共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, a new snow wetness estimation model is proposed for full-polarimetric Synthetic Aperture Radar (SAR) data. Surface and volume are the dominant scattering components in wet-snow conditions. The generalized four component polarimetric decomposition with unitary transformation (G4U) based generalized surface and volume parameters are utilized to invert snow surface and volume dielectric constants using the Bragg coefficients and Fresnel transmission coefficients respectively. The snow surface and volume wetness are then estimated using an empirical relationship. The effective snow wetness is derived from the weighted averaged surface and volume snow wetness. The weights are derived from the normalized surface and volume scattering powers obtained from the generalized full-polarimetric SAR decomposition method. Six Radarsat-2 fine resolution full-polarimetric datasets acquired over Himachal Pradesh, India along with the near-real time in situ measurements were used to validate the proposed model. The snow wetness derived from the SAR data by the proposed model with in situ measurements indicated that the absolute error at 95% confidence interval is 1.3% by volume. 相似文献
2.
Guillaso S. Ferro-Famil L. Reigber A. Pottier E. 《Geoscience and Remote Sensing Letters, IEEE》2005,2(3):347-351
This letter proposes a building characterization technique for L-band polarimetric interferometric synthetic aperture radar (SAR) data. This characterization consists of building identification and height estimation. Initially, a polarimetric interferometric segmentation is performed to isolate buildings from their surroundings. This classification identifies three basic categories: single bounce, double bounce, and volume diffusion. In order to compensate for the misclassifications among the volume and the double-bounce classes, interferometric phases given by the high-resolution Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) method are analyzed. Once buildings are localized, a phase-to-height procedure is applied to retrieve building height information. The method is validated using E-SAR, German Aerospace Center (DLR) fully polarimetric SAR data, at L-band, repeat-pass mode, over the Oberpfaffenhofen, Germany, test site, with a spatial resolution of 1.5 m in range and azimuth. More than 80% of buildings are retrieved with acceptably accurate height estimates. 相似文献
3.
Accurate spatio-temporal classification of crops is of prime importance for in-season crop monitoring. Synthetic Aperture Radar (SAR) data provides diverse physical information about crop morphology. In the present work, we propose a day-wise and a time-series approach for crop classification using full-polarimetric SAR data. In this context, the 4 × 4 real Kennaugh matrix representation of a full-polarimetric SAR data is utilized, which can provide valuable information about various morphological and dielectric attributes of a scatterer. The elements of the Kennaugh matrix are used as the parameters for the classification of crop types using the random forest and the extreme gradient boosting classifiers.The time-series approach uses data patterns throughout the whole growth period, while the day-wise approach analyzes the PolSAR data from each acquisition into a single data stack for training and validation. The main advantage of this approach is the possibility of generating an intermediate crop map, whenever a SAR acquisition is available for any particular day. Besides, the day-wise approach has the least climatic influence as compared to the time series approach. However, as time-series data retains the crop growth signature in the entire growth cycle, the classification accuracy is usually higher than the day-wise data.Within the Joint Experiment for Crop Assessment and Monitoring (JECAM) initiative, in situ measurements collected over the Canadian and Indian test sites and C-band full-polarimetric RADARSAT-2 data are used for the training and validation of the classifiers. Besides, the sensitivity of the Kennaugh matrix elements to crop morphology is apparent in this study. The overall classification accuracies of 87.75% and 80.41% are achieved for the time-series data over the Indian and Canadian test sites, respectively. However, for the day-wise data, a ∼6% decrease in the overall accuracy is observed for both the classifiers. 相似文献
4.
5.
The aim of this paper is to assess the accuracy of an object-oriented classification of polarimetric Synthetic Aperture Radar (PolSAR) data to map and monitor crops using 19 RADARSAT-2 fine beam polarimetric (FQ) images of an agricultural area in North-eastern Ontario, Canada. Polarimetric images and field data were acquired during the 2011 and 2012 growing seasons. The classification and field data collection focused on the main crop types grown in the region, which include: wheat, oat, soybean, canola and forage. The polarimetric parameters were extracted with PolSAR analysis using both the Cloude–Pottier and Freeman–Durden decompositions. The object-oriented classification, with a single date of PolSAR data, was able to classify all five crop types with an accuracy of 95% and Kappa of 0.93; a 6% improvement in comparison with linear-polarization only classification. However, the time of acquisition is crucial. The larger biomass crops of canola and soybean were most accurately mapped, whereas the identification of oat and wheat were more variable. The multi-temporal data using the Cloude–Pottier decomposition parameters provided the best classification accuracy compared to the linear polarizations and the Freeman–Durden decomposition parameters. In general, the object-oriented classifications were able to accurately map crop types by reducing the noise inherent in the SAR data. Furthermore, using the crop classification maps we were able to monitor crop growth stage based on a trend analysis of the radar response. Based on field data from canola crops, there was a strong relationship between the phenological growth stage based on the BBCH scale, and the HV backscatter and entropy. 相似文献
6.
