much smaller planetary bodies, did not lose much of their anorthositic continental crust because mantle convection had weakened and/or largely stopped, and with time, they had appropriately cooled down. Applying this same reasoning to a super-Earth exoplanet suggests that, while a primordial anorthositic continent may briefly form on its surface, such a continent will be likely transported into the deep mantle due to intense mantle convection immediately following its formation. The presence of a primordial continent on an Earth-like planet seems to be essential to whether the planet will be habitable to Earth-like life. The key role of the primordial continent is to provide the necessary and sufficient nutrients for the emergence and evolution of life. With the appearance of a "trinity" consisting of(1) an atmosphere,(2) an ocean, and(3) the primordial continental landmass, material circulation can be maintained to enable a "Habitable Trinity" environment that will permit the emergence of Earth-like life. Thus, with little likelihood of a persistent primordial continent, a super-Earth affords very little chance for Earth-like life to emerge.  相似文献   

4.
<正>The formation and disruption of supercontinents have significantly impacted mantle dynamics,solid earth processes,surface environments and the biogeochemical cycle.In the early history of the Earth,the collision of parallel intra-oceanic arcs was an important process in building embryonic continents.Superdownwelling along Y-shaped triple junctions might have been one of the important processes that aided in the rapid assembly of continental fragments into closely packed supercontinents. Various models have been proposed for the fragmentation of supercontinents including thermal blanket and superplume hypotheses.The reassembly of supercontinents after breakup and the ocean closure occurs through "introversion","extroversion" or a combination of both,and is characterized by either Pacific-type or Atlantic-type ocean closure.The breakup of supercontinents and development of hydrothermal system in rifts with granitic basement create anomalous chemical environments enriched in nutrients, which serve as the primary building blocks of the skeleton and bone of early modern life forms. A typical example is the rifting of the Rodinia supercontinent,which opened up an N—S oriented sea way along which nutrient enriched upwelling brought about a habitable geochemical environment.The assembly of supercontinents also had significant impact on life evolution.The role played by the Cambrian Gondwana assembly has been emphasized in many models,including the formation of 'Trans-gondwana Mountains' that might have provided an effective source of rich nutrients to the equatorial waters,thus aiding the rapid increase in biodiversity.The planet has witnessed several mass extinction events during its history,mostly connected with major climatic fluctuations including global cooling and warming events,major glaciations,fluctuations in sea level,global anoxia,volcanic eruptions, asteroid impacts and gamma radiation.Some recent models speculate a relationship between superplumes,supercontinent breakup and mass extinction.Upwelling plumes cause continental rifting and formation of large igneous provinces.Subsequent volcanic emissions and resultant plume-induced "winter" have catastrophic effect on the atmosphere that lead to mass extinctions and long term oceanic anoxia.The assembly and dispersal of continents appear to have influenced the biogeochemical cycle,but whether the individual stages of organic evolution and extinction on the planet are closely linked to Solid Earth processes remains to be investigated.  相似文献   

5.
中国各大陆块在寒武纪全球构造中的位置及意义   总被引:4,自引:2,他引:2       下载免费PDF全文
笔者根据近年来所获的古地磁数据及板块构造的研究成果,对中国各大陆块在寒武纪全球构造中的位置进行了再造。笔者认为寒武纪全球存在三大洋、四大陆域。其中,中国大陆中的扬子、塔里木、柴达木等均属冈瓦纳大陆域,华北陆块则属介于冈瓦纳与劳亚两个大陆域之间的一个中间陆块。且当时华北与扬子两陆块的南、北位置与现在的位置正好相反。而介于二者之间的秦、祁古洋盆在当时是一个位于南半球赤道附近的径向洋。  相似文献   

6.
Kent Brooks 《Geology Today》2012,28(4):144-146
Throughout Earth history there have been many important milestones: e.g. the emergence of life, the rise of oxygen in the atmosphere, snowball Earth events. One of these major events was the emergence of multicellular life, which, as we are all told in Palaeontology lectures, took place in the Cambrian, when a sudden flowering of life forms emerged, including all of the major groups we have today: the ‘Cambrian explosion’. Two great questions emerge: what happened before this (a problem which worried Darwin as it seemed to threaten his thesis of steady evolution) and how, in detail did this ‘explosion’ take place?  相似文献   

