首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Gondwana Research》2014,25(3):910-944
For life to have dramatically evolved and diversified during the so-called Cambrian explosion, there must have been significant changes in the environmental conditions of Earth. A rapid increase in atmospheric oxygen, which has been discussed as the key factor in the evolution of life, cannot by itself explain such an explosion, since life requires more than oxygen to flourish let alone survive. The supply of nutrients must have played a more critical role in the explosion, including an increase in phosphorus (P) and potassium (K) which are key elements for metabolisms to function. So, what happened at the onset of the Cambrian to bring about changes in environmental conditions and nutrient supply and ultimately evolution of life?An ultimate trigger for the Cambrian explosion is proposed here. The geotherm along subduction zones of a cooling Earth finally became cool enough around 600 Ma to allow slabs to be hydrated. The subduction of these hydrated slabs transferred voluminous water from the ocean to the mantle, resulting in a lowering of the sea level and an associated exceptional exposure of nutrient-enriched continental crust, along with an increase in atmospheric oxygen. This loss of water at the surface of the Earth and an associated increase in exposed landmass is referred to here as leaking Earth. Vast amounts of nutrients began to be carried through weathering, erosion, and transport of the landmass; rock fragments of the landmass would break down into ions during transport to the ocean through river, providing life forms (prokaryote) sufficient nutrients to live and evolve. Also, plume-driven dome-up beneath the continental crusts broadened the surface area providing a supply of nutrients an order magnitude greater than that produced through uplift of mountains by continental collision. Simultaneously, atmospheric oxygen began to increase rapidly due to the burial of dead organic matter by enhanced sedimentation from the emergence of a greater landmass, which ultimately inhibited oxidation of organic matter. Hence, oxygen began to accumulate in the atmosphere, which when coupled with a continuous supply of nutrients, resulted in an explosion of life, including an increase in the size. An enhanced oxygen supply in the atmosphere resulted in the formation of an ozone layer, providing life a shield from the UV radiation of the Sun; this enabled life to invade the land. In addition to a change in the supply of nutrients related to a leaking Earth, the evolution of life was accelerated through mass extinction events such as observed during Snowball Earth, possibly related to a starburst in our galaxy, as well as mutation in the genome due to radiogenic elements sourced from carbonatite magma (atomic bomb magma) in rift valley. There are two requirements to find a habitable planet: (1) the initial mass of an ocean and (2) the size of a planet. These two conditions determine the history of a planet, including planetary tectonics and the birth of life. This newfound perspective, which includes the importance of a leaking planet, provides a dawn of new planetary science and astrobiology.  相似文献   

2.
The assembly of the Gondwana supercontinent during the waning stages of the Proterozoic provides a tectonic backdrop for the myriad biological, climatological, tectonic and geochemical changes leading up to, and including, the Cambrian radiation. A polyphase assembly of Gondwana during the East Africa, Brasiliano, Kuungan and Damaran orogenies resulted in an extensive mountain chain which delivered nutrients into a shifting oceanic realm. An analysis of key evolutionary events during this time period reveals the following (a) several fauna show well established endemism that may be rooted in a cryptic evolutionary pulse (c). 580 Ma (b) the margins of the Mirovian and Mawson Oceans formed the locus of radiation for the Ediacaran fauna (c) the margins of the Iapetan and Mirovian oceans form the olenellid trilobite realm (d) the margins of the Mawson and Paleo-Asian oceans are the birthplace of the so-called Gondwana Province fauna (e) evolutionary events associated with the Cambrian radiation were likely driven by internal (biological) changes, but radiation was enhanced and ecosystems became more complex because of the geochemical, ecological and tectonic changes occurring during Ediacaran–Cambrian periods.  相似文献   

