首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of polar patches as observed simultaneously in the same magnetic meridian of opposite nightside ionospheres by coherent and incoherent scatter radars are described. The patches appear to be related to variations either in the Bz or By component of the interplanetary magnetic field which cause transient merging on the dayside magnetopause. The passage and characteristics of polar patches as they traverse the polar cap into the nightside auroral oval are not significantly affected by the occurrence of small substroms. This study illustrates how the observations of polar patches in the nightside high-latitude ionosphere could be of great value in determining their formation process.  相似文献   

2.
The data of the DMSP F7 spacecraft are used for studying the influence of the geomagnetic dipole tilt angle on the latitudinal position of auroral precipitation boundaries in the nighttime (2100–2400 MLT) and daytime (0900–1200 MLT) sectors. It is shown that, in the nighttime sector, the high-latitude zone of soft diffuse precipitation (SDP) and the boundary of the polar cap (PC) at all levels of geomagnetic activity are located at higher and lower latitudes relative to the equinox period in winter and summer, respectively. The position of boundaries of the diffuse auroral precipitation zone (DAZ) located equatorward from the auroral oval does not depend on the season. In the daytime sector, the inverse picture is observed: the SDP precipitation zone takes the most low-latitude and high-latitude positions in the winter and summer periods, respectively. The total value of the displacements from winter to summer of both the nighttime and daytime boundaries of the PC is ∼2.5°. A diurnal wave in the latitudinal position of the nighttime precipitation boundaries is detected. The wave is most pronounced in the periods of the winter and fall seasons, is much weaker in the spring period, and is almost absent in summer. The diurnal variations of the position of the boundaries are quasi-sinusoidal oscillations with the latitude maximum and minimum at 0300–0500 and 1700–2100 UT, respectively. The total value of the diurnal displacement of the boundaries is ∼2.5° of latitude. The results obtained show that, undergoing seasonal and diurnal variations, the polar cap is shifted as a whole in the direction opposite to the changes in the tilt angle of the geomagnetic dipole. The seasonal displacements of the polar cap and its diurnal variations in the winter period occur without any substantial changes in its area.  相似文献   

3.
太阳活动低年南极中山站电离层F层的平均特性   总被引:9,自引:5,他引:4       下载免费PDF全文
根据1995-1997年3年中山站数字式电离层测高仪的数据,分析了中山站不同季 节F层的临频变化特点.中山站夏季主要受太阳光光化电离的影响,F层临频随地方时的变 化与中纬台站相似;两分季,极隙区软电子沉降的作用显著,F层临频随磁地方时而变化,有 较明显的磁中午现象.冬季,太阳全天处于地平线以下,中山站F层临频的变化主要受极隙 区软电子沉降和极区等离子体漂移的影响,其峰值变化处于碰中午和地方时中午之间.中山 站夏季全天都能观测到F层的存在;两分季F层在地方时子夜附近的出现率较少;冬季月份 在磁地方时午后和子夜F层出现率明显减少,这可能与南半球冬季的高纬槽和极洞有关.对 F层不均匀区的分析认为,中山站在t_(LT)为16:00左右处于极光带赤道侧,20:00左右进入极盖 区。  相似文献   

4.
Structures controlled by the IMF By sign and season of the year have been detected based on the decomposition of field-aligned current maps constructed using magnetic field measurements on polar low-orbiting satellites. It has been indicated that field-aligned currents have identical structures, composed of the main polar circular current and the return current at the polar cap dayside boundary, at any By sign in the summer hemisphere. Two different types of structures are implemented under winter conditions depending on the By sign. For the northern winter, it is the polar circular current and the return current at the polar cap nightside boundary at By < 0; current sheets are strongly stretched along latitudes below 80° MLat, and only small part of the current is in the noon sector of the polar cap. For the summer winter, the corresponding structures are implemented at opposite By signs. The intensities of the field-aligned currents, originating as a result of the interhemispheric asymmetry and flowing along closed geomagnetic field lines near the polar cap boundary, have been estimated. The maximum of the interhemispheric current density is 0.25 μA m−2 in the summer and 0.1 μA m−2 in the winter; the total current is 5 × 105 and 5 × 104 A, respectively.  相似文献   

