首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vegetation phenology has a great impact on land-atmosphere interactions like carbon cycling, albedo, and water and energy exchanges. To understand and predict these critical land-atmosphere feedbacks, it is crucial to measure and quantify phenological responses to climate variability, and ultimately climate change. Coarse-resolution sensors such as MODIS and AVHRR have been useful to study vegetation phenology from regional to global scales. These sensors are, however, not capable of discerning phenological variation at moderate spatial scales. By offering increased observation density and higher spatial resolution, the combination of Landsat and Sentinel-2 time series might provide the opportunity to overcome this limitation.In this study, we analyzed the potential of combined Sentinel-2 and Landsat time series for estimating start of season (SOS) of broadleaf forests across Germany for the year 2018. We tested two common statistical modeling approaches (logistic and generalized additive models using thin plate splines) and the two most commonly used vegetation indices, the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI).We found strong agreement between SOS estimates from logistic and spline models (rEVI = 0.86; rNDVI = 0.65), whereas agreement was higher for EVI than for NDVI (RMSDEVI = 3.07, RMSDNDVI = 5.26 days). The choice of vegetation index thus had a higher impact on the results than the fitting method. The EVI-based SOS also showed higher correlation with ground observations compared to NDVI (rEVI = 0.51, rNDVI = 0.42). Data density played an important role in estimating land surface phenology. Models combining Sentinel-2A/B, with an average cloud-free observation frequency of 12 days, were largely consistent with the combined Landsat and Sentinel-2 models, suggesting that Sentinel-2A/B may be sufficient to capture SOS for most areas in Germany in 2018. However, in non-overlapping swath areas and mountain areas, observation frequency was significantly lower, underlining the need to combine Landsat and Sentinel-2 for consistent SOS estimates over large areas. Our study demonstrates that estimating SOS of temperate broadleaf forests at medium spatial resolution has become feasible with combined Landsat and Sentinel-2 time series.  相似文献   

2.
This study demonstrates the potentials of IRS P6 LISS-IV high-resolution multispectral sensor (IGFOV  6 m)-based estimation of biomass in the deciduous forests in the Western Ghats of Karnataka, India. Regression equations describing the relationship between IRS P6 LISS-IV data-based vegetation index (NDVI) and field measured leaf area index (ELAI) and estimated above-ground biomass (EAGB) were derived. Remote sensing (RS) data-based leaf area index (PLAI) image is generated using regression equation based on NDVI and ELAI (r2 = 0.68, p ≤ 0.05). RS-based above-ground biomass (PAGB) image was generated based on regression equation developed between PLAI and EAGB (r2 = 0.63, p ≤ 0.05). The mean value of estimated above-ground biomass and RS-based above-ground biomass in the study area are 280(±72.5) and 297.6(±55.2) Mg ha−1, respectively. The regression models generated in the study between NDVI and LAI; LAI and biomass can also help in generating spatial biomass map using RS data alone. LISS-IV-based estimation of biophysical parameters can also be used for the validation of various coarse resolution satellite products derived from the ground-based measurements alone.  相似文献   

3.
Accurate estimation of ecosystem carbon fluxes is crucial for understanding the feedbacks between the terrestrial biosphere and the atmosphere and for making climate-policy decisions. A statistical model is developed to estimate the gross primary production (GPP) of coniferous forests of northeastern USA using remotely sensed (RS) radiation (land surface temperature and near-infra red albedo) and ecosystem variables (enhanced vegetation index and global vegetation moisture index) acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. This GPP model (called R-GPP-Coni), based only on remotely sensed data, was first calibrated with GPP estimates derived from the eddy covariance flux tower of the Howland forest main tower site and then successfully transferred and validated at three other coniferous sites: the Howland forest west tower site, Duke pine forest and North Carolina loblolly pine site, which demonstrate its transferability to other coniferous ecoregions of northeastern USA. The proposed model captured the seasonal dynamics of the observed 8-day GPP successfully by explaining 84–94% of the observed variations with a root mean squared error (RMSE) ranging from 1.10 to 1.64 g C/m2/day over the 4 study sites and outperformed the primary RS-based GPP algorithm of MODIS.  相似文献   

