首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
薛朝辉  钱思羽 《遥感学报》2022,26(6):1121-1142
科学准确地监测红树林是保护海陆过渡性生态系统的基础和前提,但红树林分布于潮间带,难以进行大规模人工监测。遥感技术能够对红树林进行长时间、大面积监测,但已有研究尚存不足。一方面,红树林分布于热带、亚热带区域,受到天气条件限制难以获得长时间覆盖的有效光学遥感数据;另一方面,红树林极易与其他陆生植被混淆,仅利用多波段数据的光谱信息难以精确识别。本文以恒河三角洲孙德尔本斯地区为例,基于谷歌地球引擎GEE(Google Earth Engine)获取2016年全年的Landsat 8 OLI和Sentinel-2 MSI数据,利用物候信息进行红树林提取研究。首先,基于最小二乘回归构建两个传感器在相同指数之间的关系,重建时间序列数据,之后根据可分性判据选取增强型植被指数EVI(Enhanced Vegetation Index)和陆地表面水分指数LSWI(Land Surface Water Index)。其次,对两个指数的时间序列数据进行Savitzky-Golay滤波处理,并分别提取生长期始期等13种物候信息。最后,将两个指数的物候信息进行特征级联,采用随机森林RF(Random Forest)方法进行分类,提取研究区红树林范围。实验结果表明:Landsat 8 OLI和Sentinel-2 MSI数据融合可有效提升时间序列质量,与基于单一传感器数据的分类结果相比,总体精度提高1.58%;物候信息可以显著增强红树林与其他植被的可分性,与直接使用时间序列数据的分类结果相比,总体精度提高1.92%;同时考虑EVI和LSWI指数可极大地提升分类效果,与采用单一指数相比,总体精度分别提高14.11%和9.69%。因此,本文通过数据融合、物候信息提取和指数特征级联可以更好地提取红树林,总体精度达到91.02%,Kappa系数为0.892。研究验证了物候信息在红树林遥感监测中的应用潜力,提出的方法对科学准确地监测全球或区域红树林具有一定参考价值。  相似文献   

2.
Bamboo-dominated forests are unusual and interesting because their structure and biomass fluctuate in decades-long cycles corresponding to the flowering and mortality rhythm of the bamboo. In southwestern Amazonia, these forests have been estimated to occupy an area of approximately 160 000 km2, and a single reproductively synchronized patch can cover up to thousands of square kilometers. Accurate mapping of these forests is challenging, however: the forests are spatially heterogeneous, with bamboo densities varying widely among adjacent sites; much of the area is inaccessible, so field verification of bamboo presence is difficult to obtain and georeferenced records of past flowering events virtually non-existent; and detectability of the bamboo by remote sensing varies considerably during its life cycle. In this study, we develop a supervised time series segmentation approach that allows us to identify both the presence of bamboo forests and the years in which the bamboo flowering and subsequent mortality have occurred. We then apply the method to the entire Landsat TM/ETM+ archive from 1984 to the end of 2018 and validate the classification by visual interpretation of very high resolution imagery. Collecting accurate ground reference data of bamboo presence and bamboo mortality timing is notably difficult in these forests, and we therefore developed a methodology that takes advantage of imperfect reference data obtained from the Landsat time series itself. Our results show that bamboo forests can be differentiated from non-bamboo forests using any of the infrared bands, but band 5 produces the highest classification accuracy. Interestingly, there appears to be a temporal difference in the spectral responses of the three infrared bands to bamboo flowering and mortality: near infrared (band 4) reflectance reacts to the event earlier than shortwave infrared (bands 5 and 7) reflectance. The long Landsat TM/ETM+ archive allows our methodology to detect some areas with two mortality events, with a theoretical maximum interval of 29 years. Analysis of these pixels with repeated mortality confirms that the life cycles of the local bamboo species (Guadua sarcocarpa and G. weberbauerii) last typically 28 years.  相似文献   

3.
风害是影响中国天然橡胶产业发展最严重的自然灾害之一,它短时间内对橡胶林造成严重的物理伤害(大量落叶、枝条和主干折断等),严重影响后期生长和产量.传统地面调查虽然精度高,但耗时费力、经济成本高,利用遥感快速评估对指导灾后生产恢复、保险赔付和科学研究等具有重要意义.本研究以2019年8月1912号热带风暴“杨柳”在海南西部...  相似文献   

4.
This paper introduces a novel methodology for generating 15-day, smoothed and gap-filled time series of high spatial resolution data. The approach is based on templates from high quality observations to fill data gaps that are subsequently filtered. We tested our method for one large contiguous area (Bavaria, Germany) and for nine smaller test sites in different ecoregions of Europe using Landsat data. Overall, our results match the validation dataset to a high degree of accuracy with a mean absolute error (MAE) of 0.01 for visible bands, 0.03 for near-infrared and 0.02 for short-wave-infrared. Occasionally, the reconstructed time series are affected by artefacts due to undetected clouds. Less frequently, larger uncertainties occur as a result of extended periods of missing data. Reliable cloud masks are highly warranted for making full use of time series.  相似文献   

