首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water stress during crop cultivation due to inconsistent rainfall is a common phenomenon in maize growing area of Shanmuganadi watershed, located in the semi-arid region of southern peninsular India. The objective is to estimate the supplementary irrigation required to improve the crop productivity during water stress period. Spatial hydrological model, Soil and Water Assessment Tool, has been applied to simulate the watershed hydrology and crop growth for rabi season (October–February) considering the rainfed and irrigated scenarios. The average water stress days of rainfed maize was 60 days with yield of 1.6 t/ha. Irrigated maize with supplementary irrigation of 93–126 mm was resulted in improved yield of 3.8 t/ha with 28 water stress days. The results also suggest that supplemental irrigation can be obtained from groundwater reserves and by adopting early sowing strategy can provide opportunities for improving water productivity in rainfed farming.  相似文献   

2.
Planting a cover crop between the main cropping seasons is an agricultural management measure with multiple potential benefits for sustainable food production. In the maize production system of the Netherlands, an effective establishment of a winter cover crop is important for reducing nitrogen leaching to groundwater. Cover crop establishment after maize cultivation is obliged by law for sandy soils and consequently implemented on nearly all maize fields, but the winter-time vegetative ground cover varies significantly between fields. The objectives of this study are to assess the variability in winter vegetative cover and evaluate to what extent this variability can be explained by the timing of cover crop establishment and weather conditions in two growing seasons (2017–2018). We used Sentinel-2 satellite imagery to construct NDVI time series for fields known to be cultivated with maize within the province of Overijssel. We fitted piecewise logistic functions to the time series in order to estimate cover crop sowing date and retrieve the fitted NDVI value for 1 December (NDVIDec). We used NDVIDec to represent the quality of cover crop establishment at the start of the winter season. The Sentinel-2 estimated sowing dates compared reasonably with ground reference data for eight fields (RMSE = 6.6 days). The two analysed years differed considerably, with 2018 being much drier and warmer during summer. This drought resulted in an earlier estimated cover crop sowing date (on average 19 days) and an NDVIDec value that was 0.2 higher than in 2017. Combining both years and all fields, we found that Sentinel-2 retrieved sowing dates could explain 55% of the NDVIDec variability. This corresponded to a positive relationship (R2 = 0.50) between NDVIDec and the cumulative growing degree days (GDD) between sowing date and 1 December until reaching 400 GDD. Based on cumulative GDD derived from two weather stations within Overijssel, we found that on average for the past three decades a sowing date of 19 September (± 7 days) allowed to attain these 400 GDD; this provides support for the current legislation that states that from 2019 onwards a cover crop should be sown before 1 October. To meet this deadline, while simultaneously ascertaining a harvest-ready main crop, in practice implies that undersowing of the cover crop during spring will gain importance. Our results show that Sentinel-2 NDVI time series can assess the effectiveness and timing of cover crop growth for small agricultural fields, and as such has potential to inform regulatory frameworks as well as farmers with actionable information that may help to reduce nitrogen leaching.  相似文献   

3.
The fractional vegetation cover (FVC), crop residue cover (CRC), and bare soil (BS) are three important parameters in vegetation–soil ecosystems, and their correct and timely estimation can improve crop monitoring and environmental monitoring. The triangular space method uses one CRC index and one vegetation index to create a triangular space in which the three vertices represent pure vegetation, crop residue, and bare soil. Subsequently, the CRC, FVC, and BS of mixed remote sensing pixels can be distinguished by their spatial locations in the triangular space. However, soil moisture and crop-residue moisture (SM-CRM) significantly reduce the performance of broadband remote sensing CRC indices and can thus decrease the accuracy of the remote estimation and mapping of CRC, FVC, and BS. This study evaluated the use of broadband remote sensing, the triangular space method, and the random forest (RF) technique to estimate and map the FVC, CRC, and BS of cropland in which SM-CRM changes dramatically. A spectral dataset was obtained using: (1) from a field-based experiment with a field spectrometer; and (2) from a laboratory-based simulation that included four distinct soil types, three types of crop residue (winter-wheat, maize, and rice), one crop (winter wheat), and varying SM-CRM. We trained an RF model [designated the broadband crop-residue index from random forest (CRRF)] that can magnify spectral features of crop residue and soil by using the broadband remote sensing angle indices as input, and uses a moisture-resistant hyperspectral index as the target. The effects of moisture on crop residue and soil were minimized by using the broadband CRRF. Then, the CRRF-NDVI triangular space method was used to estimate and map CRC, FVC, and BS. Our method was validated by using both laboratory- and field-based experiments and Sentinel-2 broadband remote-sensing images. Our results indicate that the CRRF-NDVI triangular space method can reduce the effect of moisture on the broadband remote-sensing of CRC, and may also help to obtain laboratory and field CRC, FVC, and BS. Thus, the proposed method has great potential for application to croplands in which the SM-CRM content changes dramatically.  相似文献   

