首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
陈驰  杨必胜  彭向阳 《测绘学报》2015,44(5):518-525
提出了一种低空无人机(unmanned aerial vehicle,UAV)序列影像与激光点云自动配准的方法。首先分别基于多标记点过程与局部显著区域检测对激光点云和序列影像的建筑物顶部轮廓进行提取,并依据反投影临近性匹配提取的顶面特征。然后利用匹配的建筑物角点对,线性解算序列影像外方位元素,再使用建筑物边线对的共面条件进行条件平差获得优化解。最后,为消除错误提取与匹配特征对整体配准结果的影响,使用多视立体密集匹配点集与激光点集进行带相对运动阈值约束的ICP(迭代最临近点)计算,整体优化序列影像外方位元素解。试验结果表明本文方法能实现低空序列影像与激光点云像素级精度的自动配准,联合制作DOM精度满足现行无人机产品1∶500比例尺标准。  相似文献   

2.
This article's goal is to explore the benefits of using Digital Surface Model (DSM) and Digital Terrain Model (DTM) derived from LiDAR acquisitions for characterizing the horizontal structure of different facies in forested areas (primary forests vs. secondary forests) within the framework of an object-oriented classification. The area under study is the island of Mayotte in the western Indian Ocean. The LiDAR data were the data originally acquired by an airborne small-footprint discrete-return LiDAR for the “Litto3D” coastline mapping project. They were used to create a Digital Elevation Model (DEM) at a spatial resolution of 1 m and a Digital Canopy Model (DCM) using median filtering. The use of two successive segmentations at different scales allowed us to adjust the segmentation parameters to the local structure of the landscape and of the cover. Working in object-oriented mode with LiDAR allowed us to discriminate six vegetation classes based on canopy height and horizontal heterogeneity. This heterogeneity was assessed using a texture index calculated from the height-transition co-occurrence matrix. Overall accuracy exceeds 90%. The resulting product is the first vegetation map of Mayotte which emphasizes the structure over the composition.  相似文献   

3.
针对无人机激光雷达估测低矮植被高度的精度大小,本文以3m以下低矮树木为研究对象,通过数值模拟方法得到不同航高、不同扫描角情况下激光脚点坐标和点云估测单一树木高度的最大测量误差值;对比实测树高,分析了激光点云估测树高的精度。结果表明,在航高为30m、扫描范围为(-50°,5°)的情况下,无人机激光雷达获取的激光脚点坐标误差和由激光点云估测低矮树高(3m以下)的误差均可以达到cm级;激光点云估测单一树木高度与实测高度的决定系数为0.977,均方根差为5cm,标准均方根差为4%。因此,应用无人机激光雷达数据可以快速、精确获取低矮植被高度信息,进而为反演植被生物量和植被长势信息监测提供重要依据。  相似文献   

4.
Wetland biomass is essential for monitoring the stability and productivity of wetland ecosystems. Conventional field methods to measure or estimate wetland biomass are accurate and reliable, but expensive, time consuming and labor intensive. This research explored the potential for estimating wetland reed biomass using a combination of airborne discrete-return Light Detection and Ranging (LiDAR) and hyperspectral data. To derive the optimal predictor variables of reed biomass, a range of LiDAR and hyperspectral metrics at different spatial scales were regressed against the field-observed biomasses. The results showed that the LiDAR-derived H_p99 (99th percentile of the LiDAR height) and hyperspectral-calculated modified soil-adjusted vegetation index (MSAVI) were the best metrics for estimating reed biomass using the single regression model. Although the LiDAR data yielded a higher estimation accuracy compared to the hyperspectral data, the combination of LiDAR and hyperspectral data produced a more accurate prediction model for reed biomass (R2 = 0.648, RMSE = 167.546 g/m2, RMSEr = 20.71%) than LiDAR data alone. Thus, combining LiDAR data with hyperspectral data has a great potential for improving the accuracy of aboveground biomass estimation.  相似文献   