5.
Forest cover plays a key role in climate change by influencing the carbon stocks, the hydrological cycle and the energy balance. Forest cover information can be determined from fine-resolution data, such as Landsat Enhanced Thematic Mapper Plus (ETM+). However, forest cover classification with fine-resolution data usually uses only one temporal data because successive data acquirement is difficult. It may achieve mis-classification result without involving vegetation growth information, because different vegetation types may have the similar spectral features in the fine-resolution data. To overcome these issues, a forest cover classification method using Landsat ETM+ data appending with time series Moderate-resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data was proposed. The objective was to investigate the potential of temporal features extracted from coarse-resolution time series vegetation index data on improving the forest cover classification accuracy using fine-resolution remote sensing data. This method firstly fused Landsat ETM+ NDVI and MODIS NDVI data to obtain time series fine-resolution NDVI data, and then the temporal features were extracted from the fused NDVI data. Finally, temporal features combined with Landsat ETM+ spectral data was used to improve forest cover classification accuracy using supervised classifier. The study in North China region confirmed that time series NDVI features had significant effects on improving forest cover classification accuracy of fine resolution remote sensing data. The NDVI features extracted from time series fused NDVI data could improve the overall classification accuracy approximately 5% from 88.99% to 93.88% compared to only using single Landsat ETM+ data.  相似文献   

6.
The need for quantitative and accurate information to characterize the state and evolution of vegetation types at a national scale is widely recognized. This type of information is crucial for the Democratic Republic of Congo, which contains the majority of the tropical forest cover of Central Africa and a large diversity of habitats. In spite of recent progress in earth observation capabilities, vegetation mapping and seasonality analysis in equatorial areas still represent an outstanding challenge owing to high cloud coverage and the extent and limited accessibility of the territory. On one hand, the use of coarse-resolution optical data is constrained by performance in the presence of cloud screening and by noise arising from the compositing process, which limits the spatial consistency of the composite and the temporal resolution. On the other hand, the use of high-resolution data suffers from heterogeneity of acquisition dates, images and interpretation from one scene to another. The objective of the present study was to propose and demonstrate a semi-automatic processing method for vegetation mapping and seasonality characterization based on temporal and spectral information from SPOT VEGETATION time series. A land cover map with 18 vegetation classes was produced using the proposed method that was fed by ecological knowledge gathered from botanists and reference documents. The floristic composition and physiognomy of each vegetation type are described using the Land Cover Classification System developed by the FAO. Moreover, the seasonality of each class is characterized on a monthly basis and the variation in different vegetation indicators is discussed from a phenological point of view. This mapping exercise delivers the first area estimates of seven different forest types, five different savannas characterized by specific seasonality behavior and two aquatic vegetation types. Finally, the result is compared to two recent land cover maps derived from coarse-resolution (GLC2000) and high-resolution imagery (Africover).  相似文献   

7.
Urbanization is a natural and social process involving simultaneous changes to the Earth’s land systems, energy flow, demographics, and the economy. Understanding the spatiotemporal pattern of urbanization is increasingly important for policy formulation, decision making, and natural resource management. A combination of satellite remote sensing and patch-based models has been widely adopted to characterize landscape changes at various spatial and temporal scales. Nevertheless, the validity of this type of framework in identifying long-term changes, especially subtle or gradual land modifications is seriously challenged. In this paper, we integrate annual image time series, continuous spatial indices, and non-parametric trend analysis into a spatiotemporal study of landscape dynamics over the Phoenix metropolitan area from 1991 to 2010. We harness local indicators of spatial dependence and modified Mann-Kendall test to describe the monotonic trends in the quantity and spatial arrangement of two important land use land cover types: vegetation and built-up areas. Results suggest that declines in vegetation and increases in built-up areas are the two prevalent types of changes across the region. Vegetation increases mostly occur at the outskirts where new residential areas are developed from natural desert. A sizable proportion of vegetation declines and built-up increases are seen in the central and southeast part. Extensive land conversion from agricultural fields into urban land use is one important driver of vegetation declines. The xeriscaping practice also contributes to part of vegetation loss and an increasingly heterogeneous landscape. The quantitative framework proposed in this study provides a pathway to effective landscape mapping and change monitoring from a spatial statistical perspective.  相似文献   

8.
合成孔径雷达(SAR)因其对地观测全天候、全天时优势,成为多云多雨天气限制下洪水动态监测中不可或缺的数据来源之一。由于GEE(Google Earth Engine)云计算平台的兴起和短重访Sentinel-1数据的可获取性,洪水监测与灾害评估目前正面向动态化、广域化快速发展。顾及洪水淹没区土地覆盖变化的复杂性和发生时间的不确定性,基于时序Sentinel-1A卫星数据提出了针对大尺度范围、连续长期的汛情自动检测及动态监测方法。该方法首先,利用图像二值化分割时序SAR数据实现水体时空分布粗制图,逐像素计算时间序列中被识别为水体候选点的频率。然后,利用Sentinel-2光学影像对精度较粗的初期SAR水体提取结果进行校正,得到精细的水体分布图。最后,针对不同频率区间的淹没特点,采用差异化的时序异常检测策略识别淹没范围:对低频覆水区利用欧氏距离检测时序断点,以提取扰动强度大、淹没时间短的洪涝灾害区;对高频覆水区利用标准分数(Z-Score)检测时序断点,以提取季节性水体覆盖区。在GEE平台上利用该方法,实现了2020-05—10长江中下游地区全域洪水淹没范围时空信息的自动、快速、有效监测,揭示了不同区域汛情发展模式的差异性。本文提出的洪水快速监测方法对大尺度下的汛情动态监测、灾害定量评估和快速预警响应具有重要的现实意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号