3.
《Precambrian Research》2006,144(3-4):297-315
Geochemical data from clastic rocks of the Ossa-Morena Zone (Iberian Massif) show that the main source for the Ediacaran and the Early Cambrian sediments was a recycled Cadomian magmatic arc along the northern Gondwana margin. The geodynamic scenario for this segment of the Avalonian-Cadomian active margin is considered in terms of three main stages: (1) The 570–540 Ma evolution of an active continental margin evolving oblique collision with accretion of oceanic crust, a continental magmatic arc and the development of related marginal basins; (2) the Ediacaran–Early Cambrian transition (540–520 Ma) coeval with important orogenic magmatism and the formation of transtensional basins with detritus derived from remnants of the magmatic arc; and (3) Gondwana fragmentation with the formation of Early Cambrian (520–510 Ma) shallow-water platforms in transtensional grabens accompanied by rift-related magmatism. These processes are comparable to similar Cadomian successions in other regions of Gondwanan Europe and Northwest Africa. Ediacaran and Early Cambrian basins preserved in the Ossa-Morena Zone (Portugal and Spain), the North Armorican Cadomian Belt (France), the Saxo-Thuringian Zone (Germany), the Western Meseta and the Western High-Atlas (Morocco) share a similar geotectonic evolution, probably situated in the same paleogeographic West African peri-Gondwanan region of the Avalonian-Cadomian active margin.  相似文献   

4.
Contention surrounds the Ediacaran–Cambrian geodynamic evolution of the palaeo-Pacific margin of Gondwana as it underwent a transition from passive to active margin tectonics. In Australia, disagreement stems from conflicting geodynamic models for the Delamerian Orogen, which differ in the polarity of subduction and the state of the subduction hinge (i.e., stationary or retreating). This study tests competing models of the Delamerian Orogen through reconstructing Ediacaran–Cambrian basin evolution in the Koonenberry Belt, Australia. This was done through characterising the mineral and U–Pb detrital zircon age provenance of sediments deposited during postulated passive and active margin stages. Based on these data, we present a new basin evolution model for the Koonenberry Belt, which also impacts palaeogeographic models of Australia and East Gondwana. Our basin evolution and palaeogeographic model is composed of four main stages, namely: (i) Ediacaran passive margin stage with sediments derived from the Musgrave Province; (ii) Middle Cambrian (517–500 Ma) convergent margin stage with sediments derived from collisional orogens in central Gondwana (i.e., the Maud Belt of East Antarctica) and deposited in a backarc setting; (iii) crustal shortening during the c. 500 Ma Delamerian Orogeny, and; (iv) Middle to Late Cambrian–Ordovician stage with sediments sourced from the local basement and 520–490 Ma igneous rocks and deposited into post-orogenic pull-apart basins. Based on this new basin evolution model we propose a new geodynamic model for the Cambrian evolution of the Koonenberry Belt where: (i) the initiation of a west-dipping subduction zone at c. 517 Ma was associated with incipient calc-alkaline magmatism (Mount Wright Volcanics) and deposition of the Teltawongee and Ponto groups; (ii) immediate east-directed retreat of the subduction zone positioned the Koonenberry Belt in a backarc basin setting (517 to 500 Ma), which became a depocentre for continued deposition of the Teltawongee and Ponto groups; (iii) inversion of the backarc basin during the c. 500 Delamerian Orogeny was driven by increased upper and low plate coupling caused by the arrival of a lower plate asperity to the subduction hinge, and; (iv) subduction of the asperity resulted in renewed rollback and upper plate extension, leading to the development of small, post-orogenic pull-apart basins that received locally derived detritus.  相似文献   

5.
The Ediacaran–Cambrian transition is a critical interval marking drastic biological, oceanic and geochemical co‐evolutions in geological history, but it is poorly constrained geochronologically in South China. We here present two new sets of SIMS U–Pb zircon ages from Ediacaran–Cambrian boundary strata (Dengying, Liuchapo and Niutitang formations) deposited in the slope–basin environments of carbonate platforms. Two weighted‐mean U–Pb ages of 542.1 ± 5.0 Ma and 542.6 ± 3.7 Ma in the basal and mid‐upper Liuchapo Formation, respectively, in slope and basinal settings provide the first direct age set for the Ediacaran–Cambrian boundary in South China. Another two U–Pb ages of 524.2 ± 5.1 Ma and 522.3 ± 3.7 Ma from the base of the overlying Niutitang Formation indicate that this widespread unit in South China was deposited about 20 Ma after the onset of the Cambrian.  相似文献   