5.
Ionospheric electron content (IEC) observed at Delhi (geographic co-ordinates: 28.63°N, 77.22°E; geomagnetic co-ordinates: 19.08°N, 148.91E; dip Latitude 24.8°N), India, for the period 1975/80 and 1986/89 belonging to an ascending phase of solar activity during first halves of solar cycles 21 and 22 respectively have been used to study the diurnal, seasonal, solar and magnetic activity variations. The diurnal variation of seasonal mean of IEC on quiet days shows a secondary peak comparable to the daytime peak in equinox and winter in high solar activity. IECmax (daytime maximum value of IEC, one per day) shows winter anomaly only during high solar activity at Delhi. Further, IECmax shows positive correlation with F10.7 up to about 200 flux units at equinox and 240 units both in winter and summer; for greater F10.7 values, IECmax is substantially constant in all the seasons. IECmax and magnetic activity (Ap) are found to be positively correlated in summer in high solar activity. Winter IECmax shows positive correlation with Ap in low solar activity and negative correlation in high solar activity in both the solar cycles. In equinox IECmax is independent of Ap in both solar cycles in low solar activity. A study of day-to-day variations in IECmax shows single day and alternate day abnormalities, semi-annual and annual variations controlled by the equatorial electrojet strength, and 27-day periodicity attributable to the solar rotation.  相似文献   

6.
南极中山站电离层的极区特征   总被引:9,自引:1,他引:8       下载免费PDF全文
本文利用1996年的电离层数字测高仪DPS-4所测的f0F2、f0E以及美国NOAA和DMSP卫星观测估算的半球功率指数和午夜极光区赤道侧边界纬度等资料,考察中山站电离层的极区特征。结果表明,在太阳和地磁宁静环境下,冬季极夜磁正午中山站处于极隙区中心时,电离层内的电离密度达全天的最大值;上、下午各有数小时间隔位极光带内时,高能粒子的电离作用也很重要;夜间进入极差区后,电子密度则很低。夏季极昼时,太阳EUV辐射的电离效应使电离层电离密度比冬季值大许多,而且,日变化的最大值时间也提前了1~2h,强磁扰时,极隙区和极光带均向低纬侧移动;中山站上空的电子密度会大幅度下降。在中等扰动环境下情况要加复杂:磁正午前后极隙区内软粒子沉降的电离强度有所减小,而上、下午极光区的高能粒子电离则有较大增加。  相似文献   

7.
The paper demonstrates the close relationships between the polar cap magnetic activity, which is characterized by PC index (Troshichev et al., 1988, Troshichev et al., 2006) and some atmospheric phenomena typical of the winter Antarctica, such as enhancement of cloudiness, sudden warmings of the ground atmosphere in near-pole area, and formation of anomalous wind regimes above Antarctica. It was shown previously (Troshichev et al., 2004, Troshichev et al., 2008, Troshichev and Janzhura, 2004) that these atmospheric phenomena are controlled by variations of the geoeffective interplanetary electric field impacting the Earth’s magnetosphere. On the other hand, the polar cap magnetic activity is also determined by the interplanetary electric field influence through the field-aligned magnetospheric currents and electric field in the polar cap ionosphere. The results imply that the PC index, available online at http://www.aari.nw.ru from the near-pole station Vostok, can be used to monitor the anomalous atmospheric processes in winter Antarctica.  相似文献   