针对H/Alpha/A-Wishart非监督分类算法存在的未充分提取SAR图像极化信息和分类精度低等问题,引入多分量散射模型(multiple-component scattering model,MCSM)分解,提出了一个适用于全极化SAR图像非监督分类的MCSM-Wishart算法。首先对全极化SAR图像进行MCSM分解,提取体散射、二次散射、螺旋体散射、表面散射和线散射极化信息,采用迭代自组织数据分析技术(iterative self-organizing data analysis technique,ISODATA)的非监督分类算法进行聚类;然后通过基于描述多视协方差矩阵的复Wishart分布的迭代分类得到分类结果。以南京溧水和盐城滨海湿地的ALOS PALSAR图像为研究数据,比较了H/Alpha-Wishart算法、H/Alpha/A-Wishart算法、MCSM-Wishart算法和监督-Wishart算法4种分类方法。研究结果表明,MCSM-Wishart分类算法在效率、总体准确率和Kappa系数等指标上均较原始分类器有一定的提高;将ISODATA聚类算法应用于复Wishart分布的迭代分类器中,可有效提高分类的精度。 相似文献
7.
Monitoring crop condition using optical satellite indices has a legacy of several decades. Early warning of variances in crop production is vital in mitigating regional and global food insecurity. Adoption of optical vegetation indices for this purpose is widespread, yet cloud cover impedes the acquisition of these data. Although early research using scatterometers and aircraft hinted at the sensitivity of Synthetic Aperture Radar (SAR) responses to crop development, the implementation of satellite SAR observations in operational crop condition monitoring is limited. In the research presented here, volume-to-surface (V/S) scattering ratios derived from C-band RADARSAT-2 quad and simulated compact polarimetric (QP and CP) imagery are assessed for their potential to monitor crop growth. Both V/S ratios were strongly correlated with optical vegetation indices, including the widely adopted Normalized Difference and Soil Adjusted Vegetation Indices. The changes in the ratio of volume to surface scattering were correlated with variations in crop biomass. The results support the potential of a SAR scattering ratio for crop condition monitoring. In particular, encouraging results were reported for compact polarimetry, a mode that can be implemented to deliver broader swath coverage conducive to regional and national monitoring. 相似文献
8.
Polarimetric Synthetic Aperture Radar (PolSAR) data, thanks to their specific characteristics such as high resolution, weather and daylight independence, have become a valuable source of information for environment monitoring and management. The discrimination capability of observations acquired by these sensors can be used for land cover classification and mapping. The aim of this paper is to propose an optimized kernel-based C-means clustering algorithm for agriculture crop mapping from multi-temporal PolSAR data. Firstly, several polarimetric features are extracted from preprocessed data. These features are linear polarization intensities, and several statistical and physical based decompositions such as Cloude-Pottier, Freeman-Durden and Yamaguchi techniques. Then, the kernelized version of hard and fuzzy C-means clustering algorithms are applied to these polarimetric features in order to identify crop types. The kernel function, unlike the conventional partitioning clustering algorithms, simplifies the non-spherical and non-linearly patterns of data structure, to be clustered easily. In addition, in order to enhance the results, Particle Swarm Optimization (PSO) algorithm is used to tune the kernel parameters, cluster centers and to optimize features selection. The efficiency of this method was evaluated by using multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Manitoba, Canada, during June and July in 2012. The results demonstrate more accurate crop maps using the proposed method when compared to the classical approaches, (e.g. 12% improvement in general). In addition, when the optimization technique is used, greater improvement is observed in crop classification, e.g. 5% in overall. Furthermore, a strong relationship between Freeman-Durden volume scattering component, which is related to canopy structure, and phenological growth stages is observed. 相似文献
9.