6.
New LA-ICP-MS U–Pb detrital zircon ages from Ediacaran and Paleozoic siliciclastic rocks are used to constrain provenance and paleogeographic affinities of the Teplá-Barrandian unit (TBU) in the centre of the Bohemian Massif (Central Europe, Czech Republic). The samples taken span the period from ≤ 635 Ma to ~ 385 Ma and permit recognition of provenance changes that reflect changes in geotectonic regime. Detrital zircon age spectra of two Ediacaran, one Lower Cambrian and three Upper Ordovician samples resemble the ages known from the NW African proportion of Gondwana, particularly the Trans-Saharan belt, while three rocks from higher Lower Cambrian to Lowermost Ordovician strata contain detritus that may have been derived exclusively from local sources. The age spectrum of the Devonian rock is a combination of the NW Gondwanan and local features. These new findings in combination with a wide range of published data are in agreement with a Neoproterozoic subduction-related setting at the margin of Gondwana followed by a Cambrian/Early Ordovician rifting stage and an Ordovician passive margin setting. Furthermore the data are in favour of a position of the TBU at the Gondwanan margin throughout pre-Variscan times.  相似文献   

7.
The replacement of the late Precambrian Ediacaran biota by morphologically disparate animals at the beginning of the Phanerozoic was a key event in the history of life on Earth, the mechanisms and the time‐scales of which are not entirely understood. A composite section in Namibia providing biostratigraphic and chemostratigraphic data bracketed by radiometric dating constrains the Ediacaran–Cambrian boundary to 538.6–538.8 Ma, more than 2 Ma younger than previously assumed. The U–Pb‐CA‐ID TIMS zircon ages demonstrate an ultrashort time frame for the LAD of the Ediacaran biota to the FAD of a complex, burrowing Phanerozoic biota represented by trace fossils to a 410 ka time window of 538.99 ± 0.21 Ma to 538.58 ± 0.19 Ma. The extremely short duration of the faunal transition from Ediacaran to Cambrian biota within less than 410 ka supports models of ecological cascades that followed the evolutionary breakthrough of increased mobility at the beginning of the Phanerozoic.  相似文献   

8.
The Cambrian explosion, c. 530–515 Ma heralded the arrival of a diverse assembly of multicellular life including the first hard-shelled organisms. Fossils found in Cambrian strata represent the ancestors of most modern animal phyla. In contrast to the apparent explosiveness seen in the Cambrian fossil record, studies of molecular biology hint that the diversification observed in Cambrian strata was rooted in ancestry extending back into the Ediacaran (635–542 Ma). Fossil evidence for this mostly cryptic phase of evolution is derived from the soft-bodied fossils of the Ediacaran biota found throughout the world and bilaterian embryos found in the Doushantuo lagerstätte in South China. The first appearance of Ediacara fauna is thought to have followed the last of the ~ 750–635 Ma Neoproterozoic glacial episodes by 20–30 million years. In this paper, we present evidence for the oldest discovery of the ‘Ediacara’ discoidal fossils Nimbia occlusa and Aspidella terranovica (?) that predate the early Cryogenian glaciations by more than fifty million years. There is considerable disagreement over the significance of discoidal Ediacaran fossils, but our findings may support earlier suggestions that metazoan life has roots extending deeper into the Proterozoic Eon. We also confirm the presence of a Late Cryogenian (e.g. “Marinoan”) glaciation on the Lesser Karatau microcontinent including dropstones and striated clasts within the glacial strata.  相似文献   

