首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A mathematical model for undamped, toroidal, small-amplitude Alfvén waves in a spherically-symmetric or equatorial stellar wind is developed in this paper. The equations are reduced to a very simple form by using real Fourier amplitudes and the ratio of the inward and outward propagating wave amplitudes, which is interpreted as a measure of the relative influence of wave reflection in the flow, on the solution at a given point. Asymptotic solutions at large distances are found to depend only on one parameter, = / P - the ratio of wave frequency and critical (or cutoff) frequency which is a flow characteristic; a = 1 divides solutions into two qualitatively different groups. When 1 the asymptotic (r-) ratio of the inward and outward propagating wave amplitudes does not depend on wave frequency and is equal to unity, while the phase shift between them changes; in this case the wave pattern is a standing wave. If > 1 the converse occurs with the ratio of the amplitudes decreasing rapidly as the frequency increases, and the phase shift equals to -1/2, corresponding to a propagating wave pattern. The result is also expressed in terms of velocity and magnetic field perturbations.Existence of a finite incoming wave amplitude solution at the Alfvén critical point indicates that this point is stable with respect to the perturbations which originate at the critical point and spend an infinite time in its vicinity.Special attention is paid to the applicability of the WKB approximation. It is argued that it can be used only in finite intervals which do not contain the Alfvén critical point, with inward propagating waves taken into account through the boundary conditions. It is shown that despite the presence of reflection, the outward propagating wave amplitude can be described reasonably well by the WKB formula, perhaps with different constants in different regions. In this context = 1 divides solutions which cannot be approximated by the WKB estimate at all at large distances (the first group), from those which can with any given accuracy.As an illustration of the analytical behaviour some numerical results are shown using a cool wind model. These are likely to express qualitatively the features of the Alfvén waves in any stellar wind, since the only assumptions about the flow used in the analytical study of the wave equations were that: the flow has small velocity at the base of the corona; it then passes through the critical point, and reaches its finite non-zero limit at infinity.  相似文献   

3.
In the present paper we have studied the nonlinear dynamical equation of Landau damped kinetic Alfvén wave (KAW) to investigate the nonlinear evolution of KAW and the resulting turbulent spectra in solar wind plasmas. We have introduced a parameter g which governs the coupling between the amplitude of the pump KAW and the density perturbation. The numerical solution has been carried out to see the dependence on the parameter g in the nonlinear part of our equation. Our results reveal the formation of damped localized structures of KAW as well as steepening of the turbulent spectra by increasing g when damping is taken into account. The power spectra of magnetic field fluctuations indicate the redistribution of energy among the higher wave numbers. Each power spectrum with and without damping splits up into two different scaling ranges, Kolmogorov scaling followed by a steeper scaling. The steepening in the power spectra with Landau damping is more than without Landau damping case (for the same value of g). This type of steeper spectra has also been observed in the solar wind and is attributed to the Landau damping effects.  相似文献   

4.
We examine the propagation of Alfvén waves in the solar atmosphere. The principal theoretical virtues of this work are: (i) The full wave equation is solved without recourse to the small-wavelength eikonal approximation (ii) The background solar atmosphere is realistic, consisting of an HSRA/VAL representation of the photosphere and chromosphere, a 200 km thick transition region, a model for the upper transition region below a coronal hole (provided by R. Munro), and the Munro-Jackson model of a polar coronal hole. The principal results are:
  1. If the wave source is taken to be near the top of the convection zone, where n H = 5.2 × 1016 cm?3, and if B = 10.5 G, then the wave Poynting flux exhibits a series of strong resonant peaks at periods downwards from 1.6 hr. The resonant frequencies are in the ratios of the zeroes of J 0, but depend on B , and on the density and scale height at the wave source. The longest period peaks may be the most important, because they are nearest to the supergranular periods and to the observed periods near 1 AU, and because they are the broadest in frequency.
  2. The Poynting flux in the resonant peaks can be large enough, i.e. P ≈ 104–105 erg cm?2s?1, to strongly affect the solar wind.
  3. ¦δv¦ and ¦δB¦ also display resonant peaks.
  4. In the chromosphere and low corona, ¦δv ≈ 7–25 kms?1 and ¦δB¦ ≈0.3–1.0 G if P ≈104-105 erg cm?2s?1.
  5. The dependences of ¦δv¦ and ¦δB¦ on height are reduced by finite wavelength effects, except near the wave source where they are enhanced.
  6. Near the base, ¦δB¦ ≈ 350–1200 G if P ~- 104–105. This means that nonlinear effects may be important, and that some density and vertical velocity fluctuations may be associated with the Alfvén waves.
  7. Below the low corona most wave energy is kinetic, except near the base where it becomes mostly magnetic at the resonances.
  8. ?0 < δv 2 > v A or < δB 2 > v A/4π are not good estimators of the energy flux.
  9. The Alfvén wave pressure tensor will be important in the transition region only if the magnetic field diverges rapidly. But the Alfvén wave pressure can be important in the coronal hole.
  相似文献   