M.V.R. Sesha Sai P.V. Narasimha Rao 《International Journal of Applied Earth Observation and Geoinformation》2008,10(2):206-1
Subsequent to the launch of the state-of-art third generation Indian Remote Sensing satellite, Resourcesat-1, studies have been conducted to understand the capabilities of the on-board sensors for crop discrimination. The paper discusses the unique capabilities of the AWiFS, LISS-III and LISS-IV sensors in terms of their dimensionality, radiometry and spatial resolutions for crop discrimination and monitoring. The studies have indicated better crop discriminability especially using the short wave infrared data in 1.55–1.70 μm data among the spectrally confusing land cover classes, attributed to the relative differences of water contents. 10-bit radiometry of AWiFS data in four bands has been observed to be a better discriminant. Intrafield variability was very well captured by the LISS-IV data revealing the potential of data for applications like precision farming. The studies have revealed that potential of Resourcesat-1 data becoming the workhorse for several agricultural applications. 相似文献
10.
综合多特征的极化SAR图像随机森林分类算法 总被引:1,自引:1,他引:1
为抑制相干斑噪声对极化SAR图像分类结果的干扰,本文提出一种综合多特征的极化SAR图像随机森林分类方法。该方法首先利用简单线性迭代聚类(SLIC)算法生成超像素作为分类单元;然后,基于高维极化特征图像,利用训练好的随机森林模型,统计决策树的分类投票数,计算各超像素的类别概率;最后,利用超像素间的空间邻域特征,采用概率松弛算法(PLR)迭代修正超像素的类别后验概率,并依据最大后验概率(MAP)准则得到分类结果;实现综合利用超像素和空间邻域特征,降低相干斑噪声干扰的极化SAR图像分类方法。实验对比结果表明:本文方法能得有效抑制极化SAR图像中相干斑噪声的干扰,得到高精度且光滑连续的分类结果。 相似文献
11.
极化合成孔径雷达(SAR)图像受相干斑噪声的影响,难以很好地保持结构特性,针对这个问题提出了一种采用3维块匹配小波变换的非局部均值滤波算法NL-3DWT(Nonlocal Filter based on 3-D Patch Matching Wavelet Transform)。该算法使用块匹配的3维非抽样小波变换对极化总功率图进行预滤波,在此基础上使用边界对齐窗提取结构相似像素,同时使用Sigma范围选择极化SAR数据的散射相似像素,共同构成相似像素集合;构建结构保持权重函数增大图像结构信息在块相似性度量时的权重,最终实现极化SAR图像结构保持的相干斑抑制。该算法增强了图像结构特征的表达,提高了结构相似像素选择的准确性,机载极化SAR数据实验结果表明,NL-3DWT算法能够在抑制相干斑噪声的同时,更有效地保持极化SAR图像的结构特性和极化散射特性。 相似文献
12.
Site-specific information of crop types is required for many agro-environmental assessments. The study investigated the potential of support vector machines (SVMs) in discriminating various crop types in a complex cropping system in the Phoenix Active Management Area. We applied SVMs to Landsat time-series Normalized Difference Vegetation Index (NDVI) data using training datasets selected by two different approaches: stratified random approach and intelligent selection approach using local knowledge. The SVM models effectively classified nine major crop types with overall accuracies of >86% for both training datasets. Our results showed that the intelligent selection approach was able to reduce the training set size and achieved higher overall classification accuracy than the stratified random approach. The intelligent selection approach is particularly useful when the availability of reference data is limited and unbalanced among different classes. The study demonstrated the potential of utilizing multi-temporal Landsat imagery to systematically monitor crop types and cropping patterns over time in arid and semi-arid regions. 相似文献
13.
Anup K. Prasad Lim Chai Ramesh P. Singh Menas Kafatos 《International Journal of Applied Earth Observation and Geoinformation》2006
Numerous efforts have been made to develop various indices using remote sensing data such as normalized difference vegetation index (NDVI), vegetation condition index (VCI) and temperature condition index (TCI) for mapping and monitoring of drought and assessment of vegetation health and productivity. NDVI, soil moisture, surface temperature and rainfall are valuable sources of information for the estimation and prediction of crop conditions. In the present paper, we have considered NDVI, soil moisture, surface temperature and rainfall data of Iowa state, US, for 19 years for crop yield assessment and prediction using piecewise linear regression method with breakpoint. Crop production environment consists of inherent sources of heterogeneity and their non-linear behavior. A non-linear Quasi-Newton multi-variate optimization method is utilized, which reasonably minimizes inconsistency and errors in yield prediction. 相似文献
14.
