首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
EUV97 is a solar EUV empirical model that incorporates revised soft X-ray fluxes from the SOLRAD-11 satellite (1976–1979) and uses Lα recently recalibrated to the UARS satellite (1991–present) SOLSTICE Lα. The soft X-ray data have been revised from the original flux values using Mewe's spectral fits to the data. The recalibrated AE-E and SME Lα datasets use UARS Lα for absolute flux values to provide two solar cycles of Lα irradiance extending back to 1977. Lα is used by EUV97 as a proxy for chromospheric EUV irradiances. The EUV97 empirical solar model takes its heritage from the EUV91 model based on a multiple linear regression technique that fits soft X-ray and EUV irradiances to 10.7 cm flux for transition region and coronal emissions or to Lα and Hei 10830 Ú EW for chromospheric emissions.  相似文献   

2.
The first results obtained with the Solar EUV Monitor (SEM), part of the Charge, Element, and Isotope Analysis System (CELIAS) instrument, aboard the SOlar and Heliospheric Observatory (SOHO) satellite are presented. The instrument monitors the full-disk absolute value of the solar Heii irradiance at 30.4 nm, and the full-disk absolute solar irradiance integrated between 0.1 nm and 77 nm. The SEM was first turned on December 15, 1995 and obtained ‘first light’ on December 16, 1995. At this time the SOHO spacecraft was close to the L-1 Lagrange point, 1.5 × 106 km from the Earth towards the Sun. The data obtained by the SEM during the first four and a half months of operation will be presented. Although the period of observation is near solar minimum, the SEM data reveal strong short-term solar irradiance variations in the broad-band, central image channel, which includes solar X-ray emissions.  相似文献   

3.
Understanding the magnitude and temporal structure of variations in solar ultraviolet and extreme ultraviolet irradiance is critical to understanding solar forcing of the Earth's upper and middle atmosphere and hence to assessing the relative impact of natural and anthropogenic influences on Earth's atmospheric environment. Satellite based measurements of such variations are limited to recent times, are short in duration and subject to gaps making necessary ground-based surrogates with longer and more continuous coverage. Using indices derived from synoptic solar magnetograms taken at the Mount Wilson 150-foot solar tower, we have constructed models of several UV and near EUV lines and fluxes which correlate strongly (r > 0.90) with satellite data. These lines and fluxes include the Mgii h and k core-to-wing ratio, the Lα line and the 200–205 nm flux.  相似文献   

4.
The solar irradiance below 120 nm was first predicted by astronomers. Since its accurate measurement required the solution of a variety of technological problems, little is known about the variability before 1972, though for more than two decades data have been collected. Therefore, on a quantitative basis only a very rough picture can be given for the solar cycle 19. Also, not enough data with sufficient absolute accuracy are available to describe the solar EUV flux variations of the solar cycle 20, especially during the period of solar maximum. However, due to technological improvements of space and laboratory instrumentations, an almost complete set of data has been obtained from 1972 to date. These observations exhibit strong differences of the flux variations from solar cycle 20 to 21. - For the theoretical and for semi-empirical treatments of many aeronomic processes controlled by the solar EUV radiation, its adequate representation e.g. as indices is required. The problems involved and possible solutions are discussed. Results from some relevant aeronomically oriented computations based on variable solar EUV fluxes are presented.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 September 1980, Scheveningen, The Netherlands.  相似文献   

5.
Solar activity during 2007?–?2009 was very low, causing anomalously low thermospheric density. A comparison of solar extreme ultraviolet (EUV) irradiance in the He?ii spectral band (26 to 34 nm) from the Solar Extreme ultraviolet Monitor (SEM), one of instruments on the Charge Element and Isotope Analysis System (CELIAS) on board the Solar and Heliospheric Observatory (SOHO) for the two latest solar minima showed a decrease of the absolute irradiance of about 15±6 % during the solar minimum between Cycles 23 and 24 compared with the Cycle 22/23 minimum when a yearly running-mean filter was used. We found that some local, shorter-term minima including those with the same absolute EUV flux in the SEM spectral band show a higher concentration of spatial power in the global network structure from the 30.4 nm SOHO/Extreme ultraviolet Imaging Telescope (EIT) images for the local minimum of 1996 compared with the minima of 2008?–?2011. We interpret this higher concentration of spatial power in the transition region’s global network structure as a larger number of larger-area features on the solar disk. These changes in the global network structure during solar minima may characterize, in part, the geo-effectiveness of the solar He?ii EUV irradiance in addition to the estimations based on its absolute levels.  相似文献   