5.
This work is aimed at the environmental remote sensing community that uses UAV optical frame imagery in combination with airborne and satellite data. Taking into account the economic costs involved and the time investment, we evaluated the fit-for-purpose accuracy of four positioning methods of UAV-acquired imagery: 1) direct georeferencing using the onboard raw GNSS (GNSSNAV) data, 2) direct georeferencing using Post-Processed Kinematic single-frequency carrier-phase without in situ ground support (PPK1), 3) direct georeferencing using Post-Processed Kinematic double-frequency carrier-phase GNSS data with in situ ground support (PPK2), and 4) indirect georeferencing using Ground Control Points (GCP). We tested a multispectral sensor and an RGB sensor, onboard multicopter platforms. Orthophotomosaics at <0.05 m spatial resolution were generated with photogrammetric software. The UAV image absolute accuracy was evaluated according to the ASPRS standards, wherein we used a set of GCPs as reference coordinates, which we surveyed with a differential GNSS static receiver. The raw onboard GNSSNAV solution yielded horizontal (radial) accuracies of RMSEr≤1.062 m and vertical accuracies of RMSEz≤4.209 m; PPK1 solution gave decimetric accuracies of RMSEr≤0.256 m and RMSEz≤0.238 m; PPK2 solution, gave centimetric accuracies of RMSEr≤0.036 m and RMSEz≤0.036 m. These results were further improved by using the GCP solution, which yielded accuracies of RMSEr≤0.023 m and RMSEz≤0.030 m. GNSSNAV solution is a fast and low-cost option that is useful for UAV imagery in combination with remote sensing products, such as Sentinel-2 satellite data. PPK1, which can register UAV imagery with remote sensing products up to 0.25 m pixel size, as WorldView-like satellite imagery, airborne lidar or orthoimagery, has a higher economic cost than the GNSSNAV solution. PPK2 is an acceptable option for registering remote sensing products of up to 0.05 m pixel size, as with other UAV images. Moreover, PPK2 can obtain accuracies that are approximate to the usual UAV pixel size (e.g. co-register in multitemporal studies), but it is more expensive than PPK1. Although indirect georeferencing can obtain the highest accuracy, it is nevertheless a time-consuming task, particularly if many GCPs have to be placed. The paper also provides the approximate cost of each solution.  相似文献   

6.
BP神经网络具有收敛速度快和自学习、自适应功能强的特点,能最大限度地利用样本集的先验知识,自动提取合理的模型.本文采用Landsat TM遥感图像作为数据源,以山西省定襄县为研究区,通过主成分分析方法来压缩输入数据,并结合NDVI和纹理特征来建立BP神经网络的土地利用分类模型,将分类结果与基于光谱单元信息的神经网络分类和基于纹理特征的神经网络分类结果进行定性和定量比较分析.结果表明:该方法总精度达到了80.50%,分别比基于光谱单元信息的神经网络分类和基于纹理特征的神经网络分类提高了18.89%和6.23%,能够有效地解决地物光谱混淆、分类精度不高等问题.  相似文献   

7.
滑坡是一种危害性较大的自然灾害,如何对其进行高效准确的监测具有重要研究价值和实际意义。利用LiDAR、无人机航空摄影等技术进行滑坡监测,可以快速、安全、精确地获取滑坡区域地面信息。本文提出了融合LiDAR点云的无人机影像滑坡动态监测方法。首先,利用点云和影像获取高质量DSM;然后,设计一种基于不规则三角网和坡度融合的滤波算法,滤除DSM中低矮植被,生产高精度DEM;最后,通过对两期DEM进行差分,实现对滑坡区域的动态监测。以黄登水电站附近边坡区域的LiDAR数据与无人机影像数据开展试验,结果表明,采用本文方法进行滑坡动态监测可以直观地判断滑坡地形变化和位移趋势,具有一定的应用前景。  相似文献   

8.
四种基于像元的地表覆盖变化检测方法比较   总被引:1,自引:0,他引:1  
目前遥感影像变化检测方法很多,但各种方法的适用性各不相同。鉴于灰度差值、NDVI差值、灰度比值、主成分分析法在地表覆盖变化检测中应用广泛,文章从数据更新的角度对这4种方法进行了比较;在分析比较这4种方法的单一变化检测精度、检测结果的相同性、相异性的基础上探索了适合于30m分辨率TM地表覆盖变化检测的组合方法。实验结果表明,在地表覆盖变化检测中,有效组合方法能够取得比单一变化检测方法更好的效果;比值法并NDVI差值法并PCA差异法的检测结果中包含了4种单一检测方法所检测出的全部变化像元,达到了最高的生产者精度,比较适合于地表覆盖数据更新制图应用。  相似文献   

9.