7.
华北古陆的形成与构造演化史   总被引:1,自引:0,他引:1  
以华北古陆为例,论述了地球演化史中经历的三大阶段:(1)古陆的形成阶段(4600~1800Ma):地球形成早期,以地幔对流为主导作用,到早太古宙出现初始古陆核,地幔对流驱动的地体拼贴和板底垫托是陆壳形成的主要方式;中太古宙开始出现一定规模的坳陷盆地,发育了基性火山岩 碎屑岩 镁质碳酸盐岩等表壳岩,同时伴随着大量中基性、花岗质岩浆活动;晚太古宙和早元古宙是陆壳形成的主要时期,并已具现今板块活动特征。地幔热柱与板块构造共同控制着地壳运动。(2)古陆稳定发展阶段(1800~250Ma):地幔热柱活动较弱,古陆主要表现为缓慢的升降运动(造陆运动)。(3)地球新活动时期(250Ma至今):地幔热柱活动进入一个新的活跃时期。岩石圈发生明显的热减薄,地幔热柱表现为多级演化,并导致盆岭系的形成。  相似文献   

8.
http://dx.doi.org/10.1016/j.gsf.2016.10.005   总被引:5,自引:4,他引:1  
The Earth was born as a dry planet without atmosphere and ocean components at 4.56 Ga, with subsequent secondary accretion of bio-elements, such as carbon (C), hydrogen (H), oxygen (O), and nitrogen (N) which peaked at 4.37–4.20 Ga. This two-step formation model of the Earth we refer to as the advent of bio-elements model (ABEL Model) and the event of the advent of bio-elements (water component) as ABEL Bombardment. It is clear that the solid Earth originated from enstatite chondrite-like dry material based on the similarity in oxygen isotopic composition and among other isotopes. On the other hand, Earth's water derives primarily from carbonaceous chondrite material based on the hydrogen isotopic ratio. We present our ABEL model to explain this enigma between solid Earth and water, as well as secondary accretion of oxidizing bio-elements, which became a precursor to initiate metabolism to emerge life on a highly reductive planet. If ABEL Bombardment had not occurred, life never would have emerged on the Earth. Therefore, ABEL Bombardment is one of the most important events for this planet to evolve into a habitable planet. The chronology of ABEL Bombardment is informed through previous researches of the late heavy bombardment and the late veneer model. ABEL Bombardment is considered to have occurred during 4.37–4.20 Ga, which is the concept to redefine the standard late heavy bombardment and the late veneer models. Also, ABEL Bombardment is the trigger of the transition from stagnant lid tectonics to plate tectonics on this planet because of the injection of volatiles into the initial dry Earth.  相似文献   

9.
新疆-甘肃-内蒙古衔接区可划分为星星峡-旱山微板块和敦煌微板块,二者以红柳河-牛圈子-洗肠井缝合带为界。古陆裂解初期的寒武纪浅海—次深海具有形成磷钒铀锰沉积矿产的有利背景;奥陶纪洋盆及弧后盆地具备形成与海相火山-沉积岩系有关铜矿的有利背景;志留纪—泥盆纪岛弧火山建造具备形成斑岩铜矿的有利背景;石炭纪—二叠纪陆内裂谷具备形成火山沉积铁矿、铜矿、斑岩铜矿和与基性超基性岩有关铜镍矿的有利背景;各单元古陆壳活化重熔型花岗岩具有形成钨锡稀有金属矿的有利背景。  相似文献   

10.
新疆-甘肃-内蒙古衔接区可划分为星星峡-旱山微板块和敦煌微板块,二者以红柳河-牛圈子-洗肠井缝合带为界。古陆裂解初期的寒武纪浅海—次深海具有形成磷钒铀锰沉积矿产的有利背景;奥陶纪洋盆及弧后盆地具备形成与海相火山-沉积岩系有关铜矿的有利背景;志留纪—泥盆纪岛弧火山建造具备形成斑岩铜矿的有利背景;石炭纪—二叠纪陆内裂谷具备形成火山沉积铁矿、铜矿、斑岩铜矿和与基性超基性岩有关铜镍矿的有利背景;各单元古陆壳活化重熔型花岗岩具有形成钨锡稀有金属矿的有利背景。  相似文献   

11.
新疆-甘肃-内蒙古衔接区古生代构造背景 与成矿的关系   总被引:1,自引:0,他引:1  
新疆-甘肃-内蒙古衔接区可划分为星星峡-旱山微板块和敦煌微板块,二者以红柳河-牛圈子-洗肠井缝合带为界。古陆裂解初期的寒武纪浅海—次深海具有形成磷钒铀锰沉积矿产的有利背景;奥陶纪洋盆及弧后盆地具备形成与海相火山-沉积岩系有关铜矿的有利背景;志留纪—泥盆纪岛弧火山建造具备形成斑岩铜矿的有利背景;石炭纪—二叠纪陆内裂谷具备形成火山沉积铁矿、铜矿、斑岩铜矿和与基性超基性岩有关铜镍矿的有利背景;各单元古陆壳活化重熔型花岗岩具有形成钨锡稀有金属矿的有利背景。  相似文献   