6.
The Extreme ultraviolet SpectroPhotometer (ESP) is one of five channels of the Extreme ultraviolet Variability Experiment (EVE) onboard the NASA Solar Dynamics Observatory (SDO). The ESP channel design is based on a highly stable diffraction transmission grating and is an advanced version of the Solar Extreme ultraviolet Monitor (SEM), which has been successfully observing solar irradiance onboard the Solar and Heliospheric Observatory (SOHO) since December 1995. ESP is designed to measure solar Extreme UltraViolet (EUV) irradiance in four first-order bands of the diffraction grating centered around 19 nm, 25 nm, 30 nm, and 36 nm, and in a soft X-ray band from 0.1 to 7.0?nm in?the?zeroth-order of the grating. Each band’s detector system converts the photo-current into a count rate (frequency). The count rates are integrated over 0.25-second increments and transmitted to the EVE Science and Operations Center for data processing. An algorithm for converting the measured count rates into solar irradiance and the ESP calibration parameters are described. The ESP pre-flight calibration was performed at the Synchrotron Ultraviolet Radiation Facility of the National Institute of Standards and Technology. Calibration parameters were used to calculate absolute solar irradiance from the sounding-rocket flight measurements on 14 April 2008. These irradiances for the ESP bands closely match the irradiance determined for two other EUV channels flown simultaneously: EVE’s Multiple EUV Grating Spectrograph (MEGS) and SOHO’s Charge, Element and Isotope Analysis System/Solar EUV Monitor (CELIAS/SEM).  相似文献   

7.
The solar extreme ultraviolet (EUV) irradiance, the dominant global energy source for Earth's atmosphere above 100 km, is not known accurately enough for many studies of the upper atmosphere. During the absence of direct solar EUV irradiance measurements from satellites, the solar EUV irradiance is often estimated at the 30–50% uncertainty level using both proxies of the solar irradiance and earlier solar EUV irradiance measurements, primarily from the Air Force Geophysics Laboratory (now Phillips Laboratory) rockets and Atmospheric Explorer (AE) instruments. Our sounding rocket measurements during solar cycle 22 include solar EUV irradiances below 120 nm with 0.2 nm spectral resolution, far ultraviolet (FUV) airglow spectra below 160 nm, and solar soft X-ray (XUV) images at 17.5 nm. Compared to the earlier observations, these rocket experiments provide a more accurate absolute measurement of the solar EUV irradiance, because these instruments are calibrated at the National Institute of Standards and Technology (NIST) with a radiometric uncertainty of about 8%. These more accurate sounding-rocket measurements suggest revisions of the previous reference AE–E spectra by as much as a factor of 2 at some wavelengths. Our sounding-rocket flights during the past several years (1988–1994) also provide information about solar EUV variability during solar cycle 22.  相似文献   

8.
Simultaneous solar total irradiance observations performed by absolute radiometers on board satellites during the quiet-Sun period between solar cycles 21 and 22 (1985–1987), are analyzed to determine the solar total irradiance at 1 AU for the solar minimum. During the quiet-Sun period the total solar irradiance, UV irradiance, and the various solar activity indices show very little fluctuation. However, the absolute value of the solar total irradiance derived from the observations differ within the accuracy of the radiometers used in the measurements. Therefore, the question often arises about a reference value of the solar total irradiance for use in climate models and for computation of geophysical, and atmospheric parameters. This research is conducted as a part of the Solar Electromagnetic Radiation Study for Solar Cycle 22 (SOLERS22). On the basis of the study we recommended a reference value of 1367.0 ± 0.04 W m-2 for the solar total irradiance at 1 AU for a truly quiet Sun. We also find that the total solar irradiance data for the quiet-Sun period reveals strong short-term irradiance variations.  相似文献   