通过地质调查提前了解地质灾害发生的历史和现状,对最终实现潜在灾害的识别和预警具有重要意义。目前,传统人工地面调查手段难以发现并查明茂密植被覆盖或地形高陡等复杂山区的重大地质灾害及隐患,而航空遥感作为一种多功能综合性探测技术,因其独特视场角、不受地面条件限制等优势可高效地获取地质灾害发育分布特征和时空演化规律。首先,概述了地质灾害领域常用的航空遥感平台类型及发展趋势,分析了不同荷载传感器信息处理技术优势及主要解决的地质灾害问题。其次,综述了航空遥感技术在地质灾害基础地形测绘、早期识别、调查评价、中长期监测、应急处置5个应用阶段的重点研究成果,并论述了不同阶段的各类技术方法要求及优劣性。最后,总结航空遥感技术在地质灾害领域应用研究的不足之处,并阐明了未来发展趋势和建议。

  相似文献   

10.
侯方国  刘欣  任秀波 《测绘通报》2022,(11):128-131
本文以成都市环城生态区生态修复项目为依托,利用飞马D200无人机实现了倾斜摄影和LiDAR技术的融合监测,通过三维模型制作、大比例尺地形图生产、点云处理、方格网计算、精度评定等步骤,验证了倾斜摄影和机载LiDAR协同监测方式可以满足1∶500地形图和方格网测量的精度,对后期无人机测绘实际生产具有指导意义。  相似文献   

11.
    
Inland water bodies are globally threatened by environmental degradation and climate change. On the other hand, new water bodies can be designed during landscape restoration (e.g. after coal mining). Effective management of new water resources requires continuous monitoring; in situ surveys are, however, extremely time-demanding. Remote sensing has been widely used for identifying water bodies. However, the use of optical imagery is constrained by accuracy problems related to the difficulty in distinguishing water features from other surfaces with low albedo, such as tree shadows. This is especially true when mapping water bodies of different sizes. To address these problems, we evaluated the potential of integrating hyperspectral data with LiDAR (hereinafter “integrative approach”). The study area consisted of several spoil heaps containing heterogeneous water bodies with a high variability of shape and size. We utilized object-based classification (Support Vector Machine) based on: (i) hyperspectral data; (ii) LiDAR variables; (iii) integration of both datasets. Besides, we classified hyperspectral data using pixel-based approaches (K-mean, spectral angle mapper). Individual approaches (hyperspectral data, LiDAR data and integrative approach) resulted in 2–22.4 % underestimation of the water surface area (i.e, omission error) and 0.4–1.5 % overestimation (i.e., commission error).The integrative approach yielded an improved discrimination of open water surface compared to other approaches (omission error of 2 % and commission error of 0.4 %). We also evaluated the success of detecting individual ponds; the integrative approach was the only one capable of detecting the water bodies with both omission and commission errors below 10 %. Finally, the assessment of misclassification reasons showed a successful elimination of shadows in the integrative approach. Our findings demonstrate that the integration of hyperspectral and LiDAR data can greatly improve the identification of small water bodies and can be applied in practice to support mapping of restoration process.  相似文献   

12.
Forest cover plays a key role in climate change by influencing the carbon stocks, the hydrological cycle and the energy balance. Forest cover information can be determined from fine-resolution data, such as Landsat Enhanced Thematic Mapper Plus (ETM+). However, forest cover classification with fine-resolution data usually uses only one temporal data because successive data acquirement is difficult. It may achieve mis-classification result without involving vegetation growth information, because different vegetation types may have the similar spectral features in the fine-resolution data. To overcome these issues, a forest cover classification method using Landsat ETM+ data appending with time series Moderate-resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data was proposed. The objective was to investigate the potential of temporal features extracted from coarse-resolution time series vegetation index data on improving the forest cover classification accuracy using fine-resolution remote sensing data. This method firstly fused Landsat ETM+ NDVI and MODIS NDVI data to obtain time series fine-resolution NDVI data, and then the temporal features were extracted from the fused NDVI data. Finally, temporal features combined with Landsat ETM+ spectral data was used to improve forest cover classification accuracy using supervised classifier. The study in North China region confirmed that time series NDVI features had significant effects on improving forest cover classification accuracy of fine resolution remote sensing data. The NDVI features extracted from time series fused NDVI data could improve the overall classification accuracy approximately 5% from 88.99% to 93.88% compared to only using single Landsat ETM+ data.  相似文献   

13.
Trees Outside Forests (TOF) represent a source of lignocellulosic biomass that has received increasing attention in the recent years. While some studies have already investigated the potential of TOF in Germany, a spatial explicit analysis, specifically for Baden-Wuerttemberg, is still lacking. We used a unique wall-to-wall airborne Light Detection and Ranging (LiDAR) dataset combined with OpenStreetMap (OSM) data to map and classify TOF of the federal state of Baden-Wuerttemberg (∼35.000 km2) in south-western Germany. Furthermore, from annual biomass potentials of TOF areas collected from available literature, we calculated the mean annual biomass supply for all TOF areas in Baden-Wuerttemberg. This combination of remote sensing-based classification and available literature resulted in a mean annual biomass supply between ∼490,000–730,000 t from TOF in Baden-Wuerttemberg. The classification congruence on three reference sites was very high (∼99%) using a simple filter technique applied to the LiDAR data and masking man-made objects using OSM data. In contrast, the available literature revealed a high variability of biomass potentials, supporting the demand for an inventory system. Still, the results demonstrate the applicability of LiDAR based vegetation mapping and the value of OSM data in Baden-Wuerttemberg to detect man-made objects.  相似文献   