4.
The Normalized Area Over reflectance Curve (NAOC) is proposed as a new index for remote sensing estimation of the leaf chlorophyll content of heterogeneous areas with different crops, different canopies and different types of bare soil. This index is based on the calculation of the area over the reflectance curve obtained by high spectral resolution reflectance measurements, determined, from the integral of the red–near-infrared interval, divided by the maximum reflectance in that spectral region. For this, use has been made of the experimental data of the SPARC campaigns, where in situ measurements were made of leaf chlorophyll content, LAI and fCOVER of 9 different crops – thus, yielding 300 different values with broad variability of these biophysical parameters. In addition, Proba/CHRIS hyperspectral images were obtained simultaneously to the ground measurements. By comparing the spectra of each pixel with its experimental leaf chlorophyll value, the NAOC was proven to exhibit a linear correlation to chlorophyll content. Calculating the correlation between these variables in the 600–800 nm interval, the best correlation was obtained by computing the integral of the spectral reflectance curve between 643 and 795 nm, which practically covers the spectral range of maximum chlorophyll absorption (at around 670 nm) and maximum leaf reflectance in the infrared (750–800 nm). Based on a Proba/CHRIS image, a chlorophyll map was generated using NAOC and compared with the land-use (crops classification) map. The method yielded a leaf chlorophyll content map of the study area, comprising a large heterogeneous zone. An analysis was made to determine whether the method also serves to estimate the total chlorophyll content of a canopy, multiplying the leaf chlorophyll content by the LAI. To validate the method, use was made of the data from another campaign ((SEN2FLEX), in which measurements were made of different biophysical parameters of 7 crops, and hyperspectral images were obtained with the CASI imaging radiometer from an aircraft. Applying the method to a CASI image, a map of leaf chlorophyll content was obtained, which on, establishing comparisons with the experimental data allowed us to estimate chlorophyll with a root mean square error of 4.2 μg/cm2, similar or smaller than other methods but with the improvement of applicability to a large set of different crop types.  相似文献   

5.
Indian geostationary satellite Kalpana-1 (K1) offers a potential to capture the diurnal cycle of land surface temperature (LST) through thermal infrared channel (10.5–12.5 μm) observations of the Very High Resolution Radiometer (VHRR) sensor. A study was carried out to retrieve LST by adapting a generalized single-channel (SC) algorithm (Jiménez-Muñoz and Sobrino, 2003) for the VHRR sensor over India. The basis of SC algorithm depends on the concept of Atmospheric Functions (AFs) that are dependent on transmissivity, upwelling and downwelling radiances of the atmosphere. In the present study AFs were computed for the VHRR sensor through the MODTRAN simulations based upon varying atmospheric and surface inputs. The AFs were fitted with the atmospheric columnar water vapour content and a set of coefficients was derived for LST retrieval. The K1-LST derived with the SC algorithm was validated with (a) in situ measurements at two sites located in western parts of India and (b) the MODIS LST products. Comparison of K1-LST with the in situ measurements demonstrated that SC algorithm was successful in capturing the prominent diurnal variations of 283–332 K in the LST at desert and agriculture experimental sites with a rmse of 1.6 K and 2.7 K, respectively. Inter comparison of K1-LST and MODIS LST showed a reasonable agreement between these two retrievals up to LST of 300 K, however a cold bias up to 7.9 K was observed in MODIS LST for higher LST values (310–330 K) over the hot desert region.  相似文献   

6.
地表温度在全球能量平衡和气候变化研究中具有重要意义。中国新一代高分辨率卫星高分五号卫星(GF-5)搭载的全谱段成像光谱仪有4个40 m空间分辨率的热红外波段,可以提供高空间分辨率的地表温度信息。本文提出了适用于全谱段成像光谱仪的温度与发射率分离TES(Temperature and Emissivity Separation)算法同时反演地表温度和发射率,为了提高大气校正精度,算法加入了水汽缩放WVS(Water Vapor Scaling)大气校正方法。首先利用Seebor V5.0全球大气廓线库构建模拟数据对算法精度进行了评价;然后利用张掖地区11景ASTER影像作为替代数据和同步的地面实测数据对算法精度进行了验证。模拟数据结果表明加入WVS方法后TES算法反演地表温度的RMSE由2.59 K降低到1.54 K,4个波段地表发射率的RMSE分别从0.122、0.12、0.102和0.037降低到0.042、0.04、0.028和0.026;地表验证结果表明本文算法反演的地表温度与站点实测值具有更好的一致性,平均Bias由1.08 K降低到0.47 K,RMSE由2.17 K降低到1.7 K;反演的各波段地表发射率与地面实测结果误差均小于1%。因此,本文提出的温度与发射率分离算法具有较高精度,可以利用GF-5数据获取高精度高空间分辨率的地表温度和发射率数据,服务于其他相关研究。  相似文献   