9.
The highly variable solar extreme ultraviolet (EUV) radiation is the major energy input to the Earth’s upper atmosphere, strongly impacting the geospace environment, affecting satellite operations, communications, and navigation. The Extreme ultraviolet Variability Experiment (EVE) onboard the NASA Solar Dynamics Observatory (SDO) will measure the solar EUV irradiance from 0.1 to 105?nm with unprecedented spectral resolution (0.1?nm), temporal cadence (ten seconds), and accuracy (20%). EVE includes several irradiance instruments: The Multiple EUV Grating Spectrographs (MEGS)-A is a grazing-incidence spectrograph that measures the solar EUV irradiance in the 5 to 37?nm range with 0.1-nm resolution, and the MEGS-B is a normal-incidence, dual-pass spectrograph that measures the solar EUV irradiance in the 35 to 105?nm range with 0.1-nm resolution. To provide MEGS in-flight calibration, the EUV SpectroPhotometer (ESP) measures the solar EUV irradiance in broadbands between 0.1 and 39?nm, and a MEGS-Photometer measures the Sun’s bright hydrogen emission at 121.6?nm. The EVE data products include a near real-time space-weather product (Level?0C), which provides the solar EUV irradiance in specific bands and also spectra in 0.1-nm intervals with a cadence of one minute and with a time delay of less than 15?minutes. The EVE higher-level products are Level?2 with the solar EUV irradiance at higher time cadence (0.25?seconds for photometers and ten seconds for spectrographs) and Level?3 with averages of the solar irradiance over a day and over each one-hour period. The EVE team also plans to advance existing models of solar EUV irradiance and to operationally use the EVE measurements in models of Earth’s ionosphere and thermosphere. Improved understanding of the evolution of solar flares and extending the various models to incorporate solar flare events are high priorities for the EVE team.  相似文献   

10.
The solar irradiance in the Extreme Ultraviolet (EUV) spectral bands has been observed with a 15 s cadence by the SOHO Solar EUV Monitor (SEM) since 1995. During remarkably intense solar flares the SEM EUV measurements are saturated in the central (zero) order channel (0.1–50.0 nm) by the flare soft X‐ray and EUV flux. The first order EUV channel (26–34 nm) is not saturated by the flare flux because of its limited bandwidth, but it is sensitive to the arrival of Solar Energetic Particles (SEP). While both channels detect nearly equal SEP fluxes, their contributions to the count rate is sensibly negligible in the zero order channel but must be accounted for and removed from the first channel count rate. SEP contribution to the measured SEM signals usually follows the EUV peak for the gradual solar flare events. Correcting the extreme solar flare SEMEUV measurements may reveal currently unclear relations between the flare magnitude, dynamics observed in different EUV spectral bands, and the measured Earth atmosphere response. A simple and effective correction technique based on analysis of SEM count‐rate profiles, GOES X‐ray, and GOES proton data has been developed and used for correcting EUV measurements for the five extreme solar flare events of July 14, 2000, October 28, November 2, November 4, 2003, and January 20, 2005. Although none of the 2000 and 2003 flare peaks were contaminated by the presence of SEPs, the January 20, 2005 SEPs were unusually prompt and contaminated the peak. The estimated accuracy of the correction is about ±7.5% for large X‐class events. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
As part of a program to estimate the solar spectrum back to the early twentieth century, we have generated fits to UV spectral irradiance measurements from 1 – 410 nm. The longer wavelength spectra (150 – 410 nm) were fit as a function of two solar activity proxies, the Mg ii core-to-wing ratio, or Mg ii index, and the total Ca ii K disk activity derived from ground based observations. Irradiance spectra at shorter wavelengths (1 – 150 nm) where used to generate fits to the Mg ii core-to-wing ratio alone. Two sets of spectra were used in these fitting procedures. The fits at longer wavelengths (150 to 410 nm) were derived from the high-resolution spectra taken by the Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) on the Upper Atmospheric Research Satellite (UARS). Spectra measured by the Solar EUV Experiment (SEE) instrument on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite were used for the fits at wavelengths from 1 to 150 nm. To generate fits between solar irradiance and solar proxies, this study uses the above irradiance data, the NOAA composite Mg ii index, and daily Ca ii K disk activity determined from images measured by Big Bear Solar Observatory (BBSO). In addition to the fitting coefficients between irradiance and solar proxies, other results from this study include an estimated relationship between the fraction of the disk with enhanced Ca ii K activity and the Mg ii index, an upper bound of the average solar UV spectral irradiance during periods where the solar disk contains only regions of the quiet Sun, as was believed to be present during the Maunder Minimum, as well as results indicating that slightly more than 60% of the total solar irradiance (TSI) variability occurs between 150 and 400 nm.  相似文献   