5.
The linearized propagation of axisymmetric twists on axisymmetric vertical flux tubes is considered. Models corresponding to both open (coronal hole) and closed (active region loops) flux tubes are examined. Principal conclusions are: Open flux tubes: (1) With some reservations, the model can account for long-period (T 1 hr) energy fluxes which are sufficient to drive solar wind streams. (2) The waves are predicted to exert ponderomotive forces on the chromosphere which are large enough to alter hydrostatic equilibrium or to drive upward flows. Spicules may be a consequence of these forces. (3) Higher frequency waves (10 s T few min) are predicted to carry energy fluxes which are adequate to heat the chromosphere and corona. Nonlinear mechanisms may provide the damping. Closed flux tubes: (1) Long-period (T 1 hr) twists do not appear to be energetically capable of providing the required heating of active regions. (2) Loop resonances are found to occur as a result of waves being stored in the corona via reflections at the transition zones. The loop resonances act much in the manner of antireflectance coatings on camera lenses, and allow large energy fluxes to enter the coronal loops. The resonances may also be able to account for the observed fact that longer coronal loops require smaller energy flux densities entering them from below. (3) The waves exert large upward and downward forces on the chromosphere and corona.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

6.
In investigating the effects of collision Alfvén waves on the heating of a cool-type solar loop, like the post-flare loop, models are proposed, and the distributions of ion or electron density, temperature, pressure, and wave energy density are simulated. We assumed the magnetic field strength in the loop is about 100 G and found that Alfvén waves can propagate through the whole loop, that is to say, the decay length of collision Alfvén waves which we consider can reach to the height or length of the loop. Thus, the Alfvén wave heating is a considerable heating mechanism in cool loops. And we also found that the variations of density, pressure, and wave energy density are more significant than those of the temperature. In the whole loop, the temperature is of the order of 104 K. In comparison with other parameters, the temperature can be considered as homogeneous; hence, the heat conductive flux in the simulations is omitted.  相似文献   

7.
It is shown that a discrete Alfvén wave can explain the natural oscillations of solar loop prominences by considering the existence of a current flow. Discrete Alfvén waves are a new class of Alfvén waves which is described by the inclusion of the finite ion cyclotron frequency (/ cl 0) and/or the equilibrium plasma current. In this paper we consider only the effect of the current since in solar prominences (/ cl 0). We have modeled the solar prominences as a cylindrical plasma, surrounded by vacuum (corona), with L a where L and a are the plasma column, length, and radius, respectively. We have calculated the spectrum of the discrete Alfvén waves as function of the magnitude and shape of the plasma current.  相似文献   

8.
We study a model of extended radio sources (ERS), in particular, extragalactic jets and radio lobes, which are inhomogeneous and where noncompressive Alfvén and surface Alfvén waves (and not shocks and magnetosonic waves) are primarily excited. We assume that a negligible thermal population exists (i.e., the ion density at the low-energy cut-off of the power law distribution is greater than the ion density of the thermal population, if present). Due to internal instabilities and/or the interaction of the ERS with the ambient medium, surface Alfvén waves (SAW) are created. We show that even very small amplitude SAW are mode converted to kinetic Alfvén waves (KAW) which produce large moving accelerating potentials , parallel to the magnetic field. Neglecting nonlinear perturbations, and for typical physical parameters of ERS, we obtaine1 MeV. Wesuggest that these potentials are important in acceleration (e.g., injection energy) and reacceleration of electrons in ERS. We show that energy losses by synchrotron radiation can be compensated by reacceleration by KAW. The relation between KAW acceleration, and previously studied cyclotron-resonance acceleration by Alfvén waves, is discussed.  相似文献   

9.
Properties of discrete Alfvén wave modes are derived, at frequencies up to the ion-cyclotron frequency, for current-carrying plasma slabs with non-uniform densities. It is shown that the essential features of the dispersion relations can be derived by examining the dominant terms in the potential function, when the wave equation is cast in the Schrödinger equation form. Analytical predictions for a class of mass and current density profiles are compared with numerically calculated dispersion relations and wavefields for particular profiles.  相似文献   

10.
It is shown that the sheared flow of electrons and ions in the presence of heavy stationary dust gives rise to unstable Alfvén waves. The coupling of newly studied low frequency electrostatic current-driven mode with the electromagnetic Alfvén and drift waves is investigated. The instability conditions and the growth rates of both inertial and kinetic Alfvén waves are estimated. The theoretical model is applied to the night side boundary regions of Jupiter’s magnetosphere which contain positive dust. The growth rates increase with increase in sheared flow speed. In the nonlinear regime, both inertial and kinetic Alfvén waves form dipolar vortices whose speed and amplitude depend upon the magnitude of the zero-order current.  相似文献   

11.
12.
Coronal heating by Alfvén waves   总被引:1,自引:0,他引:1  
Wentzel  Donat G. 《Solar physics》1974,36(1):129-137
Solar Physics - If Alfvén waves are responsible for the heating of the solar corona, what are the various dissipation processes, under what conditions are they important, and what...  相似文献   