14.
In Morocco, no operational system actually exists for the early prediction of the grain yields of wheat (Triticum aestivum L.). This study proposes empirical ordinary least squares regression models to forecast the yields at provincial and national levels. The predictions were based on dekadal (10-daily) NDVI/AVHRR, dekadal rainfall sums and average monthly air temperatures. The Global Land Cover raster map (GLC2000) was used to select only the NDVI pixels that are related to agricultural land. Provincial wheat yields were assessed with errors varying from 80 to 762 kg ha−1, depending on the province. At national level, wheat yield was predicted at the third dekad of April with 73 kg ha−1 error, using NDVI and rainfall. However, earlier forecasts are possible, starting from the second dekad of March with 84 kg ha−1 error, at least 1 month before harvest. At the provincial and national levels, most of the yield variation was accounted for by NDVI. The proposed models can be used in an operational context to early forecast wheat yields in Morocco.  相似文献   

15.
    
In recent years, special attention has been given to the long-term effects of biochar on the performance of agro-ecosystems owing to its potential for improving soil fertility, harvested crop yields, and aboveground biomass production. The present experiment was set up to identify the effects on soil-plant systems of biochar produced more than 150 years ago in charcoal mound kiln sites in Wallonia (Belgium). Although the impacts of biochar on soil-plant systems are being increasingly discussed, a detailed monitoring of the crop dynamics throughout the growing season has not yet been well addressed. At present there is considerable interest in applying remote sensing for crop growth monitoring in order to improve sustainable agricultural practices. However, studies using high-resolution remote sensing data to focus on century-old biochar effects are not yet available. For the first time, the impacts of century-old biochar on crop growth were investigated at canopy level using high-resolution airborne remote sensing data over a cultivated field. High-resolution RGB, multispectral and thermal sensors mounted on unmanned aerial vehicles (UAVs) were used to generate high frequency remote sensing information on the crop dynamics. UAVs were flown over 11 century-old charcoal-enriched soil patches and the adjacent reference soils of a chicory field. We retrieved crucial crop parameters such as canopy cover, vegetation indices and crop water stress from the UAV imageries. In addition, our study also provides in-situ measurements of soil properties and crop traits. Both UAV-based RGB imagery and in-situ measurements demonstrated that the presence of century-old biochar significantly improved chicory canopy cover, with greater leaf lengths in biochar patches. Weighted difference vegetation index imagery showed a negative influence of biochar presence on plant greenness at the end of the growing season. Chicory crop stress was significantly increased by biochar presence, whereas the harvested crop yield was not affected. The main significant variations observed between reference and century-old biochar patches using in situ measurements of crop traits concerned leaf length. Hence, the output from the present study will be of great interest to help developing climate-smart agriculture practices allowing for adaptation and mitigation to climate.  相似文献   

16.
本文针对LiDAR点云与无人机影像数据特征的优缺点,利用LiDAR点云与无人机DOM影像融合,将影像数据光谱信息赋给LiDAR点云数据,使其不仅具备精准的空问结构信息,还能得到清晰的纹理信息.为验证融合数据应用的可行性与数据提取的准确性,对融合前后的点云数据进行地面点提取与DEM构建.试验表明:将无人机影像的光谱信息赋...  相似文献   

17.
    