12.
Pyrheliometry, definition of the radiation scale in the International System of Units and monitoring the variability of solar total irradiance have been a focus of research at the Jet Propulsion Laboratory since the mid 1960's. A series of automated, electrically self-calibrating, cavity pyrheliometers known as Active Cavity Radiometers (ACR's) was developed as part of this program. A series of ground based experiments in 1968–69 led to the discovery of a systematic error in the International Pyrheliometric Scale. ACR's were among the instruments used to define the World Radiometric Reference in 1975.ACR flight experiments have been conducted to determine the 1 AU total solar irradiance and monitor its variability in time. A 1969 balloon experiment yielded a 1366 W m-2 result. The value from a 1976 sounding rocket experiment was 1368.1 W m-2. The results for two additional rocket experiments in 1978 and 80, revised in accordance with recent calibrations of ACR response to elevated pressures during these flights are: 1367.6 and 1367.8 W m-2, respectively. An ACR experiment (ACRIM) on the Solar Maximum Mission satellite has shown continuous variability of the total solar flux below the ±0.05% level and two large, temporary decreases of 0.1–0.2% lasting more than a week. The mean 1 AU total flux for ACRIM's first five months' observations was 1367.7 W m-2. Inflight comparison of ACR rocket and satellite measurements in May, 1980 demonstrated agreement to within ±0.05%. The 1 AU total solar irradiance results from ACR rocket and satellite experiments between 1976 and 1980 differ from their mean of 1367.8 W m-2 by no more than ±0.02%. The less precise 1969 balloon result is 0.1% lower. Although no observations were made from 1970–75, if solar behaviour in those five years was similar to that observed since 1976 then the upper limits of long term solar total irradiance variability are ±0.2% for the 1969–1980 period and ±0.1% between 1976 and 1980, based on the set of ACR observations.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 September 1980, Scheveningen, The Netherlands.  相似文献   

13.
The Solar EUV Monitor (SEM) onboard SOHO has measured absolute extreme ultraviolet (EUV) and soft X-ray solar irradiance nearly continuously since January 1996. The EUV Variability Experiment (EVE) on SDO, in operation since April of 2010, measures solar irradiance in a wide spectral range that encompasses the band passes (26?–?34 nm and 0.1?–?50 nm) measured by SOHO/SEM. However, throughout the mission overlap, irradiance values from these two instruments have differed by more than the combined stated uncertainties of the measurements. In an effort to identify the sources of these differences and eliminate them, we investigate in this work the effect of reprocessing the SEM data using a more accurate SEM response function (obtained from synchrotron measurements with a SEM sounding-rocket clone instrument taken after SOHO was already in orbit) and time-dependent, measured solar spectral distributions – i.e., solar reference spectra that were unavailable prior to the launch of the SDO. We find that recalculating the SEM data with these improved parameters reduces mean differences with the EVE measurements from about 20 % to less than 5 % in the 26?–?34 nm band, and from about 35 % to about 15 % for irradiances in the 0.1?–?7 nm band extracted from the SEM 0.1?–?50 nm channel.  相似文献   

14.
Based on the solar X-ray data in the band of 0.1??C?0.8?nm observed by Geostationary Operational Environmental Satellites (GOES), the XUV and EUV data in the bands of 26??C?34?nm and 0.1??C?50?nm observed by the Solar EUV Monitor (SEM) onboard the Solar and Heliospheric Observatory (SOHO), a statistical analysis on the excess peak flux (the pre-flare flux is subtracted) in two SEM bands during M- and X-class flares from 1998 to 2007 is given. The average ratio of the excess peak flux to the pre-flare flux for the M-class flares is 5.5?%±3.7?% and that for the X-class flares is 16?%±11?%. The excess peak fluxes in two SEM bands are positively correlated with the X-ray flare class; with the increase in the X-ray flare class, the excess peak flux in two SEM bands increases. However, a large dispersion in the excess peak flux in the SEM bands and their ratio is found for the same X-ray flare class. The relationship between the excess peak fluxes of the two SEM bands also shows large dispersion. It is considered that the diversity we found in the flare spectral irradiance is caused by many variable factors related to the structure and evolution of solar flares.  相似文献   