8.
During many PCAs at auroral zone stations in the daytime, a smooth decrease in the absorption, called the noon recovery effect, is observed. The manifestation of this effect in PCA events registered at various seasons of the year (in spring, summer, and fall under a completely illuminated ionosphere and in winter under a completely (or partially) dark ionosphere) is analyzed in this paper. In the summer PCA, the amplitude of the noon recovery (the strongest decrease in the absorption in the hours close to the noon) and the frequency of occurrence of this effect are lower than in equinox conditions. A decrease in temperature and the enhanced content of water vapor in the upper mesosphere in summer as compared to the equinox seasons are the main factors governing the small amplitude of the noon recovery in summer PCA. Using experimental and calculated data, the presence of the noon recovery effect in winter PCA is found for the first time. In winter PCA, the absorption variation during noon recovery has a complicated shape: a smooth decrease in the daytime hours and a short-term (pulse-type) increase in the absorption in the local noon. This increase is caused by the fact that the ionosphere over auroral stations in the winter season is illuminated for a short time interval (around the local noon), which causes a sharp increase in the absorption. The amplitude of the noon recovery in winter PCA is higher than in equinox and summer PCA.  相似文献   

9.
A search for Pc3–4 wave activity was performed using data from a trans-Antarctic profile of search-coil magnetometers extending from the auroral zone through cusp latitudes and deep into the polar cap. Pc3–4 pulsations were found to be a ubiquitous element of ULF wave activity in all these regions. The diurnal variations of Pc3 and Pc4 pulsations at different latitudes have been statistically examined using discrimination between wave packets (pulsations) and noise. Daily variations of the Pc3–4 wave power differ for the stations at the polar cap, cusp, and auroral latitudes, which suggests the occurrence of several channels of propagation of upstream wave energy to the ground: via the equatorial magnetosphere, cusp, and lobe/mantle. An additional maximum of Pc3 pulsations during early-morning hours in the polar cap has been detected. This maximum, possibly, is due to the proximity of the geomagnetic field lines at these hours to the exterior cusp. The statistical relation between the occurrence of Pc3–4 pulsations and interplanetary parameters has been examined by analyzing normalized distributions of wave occurrence probability. The dependences of the occurrence probability of Pc3–4 pulsations on the IMF and solar wind parameters are nearly the same at all latitudes, but remarkably different for the Pc3 and Pc4 bands. We conclude that the mechanisms of high-latitude Pc3 and Pc4 pulsations are different: Pc3 waves are generated in the foreshock upstream of the quasi-parallel bow shock, whereas the source of the Pc4 activity is related to magnetospheric activity. Hourly Pc3 power has been found to be strongly dependent on the season: the power ratio between the polar summer and winter seasons is 8. The effect of substantial suppression of the Pc3 amplitudes during the polar night is reasonably well explained by the features of Alfven wave transmission through the ionosphere. Spectral analysis of the daily energy of Pc3 and Pc4 pulsations in the polar cap revealed the occurrence of several periodicities. Periodic modulations with periods 26, 13 and 8–9 days are caused by similar periodicities in the solar wind and IMF parameters, whereas the 18-day periodicity, observed during the polar winter only, is caused, probably, by modulation of the ionospheric conductance by atmospheric planetary waves. The occurrence of the narrow-band Pc3 waves in the polar cap is a challenge to modelers, because so far no band-pass filtering mechanism on open field lines has been identified.  相似文献   

10.
Annual, seasonal and semiannual variations of F2-layer electron density (NmF2) and height (hmF2) have been compared with the coupled thermosphere-ionosphere-plasmasphere computational model (CTIP), for geomagnetically quiet conditions. Compared with results from ionosonde data from midlatitudes, CTIP reproduces quite well many observed features of NmF2, such as the dominant winter maxima at high midlatitudes in longitude sectors near the magnetic poles, the equinox maxima in sectors remote from the magnetic poles and at lower latitudes generally, and the form of the month-to-month variations at latitudes between about 60°N and 50°S. CTIP also reproduces the seasonal behaviour of NmF2 at midnight and the summer-winter changes of hmF2. Some features of the F2-layer, not reproduced by the present version of CTIP, are attributed to processes not included in the modelling. Examples are the increased prevalence of the winter maxima of noon NmF2 at higher solar activity, which may be a consequence of the increase of F2-layer loss rate in summer by vibrationally excited molecular nitrogen, and the semiannual variation in hmF2, which may be due to tidal effects. An unexpected feature of the computed distributions of NmF2 is an east-west hemisphere difference, which seems to be linked to the geomagnetic field configuration. Physical discussion is reserved to the companion paper by Rishbeth et al.  相似文献   