山区土壤含水量对山区植被生长监测、滑坡预测等工作具有重要意义,因此针对山地低矮植被区域,提出了全极化SAR图像的土壤含水量估计方法。为解决山地区域SAR图像几何形变和极化旋转问题,根据入射角、坡度、坡向信息定义了可测区域与不可测区域,并对可测区域后向散射系数进行校正。其次以密西根模型为基础,发展了低矮植被的散射模型。在假定植被和土壤特征不变的情况下,基于此散射模型并结合校正数据建立了山区土壤含水量反演方法。结果表明,模型反演的土壤含水量和实验点实测值基本一致,两个实验点反演值分别为14%和15%,实测值为11.45%和15.80%,能够满足一般应用的需求。 相似文献
15.
森林高度是反映森林资源数量和质量的重要参数,极化干涉合成孔径雷达PolInSAR (Polarimetric Synthetic Aperture Radar Interferometry)技术在森林高度反演中极具潜力。由于森林散射特征受波长影响明显,由此引起的散射机理差异使得基于PolInSAR技术反演的森林高度结果具有很大的不确定性。为了定量化该不确定性的影响,本文以模拟森林场景为例,对PolInSAR技术森林高度反演中常用的4种方法——极化相位中心高度估测法、复相干相位中心差分法、复相干幅度反演法以及相干幅度、相位联合反演法,以及它们在常用的4个微波波段P、L、C和X中的森林高度估测结果进行了分析;明确了匀质森林场景中,算法、波段选择引起的森林高度估测结果的不确定性。研究结果表明:在森林场景基本一致的情况下,估测算法的选择直接影响森林高度估测结果,其中复相干幅度反演法在4个波段的估测结果中精度均最高,但各估测点的估测结果离散度及不确定度较大。波长对4类估测方法估测结果的影响差异明显:复相干幅度反演法的反演结果几乎不受波长的影响,而相干幅度、相位联合反演法受波长影响明显,在P和L波... 相似文献
16.
One of the potential applications of polarimetric Synthetic Aperture Radar (SAR) data is the classification of land cover, such as forest canopies, vegetation, sea ice types, and urban areas. In contrast to single or dual polarized SAR systems, full polarimetric SAR systems provide more information about the physical and geometrical properties of the imaged area. This paper proposes a new Bayes risk function which can be minimized to obtain a Likelihood Ratio (LR) for the supervised classification of polarimetric SAR data. The derived Bayes risk function is based on the complex Wishart distribution. Furthermore, a new spatial criterion is incorporated with the LR classification process to produce more homogeneous classes. The application for Arctic sea ice mapping shows that the LR and the proposed spatial criterion are able to provide promising classification results. Comparison with classification results based on the Wishart classifier, the Wishart Likelihood Ratio Test Statistic (WLRTS) proposed by Conradsen et al. (2003) and the Expectation Maximization with Probabilistic Label Relaxation (EMPLR) algorithm are presented. High overall classification accuracy of selected study areas which reaches 97.8% using the LR is obtained. Combining the derived spatial criterion with the LR can improve the overall classification accuracy to reach 99.9%. In this study, fully polarimetric C-band RADARSAT-2 data collected over Franklin Bay, Canadian Arctic, is used. 相似文献
17.