7.
The land surface temperature (LST) is an important parameter when studying the interface between the atmosphere and the Earth's surface. Compared to satellite thermal infrared (TIR) remote sensing, passive microwave (PMW) remote sensing is better able to overcome atmospheric influences and to estimate the LST, especially in cloudy regions. However, methods for estimating PMW LSTs at the country and continental scales are still rare. The necessity of training such methods from a temporally dynamic perspective also needs further investigations. Here, a temporally land cover based look-up table (TL-LUT) method is proposed to estimate the LSTs from AMSR-E data over the Chinese landmass. In this method, the synergies between observations from MODIS (Moderate Resolution Imaging Spectroradiometer) and AMSR-E (Advanced Microwave Scanning Radiometer for EOS), which are onboard the same Aqua satellite, are explored. Validation with the synchronous MODIS LSTs demonstrates that the TL-LUT method has better performances in retrieving LSTs with AMSR-E data than the method that uses a single brightness temperature in 36.5 GHz vertical polarization channel. The accuracy of the TL-LUT method is better than 2.7 K for forest and 3.2 K for cropland. Its accuracy varies according to land cover type, time of day, and season. When compared with the in-situ measured LSTs at four sites without urban warming in the Tibet Plateau, the standard errors of estimation between the estimated AMSR-E LST and in-situ measured LST are from 5.1 K to 6.0 K in the daytime and 3.1 K to 4.5 K in the nighttime. Further comparison with the in-situ measured air temperatures at 24 meteorological stations confirms the good performance of the TL-LUT method. The feasibility of PMW remote sensing in estimating the LST for China can complement the TIR data and can, therefore, aid in the generation of daily LST maps for the entire country. Further study of the penetration of PMW radiation would benefit the LST estimations in barren and other sparsely vegetated environments.  相似文献   

8.
The present study proposes land surface temperature (LST) retrieval from satellite-based thermal IR data by single channel radiative transfer algorithm using atmospheric correction parameters derived from satellite-based and in-situ data and land surface emissivity (LSE) derived by a hybrid LSE model. For example, atmospheric transmittance (τ) was derived from Terra MODIS spectral radiance in atmospheric window and absorption bands, whereas the atmospheric path radiance and sky radiance were estimated using satellite- and ground-based in-situ solar radiation, geographic location and observation conditions. The hybrid LSE model which is coupled with ground-based emissivity measurements is more versatile than the previous LSE models and yields improved emissivity values by knowledge-based approach. It uses NDVI-based and NDVI Threshold method (NDVITHM) based algorithms and field-measured emissivity values. The model is applicable for dense vegetation cover, mixed vegetation cover, bare earth including coal mining related land surface classes. The study was conducted in a coalfield of India badly affected by coal fire for decades. In a coal fire affected coalfield, LST would provide precise temperature difference between thermally anomalous coal fire pixels and background pixels to facilitate coal fire detection and monitoring. The derived LST products of the present study were compared with radiant temperature images across some of the prominent coal fire locations in the study area by graphical means and by some standard mathematical dispersion coefficients such as coefficient of variation, coefficient of quartile deviation, coefficient of quartile deviation for 3rd quartile vs. maximum temperature, coefficient of mean deviation (about median) indicating significant increase in the temperature difference among the pixels. The average temperature slope between adjacent pixels, which increases the potential of coal fire pixel detection from background pixels, is significantly larger in the derived LST products than the corresponding radiant temperature images.  相似文献   