12.
http://www.sciencedirect.com/science/article/pii/S1674987114000267   总被引:6,自引:6,他引:0  
Habitable Trinity is a newly proposed concept of a habitable environment.This concept indicates that the coexistence of an atmosphere(consisting largely of C and N),an ocean(H and O).and a landmass(supplier of nutrients) accompanying continuous material circulation between these three components driven by the Sun is one of the minimum requirements for life to emerge and evolve.The life body consists of C,0,H,N and other various nutrients,and therefore,the presence of water,only,is not a sufficient condition.Habitable Trinity environment must be maintained to supply necessary components for life body.Our Habitable Trinity concept can also be applied to other planets and moons such as Mars,Europa,Titan,and even exoplanets as a useful index in the quest for life-containing planetary bodies.  相似文献   

13.
寒武纪早期的海洋环境变化对生命大爆发具有重要影响,尽管前人对该时期海洋氧化还原条件以及古生产力做了大量研究,但对其氧化还原条件的波动仍存在争议。本研究以位于扬子地台东缘湘中坳陷西北缘的湘安地1井2~5 m分辨率采集的样品为研究对象,针对上埃迪卡拉统留茶坡组至寒武系牛蹄塘组和污泥塘组展开综合地球化学研究。对样品进行主量、微量以及稀土元素测试分析,牛蹄塘组下部δCe的负异常指示了富氧海水环境,但与其高浓度的Mo、V、Ni、Cr、U等微量元素含量矛盾。综合华南板块在埃迪卡拉纪—寒武纪转折期广泛的浅海大陆架暴露风化的事实,推测牛蹄塘组黑色页岩微量元素浓度的富集不仅受控于当时海水氧化还原条件,还受到其源区(即暴露的浅海大陆架)的氧化还原条件变化的约束。总有机碳(TOC)含量在寒武系牛蹄塘组下部迅速增高,推测该时期古海洋生产力大幅提高,氧气的生成通量快速提升,导致寒武纪早期大气—海洋发生的富氧波动,并进一步促进了以后生动物为特征的寒武纪生物大爆发。  相似文献   

14.
We consider chemical reactions for the appearance of water during the formation of the planet from cosmic gas and dust material to explain the early geological existence of the Earth’s hydrosphere. This process is fully supported by the resources of the initial substances and thermal energy. Thus, the concept of V.I. Vernadsly about the geological eternity of the World Ocean and ancient age of the oceanic lithosphere is supported. The identical high location of the ancient and modern continental platforms under the conditions of continual isostatical equilibrium in the asthenosphere–lithosphere–hydrosphere gives grounds to conclude that the ocean water depth is stable. Taking this into account, we can consider that the geological evolution of the Earth began in the conditions of the existence of the World Ocean when the mass of the hydrosphere only slightly exceeded the modern one.  相似文献   

15.
寒武纪生命扩张及澄江动物群的意义   总被引:1,自引:0,他引:1  
生命在地球上的出现及其演化有较长的历史。地球的物理、化学条件是早期生命出现的外因。早寒武世西南地区地质、气候及富含营养的浅海水域是澄江动物群在后生动物演化的关键时期出现的外因。“寒武纪生物的扩张”应有恰当的翻译,同时对现代生物学的“适应辐射”应有清楚的中文解释。从新近发现看,早、中寒武世的澄江动物群及布吉斯页岩动物群与埃迪卡拉动物群具有一些联系,埃迪卡拉动物群并没有在寒武纪时完全绝灭。  相似文献   

16.
《Gondwana Research》2014,25(3):1153-1163
Encounters with nebulae, such as supernova remnants and dark clouds in the galaxy, can lead to an environmental catastrophe on the Earth through the negative climate forcings and destruction of the ozone layer by enhanced fluxes of cosmic rays and cosmic dust particles. A resultant reduction in primary productivity leads to mass extinctions through depletion of oxygen and food starvations as well as anoxia in the ocean. The model shows three levels of hierarchical time variations caused by supernova encounters (1–10 kyrs), dark cloud encounters (0.1–10 Myrs), and starbursts (~ 100 Myrs), respectively. This “Nebula Winter” model can explain the catastrophic phenomena such as snowball Earth events, repeated mass extinctions, and Cambrian explosion of biodiversities which took place in the late Proterozoic era through the Cambrian period. The Late Neoproterozoic snowball Earth event covers a time range of ca. 200 Myrs long spanning from 770 Ma to the end of Cambrian period (488 Ma) with two snowball states called Sturtian and Marinoan events. Mass extinctions occurred at least eight times in this period, synchronized with large fluctuations in δ13C of carbonates in the sediment. Each event is likely to correspond to each nebula encounter. In other words, the late Neoproterozoic snowball Earth and Cambrian explosion are possibly driven by a starburst, which took place around 0.6 Ga in the Milky Way Galaxy. The evidences for a Nebula Winter can be obtained from geological records in sediment in the deep oceans at those times.  相似文献   