Stien Heremans Bert Bossyns Herman Eerens Jos Van Orshoven 《International Journal of Applied Earth Observation and Geoinformation》2011
Artificial neural networks (ANNs) are a popular class of techniques for performing soft classifications of satellite images. They have successfully been applied for estimating crop areas through sub-pixel classification of medium to low resolution images. Before a network can be used for classification and estimation, however, it has to be trained. The collection of the reference area fractions needed to train an ANN is often both time-consuming and expensive. This study focuses on strategies for decreasing the efforts needed to collect the necessary reference data, without compromising the accuracy of the resulting area estimates. Two aspects were studied: the spatial sampling scheme (i) and the possibility for reusing trained networks in multiple consecutive seasons (ii). Belgium was chosen as the study area because of the vast amount of reference data available. Time series of monthly NDVI composites for both SPOT-VGT and MODIS were used as the network inputs. The results showed that accurate regional crop area estimation (R2 > 80%) is possible using only 1% of the entire area for network training, provided that the training samples used are representative for the land use variability present in the study area. Limiting the training samples to a specific subset of the population, either geographically or thematically, significantly decreased the accuracy of the estimates. The results also indicate that the use of ANNs trained with data from one season to estimate area fractions in another season is not to be recommended. The interannual variability observed in the endmembers’ spectral signatures underlines the importance of using up-to-date training samples. It can thus be concluded that the representativeness of the training samples, both regarding the spatial and the temporal aspects, is an important issue in crop area estimation using ANNs that should not easily be ignored. 相似文献
18.
Rama Rao Nidamanuri Bernd Zbell 《ISPRS Journal of Photogrammetry and Remote Sensing》2011,66(5):683-691
Recent developments in hyperspectral remote sensing technologies enable acquisition of image with high spectral resolution, which is typical to the laboratory or in situ reflectance measurements. There has been an increasing interest in the utilization of in situ reference reflectance spectra for rapid and repeated mapping of various surface features. Here we examined the prospect of classifying airborne hyperspectral image using field reflectance spectra as the training data for crop mapping. Canopy level field reflectance measurements of some important agricultural crops, i.e. alfalfa, winter barley, winter rape, winter rye, and winter wheat collected during four consecutive growing seasons are used for the classification of a HyMAP image acquired for a separate location by (1) mixture tuned matched filtering (MTMF), (2) spectral feature fitting (SFF), and (3) spectral angle mapper (SAM) methods. In order to answer a general research question “what is the prospect of using independent reference reflectance spectra for image classification”, while focussing on the crop classification, the results indicate distinct aspects. On the one hand, field reflectance spectra of winter rape and alfalfa demonstrate excellent crop discrimination and spectral matching with the image across the growing seasons. On the other hand, significant spectral confusion detected among the winter barley, winter rye, and winter wheat rule out the possibility of existence of a meaningful spectral matching between field reflectance spectra and image. While supporting the current notion of “non-existence of characteristic reflectance spectral signatures for vegetation”, results indicate that there exist some crops whose spectral signatures are similar to characteristic spectral signatures with possibility of using them in image classification. 相似文献
19.
As a widely used approach for feature extraction and data reduction, Principal Components Analysis (PCA) suffers from high computational cost, large memory requirement and low efficacy in dealing with large dimensional datasets such as Hyperspectral Imaging (HSI). Consequently, a novel Folded-PCA is proposed, where the spectral vector is folded into a matrix to allow the covariance matrix to be determined more efficiently. With this matrix-based representation, both global and local structures are extracted to provide additional information for data classification. Moreover, both the computational cost and the memory requirement have been significantly reduced. Using Support Vector Machine (SVM) for classification on two well-known HSI datasets and one Synthetic Aperture Radar (SAR) dataset in remote sensing, quantitative results are generated for objective evaluations. Comprehensive results have indicated that the proposed Folded-PCA approach not only outperforms the conventional PCA but also the baseline approach where the whole feature sets are used. 相似文献
20.
Estimation and monitoring of crop evapotranspiration (ETc) or consumptive water use over large-area holds the key to irrigation management plans and regional drought preparedness. The objective of this study was to estimate ETc by applying the simplified-surface energy balance index (S-SEBI) model to Landsat-8 data for the 2014–2015 period in parts of North India. An average ETc was estimated 2.72 and 2.47 in mm day?1 with 0.22, 0.18 standard deviation and 0.11, 0.07 standard error for Kharif and Rabi crops, respectively. On validation part, a close relationship was observed between S-SEBI derived and scintillometer observed evaporative fraction with 0.85 correlation coefficient and 0.86 agreement index. The statistical analysis also endorses the results accuracy and reliability with 0.026 and 0.602, relative root-mean square errors and model efficiency for wheat crop, respectively. The study showed that normalized difference vegetation index and LST are closely related and serve as a proxy for qualitative representation of ETc. 相似文献