9.
Understanding the evolution of the northern Paraguay Belt, Brazil, is critical in two current controversies: (i) the number, timing and significance of Ediacaran glaciations; and (ii) the timing of amalgamation of South American Gondwana. The Neoproterozoic Alto Paraguay Group forms much of the northern Paraguay Belt. The Serra Azul Formation, within this Group, contains unequivocal evidence for a glacial influence on sedimentation, including multi‐directional striations on sandstone clasts and striated, polished and bullet‐shaped mudstone clasts. However, the age of the Serra Azul Formation is not well‐constrained. The northern Paraguay Belt also formed after the traditionally accepted time for amalgamation of South American Gondwana. If the orogen represents closure of an ocean, then this traditional view is incorrect. A significant number of single grain 40Ar/39Ar detrital muscovite cooling ages (ca 120) from the Alto Paraguay Group are presented. The three youngest grains from the Serra Azul Formation yield a weighted mean age of 640 ± 15 Myr, providing a robust maximum depositional age for this formation. This age, when considered with other data, suggests that the Serra Azul Formation developed in a mid‐Ediacaran glaciation consistent with that expressed in the Gaskiers Formation of Newfoundland, Canada. Cryogenian 40Ar/39Ar detrital muscovite ages from the Alto Paraguay Group are hard to reconcile with the known geology of Amazonia and are interpreted as being sourced from the evolving orogen to the east – from an arc terrane, possibly the Goiás–Paranapanema Massif. Detrital muscovites in the upper part of the Alto Paraguay Group are as young as 544 ± 7 Myr, consistent with mounting evidence that indicates a Cambrian age for orogenesis within the Paraguay Belt during the final amalgamation of Gondwana. This article suggests that the data best support a model where ocean closure in the region continued until Ediacaran/Cambrian times, with final ocean closure represented by orogenesis in the Paraguay–Araguaia orogen.  相似文献   

10.
The formation of Gondwana took place across a series of Brasiliano–Pan African suture zones that record late Neoproterozoic to earliest Paleozoic collisions between Precambrian cratons. In South America, an internal suture zone marks the disappearance of the Clymene Ocean that separated the Amazon craton from the São Francisco and Rio de la Plata cratons. New geochronological data from the southern end of this massive collision zone in the Sierras Australes of central-eastern Argentina document Paleoproterozoic crust and suggest an Ediacaran age for the oldest sedimentary rocks. These two observations extend the known limit of the Rio de la Plata craton at least 200 km SW of previous estimates. New data also confirm the occurrence of late Ediacaran to late Cambrian magmatism in the Sierras Australes. The age of these hypabyssal to volcanic rocks corresponds to igneous events in the Pampean belt along the western margin of the Rio de la Plata craton, although the shallow level magma emplacement in the Sierra da Ventana study area contrasts with the deeply exhumed rocks of the Pampean orogeny type locality. These new age data are compared with a broad compilation of geochronological age Clymene collision belts to the north, the Paraguai and Araguaia belts. The close overlap of the timing of orogenesis indicates the age of Clymene ocean closure in its northern reaches. In the south, the Pampean belt was unconfined, allowing continued tectonic activity and crustal accretion throughout the Paleozoic.  相似文献   

11.
Novelty in the biological world is the culmination of genetic changes often triggered by the physical environment. The most radical phase of biological evolution took place during the Cambrian Evolutionary Radiation (CER). Prior to the CER, bacterial matgrounds and associated communities of Ediacaran organisms dominated the shallow seafloor. Near the end of the Ediacaran Period, ~ 550 million years ago, many soft-bodied biota went extinct. In the Early Cambrian, animals with the ability to burrow vertically altered the ecology of the seafloor and biomineralization became commonplace. Here we link the terminal Ediacaran extinction, the Cambrian substrate revolution and the diversification of biomineralizing organisms to changes associated with the reversal frequency of the Earth's magnetic field. Beginning around 550 Ma and continuing through much of the Cambrian, the Earth's magnetic field was rapidly reversing. Models, and limited paleointensity studies, indicate that rapid reversals are a feature of an overall weaker dipole. A weakened dipole reduces the dimensions of the magnetosphere that provides a barrier to incoming cosmic radiation. Here we show that the environmental effects of that collapse include increased dosing of UVB radiation into the shallow marine environment. Increased UVB radiation in the shallow marine environment provided selective pressure favoring organisms that could detect and avoid UVB damage by burrowing vertically, moving up or down in the water column, growing protective shells and other ‘flight from light’ mechanisms. These changes took place in advance of the CER, but effectively cleared the ecological space for the subsequent changes in the later Cambrian.  相似文献   