17.
http://www.sciencedirect.com/science/article/pii/S1674987112000898   总被引:5,自引:2,他引:3  
In more than 4 Ga of geological evolution, the Earth has twice gone through extreme climatic perturbations, when extensive glaciations occurred, together with alternating warm periods which were accompanied by atmospheric oxygenation. The younger of these two episodes of climatic oscillation preceded the Cambrian “explosion” of metazoan life forms, but similar extreme climatic conditions existed between about 2.4 and 2.2 Ga. Over long time periods, changing solar luminosity and mantle temperatures have played important roles in regulating Earth's climate but both periods of climatic upheaval are associated with supercontinents. Enhanced weathering on the orogenically and thermally buoyed supercontinents would have stripped CO2 from the atmosphere, initiating a cooling trend that resulted in continental glaciation. Ice cover prevented weathering so that CO2 built up once more, causing collapse of the ice sheets and ushering in a warm climatic episode. This negative feedback loop provides a plausible explanation for multiple glaciations of the Early and Late Proterozoic, and their intimate association with sedimentary rocks formed in warm climates. Between each glacial cycle nutrients were flushed into world oceans, stimulating photosynthetic activity and causing oxygenation of the atmosphere. Accommodation for many ancient glacial deposits was provided by rifting but escape from the climatic cycle was predicated on break-up of the supercontinent, when flooded continental margins had a moderating influence on weathering. The geochemistry of Neoproterozoic cap carbonates carries a strong hydrothermal signal, suggesting that they precipitated from deep sea waters, overturned and spilled onto continental shelves at the termination of glaciations. Paleoproterozoic (Huronian) carbonates of the Espanola Formation were probably formed as a result of ponding and evaporation in a hydrothermally influenced, restricted rift setting. Why did metazoan evolution not take off after the Great Oxidation Event of the Paleoproterozoic? The answer may lie in the huge scar left by the ~2023 Ma Vredefort impact in South Africa, and in the worldwide organic carbon-rich deposits of the Shunga Event, attesting to the near-extirpation of life and possible radical alteration of the course of Earth history.  相似文献   

18.
《Comptes Rendus Geoscience》2007,339(14-15):917-927
Plate tectonics shaped the Earth, whereas the Moon is a dry and inactive desert, Mars probably came to rest within the first billion years of its history, and Venus, although internally very active, has a dry inferno for its surface. Here we review the parameters that determined the fates of each of these planets and their geochemical expressions. The strong gravity field of a large planet allows for an enormous amount of gravitational energy to be released, causing the outer part of the planetary body to melt (magma ocean), helps retain water on the planet, and increases the pressure gradient. The weak gravity field and anhydrous conditions prevailing on the Moon stabilized, on top of its magma ocean, a thick buoyant plagioclase lithosphere, which insulated the molten interior. On Earth, the buoyant hydrous phases (serpentines) produced by reactions between the terrestrial magma ocean and the wet impactors received from the outer solar system isolated the magma and kept it molten for some few tens of million years. The planets from the inner solar system accreted dry: foundering of wet surface material softened the terrestrial mantle and set the scene for the onset of plate tectonics. This very same process also may have removed all the water from the surface of Venus and added enough water to its mantle to make its internal dynamics very strong and keep the surface very young. Because of a radius smaller than that of the Earth, not enough water could be drawn into the Martian mantle before it was lost to space and Martian plate tectonics never began. The radius of a planet is therefore the key parameter controlling most of its evolutional features.  相似文献   

19.
The second half of the Ediacaran period began with a large impact e the Acraman impact in South Australia, which was accompanied by a negative d13Ccarb anomaly and an extinction-radiation event involvi...  相似文献   

20.
冰雪地球的研究进展综述   总被引:3,自引:0,他引:3  
胡永云  闻新宇 《地球科学进展》2005,20(11):1226-1233
在大约6~7亿年前的新元古代时期,地球是否曾经被冰雪完全覆盖而成为了一个“冰雪地球”?如果是,什么诱发了这种全球性的冰川期?又是什么导致了它的融化?新元古代时期的极端气候变化对其后的寒武纪生命大爆发有何影响?围绕这些问题,古地质、古生物和古气候学界在最近几年展开了广泛的研究和激烈争论。根据现有的研究结果,地球在新元古代时期确实经历了数次地球历史上最为严重的全球性冰川期,但地球是否被完全冰封还需要更充分的古地质和古生物方面的证据来证明;利用气候模式对各种可能的外部强迫的模拟试验表明“冰雪地球”是很难形成的,并且,如果地球进入完全被冰封的状态,它将是难以被融化的;关于新元古代时期剧烈的气候变化对寒武纪生命大爆发所起的作用存在2种观点,一种认为气候变化导致了原始生命的基因突变并诱发了寒武纪生命爆发,另一种认为这种影响主要是生态方面的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号