11.
The effects of the characteristics of the interplanetary medium on the radar scattering occurrence, related to the whole array of SuperDARN radars installed in the Northern Hemisphere, have been studied over a two-year period. Statistically significant correlations of the variation of the scattering occurrence are found with the merging electric field and with the negative Bz component of the interplanetary magnetic field, independent of the seasonal period considered. This result demonstrates that the merging rate (and in particular the reconnection process) between the interplanetary magnetic field and the magnetosphere is a relevant factor affecting the occurrence of scattering. For comparison, we note that no statistically significant correlations are obtained when the interplanetary ion density or the solar wind speed are considered, although also these variables affect to a small degree the scattering occurrence variation. The study of the latitudinal and magnetic local time dependence of the observations shows an association between the considered correlation and the location of the auroral oval and the cusp/cleft region.  相似文献   

12.
Statistical study on the universal time variations in the mean hourly auroral electrojet index (AE-index) has been undertaken for a 21 y period over two solar cycles (1957–1968 and 1978–1986). The analysis, applied to isolated auroral substorm onsets (inferred from rapid variations in the AE-index) and to the bulk of the AE data, indicates that the maximum in auroral activity is largely confined to 09–18 UT, with a distinct minimum at 03–06 UT. The diurnal effect was clearly present throughout all seasons in the first cycle but was mainly limited to northern winter in the second cycle. Severe storms (AE > 1000 nT) tended to occur between 9–18 UT irrespective of the seasons whereas all larger magnetic disturbances (AE > 500 nT) tended to occur in this time interval mostly in winter. On the whole the diurnal trend was strong in winter, intermediate at equinox and weak in summer. The implication of this study is that Eastern Siberia, Japan and Australia are mostly at night, during the period of maximum auroral activity whereas Europe and Eastern America are then mostly at daytime. The minimum of auroral activity coincides with near-midnight conditions in Eastern America. It appears that the diurnal UT distribution in the AE-index reflects a diurnal change between interplanetary magnetic field orientation and the Earths magnetic dipole inclination.  相似文献   

13.
地球极区电离层对行星际激波的响应   总被引:1,自引:0,他引:1       下载免费PDF全文
本文就地球电离层对行星际激波的动力学响应进行三维全球数值模拟研究.背景行星际磁场为螺旋场,南北分量为零;初始电离层由Ⅰ区场向电流和相应的晨昏电场所主导;行星际激波沿日地连线方向撞击地球.模拟结果表明,在激波的作用下,电离层Ⅰ区电流系统向子夜方向运动,在向阳侧相继出现与原Ⅰ区电流反向的异常场向电流对和同向的新生Ⅰ区电流对.该异常场向电流对在极盖区形成瞬间昏晨电场,尾随原Ⅰ区电流向夜侧方向漂移直至湮没.与此同时,新生的Ⅰ区电流不断增强并向夜侧和赤道方向延伸,最终取代原Ⅰ区电流,相应极盖区又恢复到原来的晨昏电场状态.这一响应过程和行星际激波强度有关:激波强度越强,新生的Ⅰ区场向电流也越强,它向赤道方向延伸的距离也越大,能到达的纬度也越低.上述结果在趋势上与观测到的输运对流涡旋和亚极光块的运动特征一致.  相似文献   