12.
《Gondwana Research》2014,25(1):190-203
Peninsular India forms a keystone in Gondwana, linking the East African and Malagasy orogens with Ediacaran–Cambrian orogenic belts in Sri Lanka and the Lützow Holm Bay region of Antarctica with similar aged belts in Mozambique, Malawi and Zambia. Ediacaran–Cambrian metamorphism and deformation in the Southern Granulite Terrane (SGT) reflect the past tectonic setting of this region as the leading vertex of Neoproterozoic India as it collided with Azania, the Congo–Tanzania–Bangweulu Block and Kalahari on one side and the Australia/Mawson continent on the other. The high-grade terranes of southern India are made up of four main tectonic units; from north to south these are a) the Salem Block, b) the Madurai Block, c) the Trivandrum Block, and d) the Nagercoil Block. The Salem Block is essentially the metamorphosed Dharwar craton and is bound to the south by the Palghat-Cauvery shear system — here interpreted as a terrane boundary and the Mozambique Ocean suture. The Madurai Block is interpreted as a continuation of the Antananarivo Block (and overlying Palaeoproterozoic sedimentary sequence — the Itremo Group) of Madagascar and a part of the Neoproterozoic microcontinent Azania. The boundary between this and the Trivandrum Block is the Achankovil Zone, that here is not interpreted as a terrane boundary, but may represent an Ediacaran rift zone reactivated in latest Ediacaran–Cambrian times.  相似文献   

13.
Two distinct Cambrian magmatic pulses are recognized in the Ossa-Morena Zone (SW Iberia): an early rift-(ER) and a main rift-related event. This Cambrian magmatism is related to intra-continental rifting of North Gondwana that is thought to have culminated in the opening of the Rheic Ocean in Lower Ordovician times. New data of whole-rock geochemistry (19 samples), Sm–Nd–Sr isotopes (4 samples) and ID–TIMS U–Pb zircon geochronology (1 sample) of the Early Cambrian ER plutonic rocks of the Ossa-Morena Zone are presented in this contribution. The ER granitoids (Barreiros, Barquete, Calera, Salvatierra de los Barros and Tablada granitoid Massifs) are mostly peraluminous granites. The Sm–Nd isotopic data show moderate negative εNdt values ranging from ?3.5 to +0.1 and TDM ages greatly in excess of emplacement ages. Most ER granitoids are crustal melts. However, a subset of samples shows a transitional anorogenic alkaline tendency, together with more primitive isotopic signatures, documenting the participation of lower crust or mantle-derived sources and suggesting a local transient advanced stage of rifting. The Barreiros granitoid is intrusive into the Ediacaran basement of the Ossa-Morena Zone (Série Negra succession) and has yielded a crystallization age of 524.7 ± 0.8 Ma consistent with other ages of ER magmatic pulse. This age: (1) constrains the age of the metamorphism developed in the Ediacaran back-arc basins before the intrusion of granites and (2) defines the time of the transition from the Ediacaran convergent setting to the Lower Cambrian intra-continental rifting in North Gondwana.  相似文献   