9.
A sufficient number of satellite acquisitions in a growing season are essential for deriving agronomic indicators, such as green leaf area index (GLAI), to be assimilated into crop models for crop productivity estimation. However, for most high resolution orbital optical satellites, it is often difficult to obtain images frequently due to their long revisit cycles and unfavorable weather conditions. Data fusion algorithms, such as the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) and the Enhanced STARFM (ESTARFM), have been developed to generate synthetic data with high spatial and temporal resolution to address this issue. In this study, we evaluated the approach of assimilating GLAI into the Simple Algorithm for Yield Estimation model (SAFY) for winter wheat biomass estimation. GLAI was estimated using the two-band Enhanced Vegetation Index (EVI2) derived from data acquired by the Operational Land Imager (OLI) onboard the Landsat-8 and a fusion dataset generated by blending the Moderate-Resolution Imaging Spectroradiometer (MODIS) data and the OLI data using the STARFM and ESTARFM models. The fusion dataset had the temporal resolution of the MODIS data and the spatial resolution of the OLI data. Key parameters of the SAFY model were optimised through assimilation of the estimated GLAI into the crop model using the Shuffled Complex Evolution-University of Arizona (SCE-UA) algorithm. A good agreement was achieved between the estimated and field measured biomass by assimilating the GLAI derived from the OLI data (GLAIL) alone (R2 = 0.77 and RMSE = 231 g m−2). Assimilation of GLAI derived from the fusion dataset (GLAIF) resulted in a R2 of 0.71 and RMSE of 193 g m−2 while assimilating the combination of GLAIL and GLAIF led to further improvements (R2 = 0.76 and RMSE = 176 g m−2). Our results demonstrated the potential of using the fusion algorithms to improve crop growth monitoring and crop productivity estimation when the number of high resolution remote sensing data acquisitions is limited.  相似文献   

10.
Directly mapping impervious surface area (ISA) at national and global scales using nighttime light data is a challenge due to the complexity of land surface components and the impacts of unbalanced economic conditions. Previous research mainly used the coarse spatial resolution Defense Meteorological Satellite Program’s Operational Linescan System (DMSP OLS) and Moderate Resolution Imaging Spectroradiometer (MODIS), normalized difference vegetation index (NDVI) data for ISA mapping; the improved spatial resolution and data quality in the Suomi National Polar-orbiting Partnership, Visible Infrared Imaging Radiometer Suite’s Day/Night Band (VIIRS DNB) and in Proba-V data provide a new opportunity to accurately map ISA distribution at the national scale, which has not been explored yet. This research aimed to develop a new index – modified impervious surface index (MISI) – based on VIIRS DNB and Proba-V data to improve ISA estimation and to compare the results with those from the combination of VIIRS DNB and MODIS NDVI data. Landsat data were used to develop ISA data for the typical sites for use as reference data. Regression analysis was used to establish the ISA estimation model in which the dependent variable was from the Landsat data and the independent variable was from the MISI, as well as the previously used Large-scale Impervious Surface Index (LISI). The results indicate that the major error is from the very small or very large proportion of ISA in a unit; improvement of spatial resolution through use of higher spatial resolution nighttime light data (e.g., VIIRS DNB) or NDVI (e.g., Proba-V NDVI) data is an effective approach to improve ISA estimation. Although different indices for the combination of nighttime light and NDVI data have been used, the MISI is especially valuable for reducing the estimation errors for the regions with a small or large ISA proportion.  相似文献   

11.
天宫一号数据地表温度反演及其在城市热岛效应中的应用   总被引:1,自引:1,他引:1  
针对天宫一号高光谱成像仪红外波段数据提出了一个单通道地表温度反演算法,算法的输入参数为大气水汽含量和地表发射率.利用模拟数据和黑河流域生态—水文过程综合遥感观测联合试验的地面实测数据对算法进行了精度评价,结果表明算法的均方根误差为2.72 K,能够满足大多数应用研究的需求.以北京市二环以内为研究区域,采用4个时相的天宫一号高光谱红外波段数据进行了城市热岛效应研究,结果表明天宫一号高光谱红外波段数据适合用来进行街区尺度的城市热岛效应研究,具有很大的应用潜力.  相似文献   

