共查询到20条相似文献,搜索用时 253 毫秒
1.
联合卷积神经网络与集成学习的遥感影像场景分类 总被引:1,自引:0,他引:1
针对人工设计的中、低层特征难以实现复杂场景影像的高精度分类以及卷积神经网络依赖大量训练数据等问题,结合迁移学习与集成学习,提出了一种联合卷积神经网络与集成学习的遥感影像场景分类算法。首先基于迁移学习的思想,利用在自然影像数据集上训练好的多个深层卷积神经网络模型作为特征提取器,提取图像多个高度抽象的语义特征;然后构建由Logistic回归和支持向量机组成的Stacking集成模型,对同一图像的多个特征分别训练Logistic模型,将预测概率结果融合构建概率特征;最后利用支持向量机对概率特征训练和预测,得到场景影像的分类结果。利用UCMerced_LandUse和NWPU-RESISC 45两种不同规模的遥感影像数据集进行试验,即使在只有10%的数据作为训练样本情况下,本文方法能够分别达到90.74%和87.21%的分类精度。 相似文献
2.
高分辨率遥感影像具有复杂的几何结构和空间布局,传统的卷积神经网络的方法仅能提取场景图像中的全局特征,忽略了上下文的关系,导致特征的表达能力受限,制约了分类精度提高。针对此问题,本文提出一个面向高分辨率遥感影像场景分类的CNN-GCN双流网络,该算法包含CNN流和GCN流两个模块。CNN流基于预训练DenseNet-121网络提取高分影像的全局特征;而GCN流采用由预训练VGGNet-16网络得到的卷积特征图构建邻接图,再通过GCN模型提取高分影像的上下文特征。最后,通过加权级联的方式有效地融合全局特征和上下文特征并利用线性分类器实现分类。本文选取AID、RSSCN7和NWPU-RESISC45共3个具有挑战性的数据集进行实验,得到的最高分类精度分别是97.14%、95.46%和94.12%,结果表明本文算法能够有效地表征场景并取得具有竞争力的分类结果。 相似文献
3.
卷积神经网络在高分遥感影像分类中的应用 总被引:8,自引:0,他引:8
针对目前应用于高分辨率遥感影像分类的常用算法,其精度已无法满足大数据环境下的分类要求的问题,该文提出了卷积神经网络分类算法。卷积神经网络模型降低了因图像平移、比例缩放、倾斜或者共他形式的变形而引起的误差。在大数据环境下,采用卷积神经网络算法对高分辨率遥感影像进行分类,避免了特征提取和分类过程中数据重建的复杂度,提高了分类精度。通过实验比对分析,证明了卷积神经网络在高分辨率遥感影像分类中的可行性及精度优势,对遥感图像处理领域等相关工作提供了参考价值。 相似文献
4.
5.
6.
级联卷积神经网络的遥感影像飞机目标检测 总被引:1,自引:0,他引:1
传统遥感影像飞机目标检测算法依赖于人工设计特征,对大范围复杂场景和多尺度的飞机目标稳健性较差,基于深层卷积神经网络的目标检测算法通常难以有效应对大幅影像的目标搜索和弱小目标检测问题,针对上述问题,本文提出了一种基于级联卷积神经网络的遥感影像飞机目标检测算法。首先根据全卷积神经网络能够支持输入任意大小图像的特点,采用小尺度浅层全卷积神经网络对整幅影像进行遍历和搜索,快速获取疑似飞机目标作为兴趣区域,然后利用较深层的卷积神经网络对兴趣区域进行更精确的目标分类与定位。为提高卷积神经网络对地物目标的辨识能力,在卷积层中引入多层感知器,并在训练过程中采取多任务学习与离线难分样本挖掘的策略;在测试阶段,建立影像金字塔进行多级搜索,并结合非极大值抑制消除冗余窗口,从而实现由粗到精的飞机目标检测与识别。对多个数据集下多种复杂场景的遥感影像进行测试,结果表明,本文方法具有较高的准确性和较强的稳健性,可为大幅遥感影像的飞机目标检测问题提供一个快速高效的解决方案。 相似文献
7.
针对高分辨率光学遥感影像场景具有同类型内部差异大、不同类型间相似度高导致部分场景识别困难的问题,本文提出了一种深度度量学习方法。首先在深度学习模型的特征输出层上为每类预设聚类中心,其次基于欧氏距离方法设计均值中心度量损失项,最后联合交叉熵损失项以及权重与偏置正则项构成模型的损失函数。该方法的目标是在特征空间上使同类型特征聚集并扩大类型间的距离以提高分类准确率。试验结果表明,本文方法有效地提升了分类准确率。在RSSCN7、UC Merced和NWPU-RESISC45数据集上,与现有方法相比,分类准确率分别提高了1.46%、1.09%和2.51%。 相似文献
8.
9.
面向对象的高分辨率遥感影像土地覆盖信息提取 总被引:3,自引:0,他引:3
利用高分辨率影象提取土地覆盖信息的关键技术在于如何利用丰富的纹理信息来弥补光谱信息的不足。面向对象的图像分类技术改变了传统的面向像素的分类技术:(1)用来解译图像的信息并不在单个像元中,而是在图像对象和其相互关系中;采用多分辨率对象分割方法生成图像对象,提高了分类信息的信噪比;基于对象的分类技术不同于纯粹的光谱信息分类,图像对象还包含了许多的可用于分类的一些其他特征:形状、纹理、相互关系、上下关系等信息。面向对象的土地覆盖分类结果与传统分类方法相比,其特征提取算子更加地适合于几何信息和结构信息丰富的高分辨率图像的自动识别分类。 相似文献
10.
11.
12.