13.
The paper contains a numerical simulation of the nonlinear coupling between the kinetic Alfvén wave and the ion acoustic wave for an intermediate β-plasma (m e/m i?β?1). For this study, we have introduced the nonlinear ponderomotive force (due to the finite frequency (ω 0<ω ci) kinetic Alfvén wave) in the derivation of the ion acoustic wave. The main aim of the present paper is to study the nonlinear effects associated with the different driving finite frequencies (ω 0<ω ci) of the pump kinetic Alfvén wave on the formation of localized structures and a turbulent spectrum applicable to the solar wind around 1 AU. As a result, we found that the different driving frequencies of the pump kinetic Alfvén wave affect the formation of the localized structures. We have also studied the turbulent scaling which follows (~k ?3.6) for ω 0/ω ci≈0.2, (~k ?3.4) for ω 0/ω ci≈0.3 and (~k ?3.2) for ω 0/ω ci≈0.4, at small scales. Further, we have also found that different finite driving frequencies of the pump kinetic Alfvén wave affect the turbulence scaling at small scales, which may affect the heating of the plasma particles in solar wind. The present study is correlated with the observation made by the Cluster spacecraft for the solar wind around 1 AU.  相似文献   

14.
Alfvénic waves are thought to play an important role in coronal heating and solar wind acceleration. Here we investigate the dissipation of such waves due to phase mixing at the presence of shear flow and field in the stratified atmosphere of solar spicules. The initial flow is assumed to be directed along spicule axis and to vary linearly in the x direction and the equilibrium magnetic field is taken 2-dimensional and divergence-free. It is determined that the shear flow and field can fasten the damping of standing Alfvén waves. In spite of propagating Alfvén waves, standing Alfvén waves in Solar spicules dissipate in a few periods. As height increases, the perturbed velocity amplitude does increase in contrast to the behavior of perturbed magnetic field. Moreover, it should be emphasized that the stratification due to gravity, shear flow and field are the facts that should be considered in MHD models in spicules.  相似文献   

15.
16.
It is shown that a recent conclusion of Shivamaggi that the modulational instability of finite amplitude Alfvén waves arises when the density cavity travels at subsonic speeds, is incorrect.  相似文献   

17.
P. R. Wilson 《Solar physics》1975,42(2):333-340
Parker's explanation of the sunspot phenomenon in terms of the enhanced emission of Alfvén waves (solar vulcanology) is shown to be compatible with observation only if 90% of the waves propagate downwards. Further difficulties arise if the region of cooling by Alfvén wave generation is restricted to a depth of 2 Mm. However, it is shown that, if Alfvén wave generation is included in a recent model proposed by Meyer, Schmidt, Weiss and Wilson, these difficulties may be resolved. The problem of the sharp umbra and penumbra boundaries is discussed and it is shown that features of this combined model are relevant to the flare phenomenon.  相似文献   

18.
Nonlinear kinetic Alfvén waves where m e /m i , have been solved both with and without the Poisson equation correction. It is found that the ratio of the perpendicular electric field and magnetic field, and the ratio of parallel and perpendicular electric field increase with deepening of the depressive density soliton. The former ratio may be larger than the Alfvén velocity in the case of a large amplitude solitary kinetic Alfvén wave. The Poisson equation correction is important for the nonlinear kinetic Alfvén wave propagating along the magnetic field, which solves a puzzle of Sagdeev potential to approach infinity in the limit ofK x 0. This correction causes the solitary KAW possessing an electrostatic character along the direction of wave moving frame. These results have been compared with the observations from the Freja satellite in the low aurora.  相似文献   

19.
The excitation and dissipation of global and surface Alfvén waves and their conversion into kinetic Alfvén waves have been analyzed for solar coronal loops using a cylindrical model of a magnetized plasma. Also the optimal conditions for coronal loop heating regimes with density of dissipated power 103 erg cm–3 s–1 by the new scheme named combined Alfvén wave resonance are found. Combined Alfvén wave heating regime appears when the global Alfvén wave is immersed into the Alfvén continuum with the condition of not-so-sharp distribution of axial current.Instituto de Matemática, Universidade Federal Fluminense, Niterói, RJ, Brazil  相似文献   

20.
The propagation and interference of Alfvén waves in magnetic regions is studied. A multilayer approximation of the standard models of the solar atmosphere is used. In each layer, there is a linear law of temperature variation and a power law of Alfvén velocity variation. The analytical solutions of a wave equation are stitched at the layer boundaries. The low-frequency Alfvén waves (P > 1 s) are able to transfer the energy from sunspots into the corona by tunneling only. The chromosphere is not a resonance filter for the Alfvén waves. The interference and resonance of Alfvén waves are found to be important to wave propagation through the magnetic coronal arches. The transmission coefficient of Alfvén waves into the corona increases sharply on the resonance frequences. To take into account the wave absorption in the corona, a method of equivalent schemes is developed. The heating of a coronal arch by Alfvén waves is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号