14.
Plasma patches are regions of enhanced ionization that are created in the dayside cusp or equatorward of the cusp in the sunlit hemisphere during northward interplanetary magnetic field. After formation, and a change to a southward interplanetary magnetic field, they drift across the polar cap with the prevailing convection speed. As a plasma patch propagates, charge exchange reactions occur, which lead to the production of both ion and neutral particles throughout the patch. In the region directly above the patch, an upward jet of H+ and O+ forms. This ion jet, in turn, acts to produce an upward flux of neutral H and O stream particles because of charge exchange reactions between the ion jet and the background neutral atmosphere. A three-dimensional, time-dependent model of the ion and neutral polar winds was used in order to study the evolution of the neutral stream particles that are produced in a ‘representative’ propagating plasma patch, with the anticipation that the neutral stream particles produced by the ion jet would display a distinct signature. However, the outflow of neutral H atoms above a patch is only slightly visible in the simulation due to a continuous outflow flux of H (∼109 cm−2 s−1) across the entire polar cap. On the other hand, the upward flux of neutral O from the patch is more dependent on both the state of the ionosphere and the amount of heating, with increased upward fluxes over areas where the heating is high. Typically, the upward neutral O streams are predominantly located in the pre-midnight auroral oval.  相似文献   

15.
We study the influence of the interplanetary magnetic field (IMF) and convection electric field on the rate and destination of polar wind and other thermal (low-energy) ion outflows, and its resulting effects on magnetosphere–ionosphere coupling, using single-particle trajectory simulations in conjunction with ion velocity distribution measurements on Akebono and IMF and ionospheric convection data. We find that the ions preferentially feed the dusk sector of the plasma sheet when the IMF is duskward (By>0), and are more evenly distributed in the plasma sheet when the IMF is dawnward. The flow of oxygen ions originating from the noon or dusk sectors of the polar cap has a higher probability of reaching the magnetosphere and beyond compared with that from the dawn or midnight sectors, due to the increased centrifugal acceleration associated with the larger magnetic field curvature near noon and the increased convection electric field in the dusk sector. The flow is enhanced and confined to lower L-shells at times of strongly southward IMF, compared with that at times of northward IMF. The outflow rate to both the plasma sheet and the magnetotail correlates strongly with the ion temperature. As a result, the IMF and the convection electric fields affect both the overall magnitude and the detailed distribution of mass transfer from the ionosphere to the magnetosphere in magnetosphere–ionosphere coupling.  相似文献   

16.
Observations of the horizontal wind field over the South Pole were made during 1995 using a meteor radar. These data have revealed the presence of a rich spectrum of waves over the South Pole with a distinct annual occurrence. Included in this spectrum are long-period waves, whose periods are greater than one solar day, which are propagating eastward. These waves exhibit a distinct seasonal occurrence where the envelope of wave periods decreases from a period of 10 days near the fall equinox to a minimum of 2 days near the winter solstice and then progresses towards a period near 10 days at the spring equinox. Computation of the meridional gradient of quasi-geostrophic potential vorticity has revealed a region in the high-latitude upper mesosphere which could support an instability and serve as a source for these waves. Estimation of the wave periods which would be generated from an instability in this region closely resembles the observed seasonal variation in wave periods over the South Pole. These results are consistent with the hypothesis that the observed eastward propagating long-period waves over the South Pole are generated by an instability in the polar upper mesosphere. However, given our limited data set we cannot rule out a stratospheric source. Embedded in this spectrum of eastward propagating waves during the austral winter are a number of distinct wave events. Eight such wave events have been identified and localized using a constant-Q filter bank. The periods of these wave events ranges from 1.7 to 9.8 days and all exist for at least 3 wave periods. Least squares analysis has revealed that a number of these events are inconsistent with a wave propagating zonally around the geographic pole and could be related to waves propagating around a dynamical pole which is offset from the geographic pole. Additionally, one event which was observed appears to be a standing oscillation.  相似文献   