基于K-L变换的BP神经网络遥感图像分类 总被引:4,自引:1,他引:4
为了提高多光谱遥感图像的分类正确,提出了一种基于主成分分析(K-L变换)的分类方法。该方法先应用K-L变换对多波段遥感图像进行降维,提取最主要的三个成分合成假彩色图,然后利用BP神经网络对假彩色图进行监督分类。由于主成分之间是不相关的,增强了图象信息,降低了神经网络的计算量,提高了分类精度。实验结果证明,该算法分类精度优于传统分类方法,总正确率为88.5%,Kappa系数为0.862,因而具有实用价值。 相似文献
13.
小样本学习旨在利用非常少的监督信息识别出新的类别,由于忽视了样本之间的关联信息,现有的小样本分类方法用于遥感图像小样本分类时往往不能获得令人满意的精度。为此,本文利用图来建模图像在特征空间的相似关系,使用图卷积运算平滑同类别图像的特征,增强不同类别图像特征的区分度,提升分类精度。所提方法在现有图卷积运算的基础上,使用多阶次的邻接矩阵线性加权的方法代替传统的一阶邻接矩阵,通过图谱分析得出这种改进方法能够让不同阶次邻接矩阵的频率响应函数在高频部分正负相抵,有效抑制图信号的高频分量,更显著的提升同类别节点特征的聚集程度;同时,在训练过程引入了微调的方法,使用新类别中的标记数据对最后一层图卷积网络进行少量次数的训练,能够进一步提高精度,增强模型的迁移能力。实验使用AID、OPTIMAL31以及RSI-CB256这3个常用的遥感数据集对方法的有效性进行了测试,结果表明提出的方法在同数据集小样本分类任务和跨数据集小样本分类任务中,在分类精度方面均优于原型网络等比较方法。 相似文献
14.
针对基于人工提取特征的传统分类方法无法有效表达高空间分辨率遥感影像高层语义信息,且需要大量高质量训练数据,而带标签样本数据匮乏的问题。迁移学习运用已有知识对不同但相关领域问题进行求解,可有效解决目标领域中仅有少量标签样本数据的学习问题。该文提出利用迁移学习,基于卷积神经网络的深度学习模型进行高分影像场景分类。首先,基于ImageNet预训练的卷积神经网络Inception-v3模型提取高分影像数据的特征向量;然后,将特征向量作为输入数据训练一个新的单层全连接神经网络,经少量带标签影像场景数据训练后得到最终分类结果。该方法在UC Merced、AID和Wuhan 7类场景影像数据集上分别取得99%、93.3%和96.6%的准确率,相比已有方法,有效提高高分影像场景分类精度,同时说明知识迁移在高分影像场景分类领域的可行性。 相似文献
15.
16.
提出了一种基于自适应谐振理论建立起来的自组织模糊ARTMAP神经网络分类器。分析了ART神经网络的结构和工作原理,给出模糊ARTMAP神经网络分类的具体算法,并将其运用到TM遥感影像分类的实验中。结果表明模糊ARTMAP神经网络分类器的速度快,精度高,比常用的BP网络具有更好的性能。 相似文献
17.
Fuzzy mapping of tropical land cover along an environmental gradient from remotely sensed data with an artificial neural network 总被引:1,自引:0,他引:1
Remote sensing is the only feasible means of mapping and monitoring land cover at regional to global scales. Unfortunately
the maps are generally derived through the use of a conventional 'hard' classification algorithm and depict classes separated
by sharp boundaries. Such approaches and representations are often inappropriate particularly when the land cover being represented
may be considered to be fuzzy. The definition of boundaries between classes can therefore be difficult from remotely sensed
data, particularly for continuous land cover classes which are separated by a fuzzy boundary which may also vary spatially
in time. In this paper a neural network was used to derive fuzzy classifications of land cover along a transect crossing the
transition from moist semi-deciduous forest to savanna in West Africa in February and December 1990. The fuzzy classifications
revealed both sharp and gradual boundaries between classes located along the transect. In particular, the fuzzy classifications
enabled the definition of important boundary properties, such as width and temporal displacement. 相似文献
18.
结合遥感影像的特点,提出一种模糊逻辑系统和神经网络中的BP算法相结合的模糊神经网络,利用其进行整个遥感图像的分类,并和典型的BP神经网络进行对比,发现其优点以及存在的问题。 相似文献
19.
为了实现地物精准分类,需要有效地提取与分析高光谱遥感图像中丰富的空—谱信息。提出一种适用于高光谱遥感图像分类的变异系数与卷积神经网络相结合(CV-CNN)的方法。这种新方法引入变异系数的思想来衡量高光谱遥感图像不同波段之间的相似性和差异性,从而提出类间变异系数(CVIE)和类内变异系数(CVIA)的概念。通过计算(CVIE)~2/CVIA的值来剔除高光谱遥感图像中的低效波段,然后提取每个像素的空一谱信息,并对其进行2维矩阵化操作,转化为便于卷积神经网络(CNN)输入的灰度图像,最后采用自行构建的适合于高光谱遥感图像分类的CNN模型进行分类。Indian Pines和Pavia University两组数据的实验结果表明,该方法在两种数据集下的总体精度分别达到98.69%和99.66%,有效地改善了高光谱遥感图像的分类精度。 相似文献
20.
This paper presents a new kind of back propagation neural network (BPNN) based on rough sets, called rough back propagation neural network (RBPNN). The architecture and training method of RBPNN are presented and the survey and analysis of RBPNN for the classification of remote sensing multi-spectral image is discussed. The successful application of RBPNN to a land cover classification illustrates the simple computation and high accuracy of the new neural network and the flexibility and practicality of this new approach. 相似文献