12.
Land surface temperature (LST) is an important indicator of global ecological environment and climate change. The Sea and Land Surface Temperature Radiometer (SLSTR) onboard the recently launched Sentinel-3 satellites provides high-quality observations for estimating global LST. The algorithm of the official SLSTR LST product is a split-window algorithm (SWA) that implicitly assumes and utilizes knowledge of land surface emissivity (LSE). The main objective of this study is to investigate alternative SLSTR LST retrieval algorithms with an explicit use of LSE. Seventeen widely accepted SWAs, which explicitly utilize LSE, were selected as candidate algorithms. First, the SWAs were trained using a comprehensive global simulation dataset. Then, using simulation data as well as in-situ LST, the SWAs were evaluated according to their sensitivity and accuracy: eleven algorithms showed good training accuracy and nine of them exhibited low sensitivity to uncertainties in LSE and column water vapor content. Evaluation based on two global simulation datasets and a regional simulation dataset showed that these nine SWAs had similar accuracy with negligible systematic errors and RMSEs lower than 1.0 K. Validation based on in-situ LST obtained for six sites further confirmed the similar accuracies of the SWAs, with the lowest RMSE ranges of 1.57–1.62 K and 0.49−0.61 K for Gobabeb and Lake Constance, respectively. While the best two SWAs usually yielded good accuracy, the official SLSTR LST generally had lower accuracy. The SWAs identified and described in this study may serve as alternative algorithms for retrieving LST products from SLSTR data.  相似文献   

13.
单窗算法结合Landsat8热红外数据反演地表温度   总被引:4,自引:0,他引:4  
Landsat热红外系列数据一直是地表温度反演重要的遥感数据源,目前用于地表温度反演的单窗算法主要针对Landsat TM/ETM+第6波段数据(TM 6)建立的,Landsat 8热红外传感器(TIRS)与TM 6相比有很多变化,因而其单窗算法也需要改进。本文以Landsat 8 TIRS第10波段(TIRS 10)为数据源,提出了针对TIRS 10的单窗算法(TIRS10_SC),并对研究区地表温度进行反演研究,确定了研究区不同类型地表的温度值。研究结果表明:(1)TIRS10_SC算法可以较好地应用于Landsat 8数据的地表温度反演,平均反演误差为0.83℃,相关系数为0.805,反演温度与模拟数据和实测数据都具有较好的一致性;(2)通过对单窗算法中的地表发射率、大气水汽含量和大气平均作用温度等参数敏感性分析发现,TIRS10 SC算法能够获得较为可靠的反演结果;同时,TIRS10 SC算法对大气水汽含量和地表发射率敏感性较高,对大气平均作用温度敏感性稍弱。该算法对于利用Landsat 8 TIRS数据快速反演地表温度具有应用价值。  相似文献   

14.
For the soil moisture retrieval from passive microwave sensors, such as ESA’s Soil Moisture and Ocean Salinity (SMOS) and the NASA Soil Moisture Active and Passive (SMAP) mission, a good knowledge about the vegetation characteristics is indispensable. Vegetation cover is a principal factor in the attenuation, scattering and absorption of the microwave emissions from the soil; and has a direct impact on the brightness temperature by way of its canopy emissions. Here, brightness temperatures were measured at three altitudes across the TERENO (Terrestrial Environmental Observatories) Rur catchment site in Germany to achieve a range of spatial resolutions using the airborne Polarimetric L-band Multibeam Radiometer 2 (PLMR2). The L-band Microwave Emission of the Biosphere (L-MEB) model which simulates microwave emissions from the soil–vegetation layer at L-band was used to retrieve surface soil moisture for all resolutions. A Monte Carlo approach was developed to simultaneously estimate soil moisture and the vegetation parameter b’ describing the relationship between the optical thickness τ and the Leaf Area Index (LAI). LAI was retrieved from multispectral RapidEye imagery and the plant specific vegetation parameter b′ was estimated from the lowest flight altitude data for crop, grass, coniferous forest, and deciduous forest. Mean values of b’ were found to be 0.18, 0.07, 0.26 and 0.23, respectively. By assigning the estimated b′ to higher flight altitude data sets, a high accuracy soil moisture retrieval was achieved with a Root Mean Square Difference (RMSD) of 0.035 m3 m−3 when compared to ground-based measurements.  相似文献   