15.
There are presented data on solar emission variations in the extreme ultraviolet range?inebreak (λ < 130 nm) which were obtained on board the CORONAS-I satellite during the solar activity minimum epoch in 1994. Based on the thermoluminescent technique, the measurements were performed using the SUFR (Solar Ultraviolet Radiometer) equipment for recording the solar emission flux at λ < 130 nm. The technique provides absolute measurements. The intensity of the Heii 30.4 nm line emission was also measured on board the CORONAS by means of the Vacuum Ultraviolet Solar Spectrometer (VUSS), which uses gas-photoelectron energy and intensity analysis to register the spectrum. The characteristics of both devices are given, as well as calibration methods and the main results. The observation period may be characterized by a very low activity level. The solar flux in the region λ < 130 nm was 7.5–8 erg cm-2 s-1, the Lα line intensity was~ (3.3 –3.7) × 1011 photon cm-2 s-1 and the Heii (30.4 nm) line intensity was (6–7.5) × 109 photon cm-2 s-1. Intensive solar flares were not registered during the period of observation. During the flare of B4.5 X-ray class (30 June 1994, 01:08 UT), an increase of flux of ~ 15% was registered in the range λ < 130 nm.  相似文献   

16.
The Extreme-ultraviolet Variability Experiment (EVE; see Woods et al., 2009) obtains continuous EUV spectra of the Sun viewed as a star. Its primary objective is the characterization of solar spectral irradiance, but its sensitivity and stability make it extremely interesting for observations of variability on time scales down to the limit imposed by its basic 10 s sample interval. In this paper we characterize the Doppler sensitivity of the EVE data. We find that the 30.4 nm line of He ii has a random Doppler error below 0.001 nm (1 pm, better than 10 km s−1 as a redshift), with ample stability to detect the orbital motion of its satellite, the Solar Dynamics Observatory (SDO). Solar flares also displace the spectrum, both because of Doppler shifts and because of EVE’s optical layout, which (as with a slitless spectrograph) confuses position and wavelength. As a flare develops, the centroid of the line displays variations that reflect Doppler shifts and therefore flare dynamics. For the impulsive phase of the flare SOL2010-06-12, we find the line centroid to have a redshift of 16.8 ± 5.9 km s−1 relative to that of the flare gradual phase (statistical errors only). We find also that high-temperature lines, such as Fe xxiv 19.2 nm, have well-determined Doppler components for major flares, with decreasing apparent blueshifts as expected from chromospheric evaporation flows.  相似文献   

17.
The solar soft X-ray (XUV) radiation is highly variable on both short-term time scales of minutes to hours due to flares and long-term time scales of months to years due to solar cycle variations. Because of the smaller X-ray cross sections, the solar XUV radiation penetrates deeper than the extreme ultraviolet (EUV) wavelengths and thus influences the photochemistry and ionization in the mesosphere and lower thermosphere. The XUV Photometer System (XPS) aboard the Solar Radiation and Climate Experiment (SORCE) is a set of photometers to measure the solar XUV irradiance shortward of 34 nm and the bright hydrogen emission at 121.6 nm. Each photometer has a spectral bandpass of about 7 nm, and the XPS measurements have an accuracy of about 20%. The XPS pre-flight calibrations include electronics gain and linearity calibrations in the laboratory over its operating temperature range, field of view relative maps, and responsivity calibrations using the Synchrotron Ultraviolet Radiation Facility (SURF) at the National Institute of Standards and Technology (NIST). The XPS in-flight calibrations include redundant channels used weekly and underflight rocket measurements from the NASA Thermosphere-Ionosphere-Mesosphere-Energetics-Dynamics (TIMED) program. The SORCE XPS measurements have been validated with the TIMED XPS measurements. The comparisons to solar EUV models indicate differences by as much as a factor of 4 for some of the models, thus SORCE XPS measurements could be used to improve these models.  相似文献   