14.
《Gondwana Research》2014,25(3):1057-1069
The appearance of multicellular animals and subsequent radiation during the Ediacaran/Cambrian transition may have significantly changed the oceanic ecosystem. Nitrogen cycling is essential for primary productivity and thus its connection to animal evolution is important for understanding the co-evolution of the Earth's environment and life. Here, we first report on coupled organic carbon and nitrogen isotope chemostratigraphy from the entire Ediacaran to Early Cambrian period by using drill core samples from the Yangtze Platform, South China. The results show that δ15NTN values were high (~ + 6‰) until middle Ediacaran, gradually dropping down to − 1‰ at the earliest Cambrian, then rising back to + 4‰ in the end of the Early Cambrian. Organic carbon and nitrogen contents widely varied with a relatively constant C/N ratio in each stratigraphic unit, and do not apparently control the carbon and nitrogen isotopic trends. These observations suggest that the δ15NTN and C/N trends mainly reflect secular changes in nitrogen cycling in the Yangtze Platform. Onset of the observed negative N isotope excursion coincided with a global carbon isotope excursion event (Shuram excursion). Before the Shuram event, the high δ15N probably reflects denitrification in a nitrate-limited oceanic condition. Also, degradation of dissolved and particulate organic matter could be an additional mechanism for the 15N-enrichment, and may have been significant when the ocean was rich in organic matter. At the time of the Shuram event, both δ13Ccarb and δ15NTN values were dropped probably due to massive re-mineralization of organic matter. This scenario is supported by an anomalously low C/N ratio, implying that enhanced respiration resulted in selective loss of carbon as CO2 with recycled organic nitrogen. After the Shuram event, the δ15N value continued to decrease despite that δ13Ccarb rose back to + 4‰. The continued δ15N drop appears to have coincided with a decreasing phosphorus content in carbonate. This suggests that ocean oxygenation may have generated a more nitrate-rich condition with respect to phosphorus as a limiting nutrient. Similar to the Shuram event, another negative δ13Ccarb event in the Canglanpuan stage of the Early Cambrian is also characterized by carbon isotopic decoupling as well as the low C/N ratio. The results strongly support that the two stages of the decoupled negative δ13Ccarb excursions reflect a disappearance of a large organic carbon pool in the ocean. The two events appear to relate with the appearance of new metazoan taxa with novel feeding strategies, suggesting a link between ocean oxygenation, nutrient cycling and the appearance and adaptation of metazoans. The nitrogen isotope geochemistry is very useful to understand the link between the environmental, ecological and biological evolutions.  相似文献   

15.
The second half of the Ediacaran period began with a large impact e the Acraman impact in South Australia, which was accompanied by a negative d13Ccarb anomaly and an extinction-radiation event involvi...  相似文献   

16.
The oxygen content of the Earth's surface environment is thought to have increased in two broad steps: the Great Oxygenation Event (GOE) around the Archean–Proterozoic boundary and the Neoproterozoic Oxygenation Event (NOE), during which oxygen possibly accumulated to the levels required to support animal life and ventilate the deep oceans. Although the concept of the GOE is widely accepted, the NOE is less well constrained and its timing and extent remain the subjects of debate. We review available evidence for the NOE against the background of major climatic perturbations, tectonic upheaval related to the break-up of the supercontinent Rodinia and reassembly into Gondwana, and, most importantly, major biological innovations exemplified by the Ediacarian Biota and the Cambrian ‘Explosion’.Geochemical lines of evidence for the NOE include perturbations to the biogeochemical cycling of carbon. Generally high δ13C values are possibly indicative of increased organic carbon burial and the release of oxidative power to the Earth's surface environment after c. 800 Ma. A demonstrably global and primary record of extremely negative δ13C values after about 580 Ma strongly suggests the oxidation of a large dissolved organic carbon pool (DOC), the culmination of which around c. 550 Ma coincided with an abrupt diversification of Ediacaran macrobiota. Increasing 87Sr/86Sr ratios toward the Neoproterozoic–Cambrian transition indicates enhanced continental weathering which may have fuelled higher organic production and burial during the later Neoproterozoic.Evidence for enhanced oxidative recycling is given by the increase in sulfur isotope fractionation between sulfide and sulfate, exceeding the range usually attained by sulfate reduction alone, reflecting an increasing importance of the oxidative part in the sulfur cycle. S/C ratios attained a maximum during the Precambrian–Cambrian transition, further indicating higher sulfate concentrations in the ocean and a transition from dominantly pyrite burial to sulfate burial after the Neoproterozoic. Strong evidence for the oxygenation of the deep marine environment has emerged through elemental approaches over the past few years which were able to show significant increases in redox-sensitive trace-metal (notably Mo) enrichment in marine sediments not only during the GOE but even more pronounced during the inferred NOE. In addition to past studies involving Mo enrichment, which has been extended and further substantiated in the current review, we present new compilations of V and U concentrations in black shales throughout Earth history that confirm such a rise and further support the NOE. With regard to ocean ventilation, we also review other sedimentary redox indicators, such as iron speciation, molybdenum isotopes and the more ambiguous REE patterns. Although the timing and extent of the NOE remain the subjects of debate and speculation, we consider the record of redox-sensitive trace-metals and C and S contents in black shales to indicate delayed ocean ventilation later in the Cambrian on a global scale with regard to rising oxygen levels in the atmosphere which likely rose during the Late Neoproterozoic.  相似文献   