17.
Observations from a network of specially equipped GPS scintillation receivers in Northern Europe are used to investigate the dynamics of ionospheric plasma during the storm events of 30 October and 20 November 2003. The total electron content (TEC) and scintillation data, combined with ionospheric tomography produced by the multi-instrument data analysis system (MIDAS), reveal strong enhancements and steep gradients in TEC during nighttime under a prevailing negative Bz component of the interplanetary magnetic field (IMF). Amplitude and phase scintillation maxima are often co-located with the TEC gradients at the edge of plasma patches, revealing the presence of small-scale irregularities and suggesting association with a tongue of ionization (TOI) convecting in an anti-sunward direction from the American sector across the polar cap. Similarities and differences between the ionospheric response to the two storms are investigated. The 30 October event reveals a quite complex scenario showing two phases of plasma dynamics: the former reflects the expected convection pattern for IMF Bz southward and the latter possibly indicates a sort of TEC plasma stagnation signature of the more complex convection patterns during several positive/negative excursions of IMF Bz.  相似文献   

18.
极盖等离子体云块是极区电离层常见特征之一,其形成演化过程是当前重要研究课题.光电离高密度等离子体在对流输送作用下从日侧穿过极隙,通过极盖到达夜侧,已成为共识.日侧磁场重联作用下的极区对流输运过程,在舌状等离子体结构(TOI)"断裂"形成极盖等离子体云块中发挥重要作用.利用极区全域GPS/TEC观测数据,结合SuperDARN雷达实测的对流速度,对等离子体云块形成过程进行案例研究,重点分析两种TOI断裂形成等离子体云块的发生机制.研究结果显示,等离子体对流输运过程在TOI断裂形成等离子体云块过程中发挥关键性作用,对流形态或局部对流速度矢量急剧变化都可能导致TOI结构不稳定,使TOI结构断裂形成等离子体云块.  相似文献   

19.
The suggestion that the polar cap can completely disappear under certain northward IMF conditions is still controversial. We know that the size of the polar cap is strongly controlled by the interplanetary magnetic field (IMF). Under a southward IMF, the polar cap is usually large and filled with weak diffuse polar rain electrons. The polar cap shrinks under a northward IMF. Here we use the global auroral images and coincident particle measurements on May 15, 2005 to show that the discrete arcs (due to precipitation of both electrons and ions) expanded from the dayside oval to the nightside oval and filled the whole polar ionosphere after a long (8 h) and strong (~5–30 nT) northward IMF Bz, The observations suggested that the polar cap disappeared under a closed magnetosphere.  相似文献   

20.
This paper deals with the diurnal and seasonal variations of height of the peak electron density of the F2-layer (hmF2) derived from digital ionosonde measurements at a low–middle-latitude station, New Delhi (28.6°N, 77.2°E, dip 42.4°N). Diurnal and seasonal variations of hmF2 are examined and comparisons of the observations are made with the predictions of the International Reference Ionosphere (IRI-2001) model. Our study shows that during both the moderate and low solar activity periods, the diurnal pattern of median hmF2 reveals a more or less similar trend during all the seasons with pre-sunrise and daytime peaks during winter and equinox except during summer, where the pre-sunrise peak is absent. Comparison of observed median hmF2 values with the IRI during moderate and low solar activity periods, in general, reveals an IRI overestimation in hmF2 during all the seasons for local times from about 06 LT till midnight hours except during summer for low solar activity, while outside this time period, the observed hmF2 values are close to the IRI predictions. The hmF2 representation in the IRI model does not reproduce pre-sunrise peaks occurring at about 05 LT during winter and equinox as seen in the observations during both the solar activity periods. The noontime observed median hmF2 values increase by about 10–25% from low (2004–2005) to high solar activity (2001–2002) during winter and equinox, while the IRI in the same time period and seasons shows an increase of about 10–20%. During summer, however, the observed noontime median hmF2 values show a little increase with the solar activity, as compared to the IRI with an increase of about 12%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号