15.
The validation study of leaf area index (LAI) products over rugged surfaces not only gives additional insights into data quality of LAI products, but deepens understanding of uncertainties regarding land surface process models depended on LAI data over complex terrain. This study evaluated the performance of MODIS and GLASS LAI products using the intercomparison and direct validation methods over southwestern China. The spatio-temporal consistencies, such as the spatial distributions of LAI products and their statistical relationship as a function of topographic indices, time, and vegetation types, respectively, were investigated through intercomparison between MODIS and GLASS products during the period 2011–2013. The accuracies and change ranges of these two products were evaluated against available LAI reference maps over 10 sampling regions which standed for typical vegetation types and topographic gradients in southwestern China.The results show that GLASS LAI exhibits higher percentage of good quality data (i.e. successful retrievals) and smoother temporal profiles than MODIS LAI. The percentage of successful retrievals for MODIS and GLASS is vulnerable to topographic indices, especially to relief amplitude. Besides, the two products do not capture seasonal dynamics of crop, especially in spring over heterogeneously hilly regions. The yearly mean LAI differences between MODIS and GLASS are within ±0.5 for 64.70% of the total retrieval pixels over southwestern China. The spatial distribution of mean differences and temporal profiles of these two products are inclined to be dominated by vegetation types other than topographic indices. The spatial and temporal consistency of these two products is good over most area of grasses/cereal crops; however, it is poor for evergreen broadleaf forest. MODIS presents more reliable change range of LAI than GLASS through comparison with fine resolution reference maps over most of sampling regions. The accuracies of direct validation are obtained for GLASS LAI (r = 0.35, RMSE = 1.72, mean bias = −0.71) and MODIS LAI (r = 0.49, RMSE = 1.75, mean bias = −0.67). GLASS performs similarly to MODIS, but may be marginally inferior to MODIS based on our direct validation results. The validation experience demonstrates the necessity and importance of topographic consideration for LAI estimation over mountain areas. Considerable attention will be paid to the improvements of surface reflectance, retrieval algorithm and land cover types so as to enhance the quality of LAI products in topographically complex terrain.  相似文献   

16.
Leaf carotenoids content (LCar) is an important indicator of plant physiological status. Accurate estimation of LCar provides valuable insight into early detection of stress in vegetation. With spectroscopy techniques, a semi-empirical approach based on spectral indices was extensively used for carotenoids content estimation. However, established spectral indices for carotenoids that generally rely on limited measured data, might lack predictive accuracy for carotenoids estimation in various species and at different growth stages. In this study, we propose a new carotenoid index (CARI) for LCar assessment based on a large synthetic dataset simulated from the leaf radiative transfer model PROSPECT-5, and evaluate its capability with both simulated data from PROSPECT-5 and 4SAIL and extensive experimental datasets: the ANGERS dataset and experimental data acquired in field experiments in China in 2004. Results show that CARI was the index most linearly correlated with carotenoids content at the leaf level using a synthetic dataset (R2 = 0.943, RMSE = 1.196 μg/cm2), compared with published spectral indices. Cross-validation results with CARI using ANGERS data achieved quite an accurate estimation (R2 = 0.545, RMSE = 3.413 μg/cm2), though the RBRI performed as the best index (R2 = 0.727, RMSE = 2.640 μg/cm2). CARI also showed good accuracy (R2 = 0.639, RMSE = 1.520 μg/cm2) for LCar assessment with leaf level field survey data, though PRI performed better (R2 = 0.710, RMSE = 1.369 μg/cm2). Whereas RBRI, PRI and other assessed spectral indices showed a good performance for a given dataset, overall their estimation accuracy was not consistent across all datasets used in this study. Conversely CARI was more robust showing good results in all datasets. Further assessment of LCar with simulated and measured canopy reflectance data indicated that CARI might not be very sensitive to LCar changes at low leaf area index (LAI) value, and in these conditions soil moisture influenced the LCar retrieval accuracy.  相似文献   