Wetland inventory maps are essential information for the conservation and management of natural wetland areas. The classification framework is crucial for successful mapping of complex wetlands, including the model selection, input variables and training procedures. In this context, deep neural network (DNN) is a powerful technique for remote sensing image classification, but this model application for wetland mapping has not been discussed in the previous literature, especially using commercial WorldView-3 data. This study developed a new framework for wetland mapping using DNN algorithm and WorldView-3 image in the Millrace Flats Wildlife Management Area, Iowa, USA. The study area has several wetlands with a variety of shapes and sizes, and the minimum mapping unit was defined as 20 m2 (0.002 ha). A set of potential variables was derived from WorldView-3 and auxiliary LiDAR data, and a feature selection procedure using principal components analysis (PCA) was used to identify the most important variables for wetland classification. Furthermore, traditional machine learning methods (support vector machine, random forest and k-nearest neighbor) were also implemented for the comparison of results. In general, the results show that DNN achieved satisfactory results in the study area (overall accuracy = 93.33 %), and we observed a high spatial overlap between reference and classified wetland polygons (Jaccard index ∼0.8). Our results confirm that PCA-based feature selection was effective in the optimization of DNN performance, and vegetation and textural indices were the most informative variables. In addition, the comparison of results indicated that DNN classification achieved relatively similar accuracies to other methods. The total classification errors vary from 0.104 to 0.111 among the methods, and the overlapped areas between reference and classified polygons range between 87.93 and 93.33 %. Finally, the findings of this study have three main implications. First, the integration of DNN model and WorldView-3 image is useful for wetland mapping at 1.2-m, but DNN results did not outperform other methods in this study area. Second, the feature selection was important for model performance, and the combination of most relevant input parameters contributes to the success of all tested models. Third, the spatial resolution of WorldView-3 is appropriate to preserve the shape and extent of small wetlands, while the application of medium resolution image (30-m) has a negative impact on the accurate delineation of these areas. Since commercial satellite data are becoming more affordable for remote sensing users, this study provides a framework that can be utilized to integrate very high-resolution imagery and deep learning in the classification of complex wetland areas.  相似文献   

18.

点云密度是激光雷达(light detection and ranging,LiDAR)技术的重要参数,对森林遥感反演指数的提取有重要影响。以1 600 m×1 450 m大小的无人机(unmanned aerial vehicle,UAV)LiDAR数据为实验数据,采用分级随机抽稀法对实验数据进行抽稀,获取不同密度的点云数据集,利用不同密度数据集提取郁闭度、间隙率、叶面积指数、点云高度和密度分位数等森林遥感反演指数,并与原始数据提取的森林遥感反演指数进行差值比较。(1)当点云密度较小时,提取的郁闭度略微偏低,而间隙率略微增加,点云密度对郁闭度、间隙率的影响极小。(2)当点云密度较大时,对叶面积指数的影响不大,但当点云密度较小时,对叶面积指数的影响较大,个别区域可能出现叶面积指数突变。(3)当点云密度较大时,点云密度对高度、密度分位数的影响不明显,但当点云密度降至3.6点/m2时,可能会出现个别区域密度、高度密度分位数突变的情况。点云密度对森林遥感反演指数有重要影响,合适的点云密度有利于更准确地描述森林结构形态,过小的点云密度影响森林遥感反演指数的提取。

  相似文献   

19.
黄雅君  周伟  马明国 《遥感学报》2023,27(3):802-809
尺度效应是定量遥感领域的经典且重要问题之一,其中地表异质性的判断和明确对地表真实性检验和场站优化布设问题的前置工作。并且地表异质性的判断和计算,一般是通过一景低分辨率待检验产品与同步获取的地面测量结果或者高分辨率产品进行尺度转换实现间接表达。然而,由于待检低分辨率与高分辨率遥感影像之间几乎很难做到完全同步。那么如何在缺乏同步产品的基础上,仅利用高分辨率产品去刻画地表异质性,是为下一步对空间异质性进行进一步探索和分析的前提条件。本文针对该问题使用优于0.2m空间分辨率的无人机光谱反射率数据,计算得到归一化差值植被指数NDVI(NormalizedDifferenceVegetationIndex)数据,通过三次卷积升尺度算法计算获取了0.2—30m共39个不同空间分辨率结果,通过目视解译获得土地利用/覆盖变化LULC(LandUseandLandCoverchange)数据,结合地理探测器对1km×1km图幅内的空间异质性行评价。结果表明:3个地形破碎的喀斯特槽谷区,其空间异质性评价值q的阈值存在差异,但总体上q值都随着空间分辨率的提高(30—0.2m)由震荡趋于平稳;Mann-Kendall突变检测发现,柑橘研究所和虎头村的空间异质性突变点和q值震荡曲线的稳点阈值基本一致。  相似文献   

20.
为了减少轨道交通建设外业勘测的工作量,提高制图的效率和精度,本文首先基于实际项目,选用智航SF1650六旋翼无人机载LiDAR系统对济南新东站片区进行航摄,利用获取的LiDAR点云和影像数据制作DEM、DOM,然后再进行大比例尺地形图和片区断面图的制作。通过外业勘测核实,DEM和DOM精度完全满足轨道交通建设工程制作大比例尺地形图的要求,且相较于传统立体航测,精度和数据利用率得到很大的提升,极大减少了外业勘测工作量,验证了智航SF1650无人机载LiDAR系统的可行性,为今后的工程应用提供了参考方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号