17.
Ediacaran and Early Cambrian sedimentary rocks from NW Iberia have been investigated for detrital zircon U–Pb ages. A total of 1,161 concordant U–Pb ages were obtained in zircons separated from four Ediacaran samples (3 from the Cantabrian Zone and one from the Central Iberian zone) and two Lower Cambrian samples (one from the Cantabrian Zone and one from the Central Iberian Zone). Major and trace elements including REE and Sm–Nd isotopes were also analyzed on the same set of samples. The stratigraphically older Ediacaran sequence in the Cantabrian Zone has a maximum sedimentation age of ca. 600 Ma based on detrital zircon content and is intruded by ca. 590–580 Ma granitoids constraining the deposition of this part of the sequence between ca. 600 and 580 Ma. The stratigraphically younger Ediacaran sequence in the Cantabrian Zone has a maximum sedimentation age of ca. 553 Ma. The Ediacaran sample from the Central Iberian Zone has an identical within error maximum sedimentation age of ca. 555 Ma. The detrital zircon U–Pb age patterns are very similar in all the Ediacaran samples from both zones including the main age groups ca. 0.55–0.75 Ga, ca. 0.85–1.15 Ga and minor Paleoproterozoic (ca. 1.9–2.1 Ga) and Archean (ca. 2.4–2.6 Ga) populations. Kolmogorov–Smirnov statistical tests performed on this set of samples indicate that they all were derived from the same parent population (i.e., same source area). The same can be said on the basis of Nd isotopes, REE patterns and trace element concentrations. The two Cambrian samples, however, show contrasting signatures: The sample from the Cantabrian Zone lacks the ca. 0.85–1.15 Ga population and has a high proportion of Paleoproterozoic and Archean zircons (>60 %) and a more negative ε Nd and higher T DM values than the Ediacaran samples. The Early Cambrian sample from the Central Iberian Zone has the same U–Pb detrital zircon age distribution (based on KS tests) as all the Ediacaran samples but has a significantly more negative ε Nd value. These data suggest apparently continuous sedimentation in the NW Iberian realm of northern Gondwana between ca. 600 and 550 Ma and changes in the detrital influx around the Ediacaran–Cambrian boundary. The nature and origin of these changes cannot be determined with available data, but they must involve tectonic activity on the margin as evidenced by the angular unconformity separating the Ediacaran and Lower Cambrian strata in the Cantabrian Zone. The absence of this unconformity and the apparent continuity of detrital zircon age distribution between Ediacaran and Cambrian rocks in the Central Iberian Zone suggest that the margin became segmented with significant transport and sedimentation flux changes in relatively short distances. As to the paleoposition of NW Iberia in Ediacaran–Early Cambrian times, comparison of the data presented herein with a wealth of relevant data from the literature both on the European peri-Gondwanan terranes and on the terranes of northern Africa suggests that NW Iberia may have lain closer to the present-day Egypt–Israel–Jordan area and that the potential source of the hitherto enigmatic Tonian–Stenian zircons could be traced to exposed segments of arc terranes such as that described in the Sinai Peninsula (Be’eri-Shlevin et al. in Geology 40:403–406, 2012).  相似文献   