17.
The understanding influence of multiple factors variations on land surface temperature (LST) remains elusive. LST was retrieved by the atmospheric correction algorithms. Based on the correlation coefficients, stepwise regression analysis was developed to examine how multiple factors variability led to LST variations. The differences in LST between impact factors vary depending on time in a day. The elevation and land use types significantly affect the LST in sunny slope or shadow areas has a significantly quadratic curve correlation or a negative linear correlation with it, the influence of slope and aspect is not very significant. LST for forestland, grassland and bare land in the sunny slope and shadow area was the cubic polynomial related to its elevation. Normalized difference vegetation index (NDVI) and normalized difference moisture index (NDMI) effectively express LST in mountainous. LST and NDMI or NDVI have a significantly negative correlation, NDMI is more effective and more applicable for the expression of LST.  相似文献   

18.
Landscape patterns in a region have different sizes, shapes and spatial arrangements, which contribute to the spatial heterogeneity of the landscape and are linked to the distinct behavior of thermal environments. There is a lack of research generating landscape metrics from discretized percent impervious surface area data (ISA), which can be used as an indicator of urban spatial structure and level of development, and quantitatively characterizing the spatial patterns of landscapes and land surface temperatures (LST). In this study, linear spectral mixture analysis (LSMA) is used to derive sub-pixel ISA. Continuous fractional cover thresholds are used to discretize percent ISA into different categories related to urban land cover patterns. Landscape metrics are calculated based on different ISA categories and used to quantify urban landscape patterns and LST configurations. The characteristics of LST and percent ISA are quantified by landscape metrics such as indices of patch density, aggregation, connectedness, shape and shape complexity. The urban thermal intensity is also analyzed based on percent ISA. The results indicate that landscape metrics are sensitive to the variation of pixel values of fractional ISA, and the integration of LST, LSMA. Landscape metrics provide a quantitative method for describing the spatial distribution and seasonal variation in urban thermal patterns in response to associated urban land cover patterns.  相似文献   

19.
Beijing has experienced rapid urbanization and associated urban heat island effects and air pollution. In this study, a contribution index was proposed to explore the effect of urbanization on land surface temperature (LST) using Moderate-Resolution Imaging Spectroradiometer (MODIS)-derived data with high temporal resolution. The analysis indicated that different zones and landscapes make diurnally and seasonally different contributions to the regional thermal environment. The differences in contributions by the three main functional zones resulted from differences in their landscape compositions. The roles of landscapes in this process varied diurnally and seasonally. Urban land was the most important contributor to increases in regional LSTs. The contributions of cropland and forest varied distinctly between daytime and nighttime owing to differences in their thermal inertias. Vegetation had a notable cooling effect as the normalized vegetation difference index (NDVI) increased during summer. However, when the NDVI reached a certain value, the nighttime LST shifted markedly in other seasons. The results suggest that urban design based on vegetation partitions would be effective for regulating the thermal environment.  相似文献   

20.
Regional scale urban built-up areas and surface urban heat islands (SUHI) are important for urban planning and policy formation. Owing to coarse spatial resolution (1000 m), it is difficult to use Moderate Resolution Imaging Spectroradiometer (MODIS) Land surface temperature (LST) products for mapping urban areas and visualization, and SUHI-related studies. To overcome this problem, the present study downscaled MODIS (1000 m resolution)-derived LST to 250 m resolution to map and visualize the urban areas and identify the basic components of SUHI over 12 districts of Punjab, India. The results are compared through visual interpretation and statistical procedure based on similarity analysis. The increased entropy value in the downscaled LST signifies higher information content. The temperature variation within the built-up and its environs is due to difference in land use and is depicted better in the downscaled LST. The SUHI intensity analysis of four cities (Ludhiana, Patiala, Moga and Vatinda) indicates that mean temperature in urban built-up core is higher (38.87 °C) as compared to suburban (35.85 °C) and rural (32.41 °C) areas. The downscaling techniques demonstrated in this paper enhance the usage of open-source wide swath MODIS LST for continuous monitoring of SUHI and urban area mapping, visualisation and analysis at regional scale. Such initiatives are useful for the scientific community and the decision-makers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号