18.
The study of the minor constituents of the planetary atmospheres from the analysis of the scattered light properties requires the knowledge of the absolute incident solar irradiance at high resolution. The data were obtained from the UVSP experiment on board the Solar Maximum Mission satellite in the 184.5–232.5 nm spectral range. We have reconstituted the solar spectrum measured in three different regions of the solar disk with a spectral resolution of 0.01 nm and a spatial resolution of 3 arc sec. The wavelength scale was determined with a standard deviation of 0.0025 nm. The comparison of the relative intensities in three locations of the solar disk with those obtained by other authors allowed us to determine these positions accurately and to derive the integrated spectrum of the whole disk. Finally, the resulting spectrum has been expressed in absolute units using the spectral irradiance by the SOLSPEC and SUSIM spectrometers, respectively operated with the ATLAS 1 mission and from the Upper Atmosphere Research Satellite. We obtained the absolute solar irradiance with an accuracy of 10% in the 184.5–232.5 nm spectral range with a spectral resolution of 0.01 nm for the first time using data from space observations. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1017976515168  相似文献   

19.
SolACES is part of the ESA SOLAR ISS mission that started aboard the shuttle mission STS-122 on 7 February 2008. The instrument has recorded solar extreme ultraviolet (EUV) irradiance from 16 to 150 nm during the extended solar activity minimum and the beginning solar cycle 24 with rising solar activity and increasingly changing spectral composition. The SOLAR mission has been extended from a period of 18 months to >?8 years until the end of 2016. SolACES is operating three grazing incidence planar grating spectrometers and two three-current ionization chambers. The latter ones are considered as primary radiometric detector standards. Re-filling the ionization chambers with three different gases repeatedly and using overlapping band-pass filters, the absolute EUV fluxes are derived in these spectral intervals. This way the serious problem of continuing efficiency changes in space-borne instrumentation is overcome during the mission. Evaluating the three currents of the ionization chambers, the overlapping spectral ranges of the spectrometers and of the filters plus inter-comparing the results from the EUV photon absorption in the gases with different absorption cross sections, there are manifold instrumental possibilities to cross-check the results providing a high degree of reliability to the spectral irradiance derived. During the mission a very strong up-and-down variability of the spectrometric efficiency by orders of magnitude is observed. One of the effects involved is channeltron degradation. However, there are still open questions on other effects contributing to these changes. A survey of the measurements carried out and first results of the solar spectral irradiance (SSI) data are presented. Inter-comparison with EUV data from other space missions shows good agreement such that the international effort has started to elaborate a complete set of EUV-SSI data taking into account all data available from 2008 to 2013.  相似文献   

20.
The Global Ozone Monitoring Experiment (GOME) is the first of a series of European satellite instruments monitoring global ozone and other relevant trace constituents in the UV/visible spectral range. On 20 April 1995, the European Space Agency (ESA) launched the GOME from Kourou, French Guyana, aboard the second European Remote Sensing satellite (ERS-2). In order to obtain the geometric albedo from the backscattered terrestrial radiance measurements, a solar irradiance measurement sequence in the spectral range between 240 nm and 790 nm is carried out once every day. The GOME solar irradiance is recorded at a moderate spectral resolution (0.2–0.4 nm), thus providing an excellent opportunity to contribute to the long-term investigation of solar flux variation associated with the 11-year solar activity cycle from space, which started in 1978 with SBUV (Solar Backscatter UV Experiment) observations on Nimbus-7 and covers solar cycles 21 and 22. This paper briefly describes the GOME spectrometer and measurement mode which are relevant to the solar viewing. Preliminary results from the solar irradiance measurements between 1995 and 1997 and comparisons to SSBUV-8 (Shuttle SBUV) in January 1996 are presented. Solar activity indices used as proxies for solar flux variation are often used to find a correlation with observed variation in atmospheric quantities, for instance, total ozone. Initial results from the GOME Mgii (280 nm) and Caii K (393 nm) solar activity index calculation are presented and discussed. The coupling of solar irradiance variability to global change is a current source of scientific and public concern. This study shows that GOME/ERS-2 (1995–2001) and the next generation of European remote sensing instruments, SCIAMACHY and GOME/METOP, have the potential to provide continuity in the measurements of solar irradiance from space well into the next century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号