18.
《Gondwana Research》2001,4(3):279-288
The formation of Gondwana during the late Neoproterozoic to early Cambrian times (550-530 Ma) was traditionally viewed as the welding of two, more or less contiguous, Proterozoic continental masses called East and West Gondwana. The notion of a united West Gondwana is no longer tenable as a wealth of geochronologic and structural data indicate major orogenesis amongst its constituent cratons during the final stages of greater Gondwana assembly. The idea that East Gondwana may also have formed through the amalgamation of a collage of cratonic nuclei during the Cambrian is controversial. Recent paleomagnetic, geochronologic and structural data from elements of East Gondwana indicate that its formation may have extended well into Cambrian time. Thus, the terms ‘East’ and ‘West’ Gondwana may be relegated to convenient geographical terms rather than any connotation of tectonic coherence during the Proterozoic. In addition, the paleomagnetic data also challenge the conventional views of the Neoproterozoic supercontinent Rodinia and the SWEAT fit. Alternative variants including Protopangea and AUSWUS are not supported by paleomagnetic data during the interval 800–700 Ma.  相似文献   

19.
《Gondwana Research》2016,29(4):1449-1465
We report here in-situ U–Pb and Hf isotopic results of detrital zircons from sixteen Cambrian–Silurian siliciclastic samples across the Nanhua foreland basin, South China. Together with published data from Ediacaran–Silurian sandstones in the region, we establish the temporal and spatial provenance evolution across the basin. Except for samples from northeast Yangtze, all other Ediacaran–Silurian samples exhibit a prominent population of 1100–900 Ma, moderate populations of 850–700 Ma and 650–490 Ma, and minor populations of 2500 Ma and 2000–1300 Ma, grossly matching that of crystalline and sedimentary rocks in northern India. Zircon Hf isotopes further reveal four episodes of juvenile crustal growth at 2.5 Ga, 1.8 Ga, 1.4 Ga and 1.0 Ga in the source regions. Utilizing the basin history and late Neoproterozoic to early Paleozoic paleogeography of South China, we conclude that the Ediacaran–Cambrian sediments in the Nanhua foreland basin were mainly sourced from northern India and adjacent orogens, and the Ordovician–Silurian sediments were derived from both locally recycled Ediacaran–Cambrian rocks and eroded Cathaysian basement. The Wuyi–Yunkai late-orogenic magmatic rocks also contributed to the Silurian sediments in the basin. The upper-Ordovician to Silurian samples in northeast Yangtze received higher proportions of local Cryogenian (850–700 Ma) magmatic rocks which were uplifted during late-Ordovician to Silurian time. We speculate that there was an Ediacaran–Cambrian collisional orogen between South China and northern India, shedding sediments to the early Nanhua foreland basin. Far-field stress during the late stage of this collisional orogeny triggered the Ordovician–Silurian intraplate Wuyi–Yunkai orogeny in South China, and erosion of the local Wuyi–Yunkai orogen further provided detritus to the late Nanhua foreland basin.  相似文献   

20.
Crustal architecture in formerly contiguous basement terranes in SE Australia, Tasmania and northern Victoria Land is a legacy of late Neoproterozoic–Cambrian subduction-related processes, culminating in formation of the Delamerian–Ross orogen. Structures of Delamerian–Ross age were subsequently reactivated during late Mesozoic–Cenozoic Gondwana breakup, strongly influencing the geometry of continental rifting and providing clues about the origins and configuration of the pre-existing basement structures. An ocean–continent transform boundary developed off western Tasmania follows the trace of an older Paleozoic strike-slip structure (Avoca–Sorell fault system) optimally oriented for reactivation during the final separation of Australia from Antarctica. This boundary cuts across rocks preserving an earlier record of arc–continent collision during the course of which continental crust was subducted to mantle depths and Cambrian mafic–ultramafic island arc rocks were thrust westwards over late Neoproterozoic–Cambrian passive margin sequences. Collision was accompanied by development of a foreland basin into which 520–600 Ma arc-derived detrital zircons were shed. Following a reversal in subduction polarity, and change to transcurrent motion along the Gondwana margin, Tasmania migrated northward along the proto-Avoca fault system before entering a subduction zone located along the Heathcote–Governor fault system, precipitating a second collision, south-vergent thrusting, and tectonic reworking of the already accreted Cambrian arc–forearc assemblages and underlying passive margin sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号