4.
The Landsat (MSS and TM), SPOT (PLA and MLA) and IRS (LISS-I and LISS-II) images of crop free period (April, May), rainfed crop (October) and rabi irrigated crop (January, February) have been evaluated for their capabilities of mapping (1) primary salt affected soils: (slightly, moderately and severely) (2) saline water irrigated saline soils, (3) sodic water irrigated sodic soils and (4) salt affected soils due to tank seepage in the arid region of Rajasthan. The moderately and severe salt affected soils could be mapped with Landsat, (IRS LISS-I) and SPOT, images of any season. However, the summer season imagery provided maximum extent of salt affected soils. The LISS-II imagery also provided delineation of slightly salt affected soils in addition to the moderate and severely salt affected soils. The delineation of saline and sodic water irrigated areas was possible by using Landsat False Colour Composite for the January month by their characteristic reflectance, existing cropping pattern and the quality of irrigation water being used in the area. The IRS (LISS-II) and SPOT PLA images for the May month were also used for mapping of saline and sodic water irrigated soils.  相似文献   

5.
The India Remote Sensing data on 1:50,000 scale revealed the occurrence of permanent waterlogging in low-lying flats and depressions of the Indira Gandhi Nahar Pariyojona (IGNP) command area. Such data also indicated seasonal dynamics of waterlogging and soil salinization (Salt efflorescence/crusting) in irrigated areas. Mixed spectral signatures of high moisture content and poor crop stand indicated the presence of shallow aquifers close to the main canal. Digital analysis facilitated some indicators for segregating such land uses, limited to optical range. Ground truth study found patchy crop stand, moist soil profile and subsurface soil salinization indicating the presence of high water table (<1.5 m). It also found fluctuating (1.5–6.0 m) water table with poor vegetative growth indicating areas sensitive to waterlogging These were classified as potential waterlogging. Moderate to high soil salinity was found at surface and at the control section (0.2–0.8 m) of soil profiles indicating initiation of secondary salinization. Coarse to medium soil texture facilitated capillary rise of salts with the advancing water table in irrigated zone. The presence of fine textured and impermeable calcium carbonate layers at a depth below the surface enhanced waterlogging and rise of water table. The preponderance of chlorides and sulfates of sodium, calcium and magnesium was found in the salinized areas. The quality of ponded water was extremely poor and unfit for its reuse. The ground water was saline in some areas but normally lies within the prescribed limit. The quality of drainage water was poor in saline depression and unsuitable for reuse. These were moderate in other areas suggesting its safe reuse if mixed with good quality water. Suitable soil and water management practices are necessary for sustainable crop production in the irrigated areas  相似文献   

6.
地上生物量能够有效反映作物的生长状态,其信息的实时估算对产量预测和农田生产管理都有重要意义。作物生长模型因其详尽的生理生化基础和对生长过程数字化描述能力,成为生物量估算的理想模型。近年来,研究人员利用数据同化算法将时间序列遥感数据同化到作物生长模型中,实现了作物模型由基于气象站的点模拟到区域尺度面模拟的外推,使生物量模拟结果同时具备大范围和机理性两个方面的特点。这一模式下,时间序列的遥感数据质量将对生物量模拟精度产生直接影响,作物生长后期受到光谱饱和的影响,遥感数据的作物冠层信息获取能力会出现明显下降,因此有必要对该阶段遥感数据和作物模型的结合方式进行优化,提升生物量模拟精度。本文针对东北地区春玉米生物量遥感估算存在的问题,提出了利用WOFOST作物模型结合无人机(UAV)遥感数据实现作物生长后期生物量准确估算的新思路。新思路首先利用多光谱遥感数据获取WOFOST模型具备较高空间异质性的土壤速效养分参数以提升模型的空间信息模拟能力,使其能在一定程度上摆脱点尺度模拟的限制。同时,结合集合卡尔曼滤波算法将生长前期无人机(UAV)遥感数据同化到模型中,以缩短模型单独运行时间,减少模型运行过程中的参数误差累积,实现无遥感数据参与下的短期作物生长模拟,并输出生长后期相应的生物量模拟结果。最后,本文利用地面实测数据对新方法的生物量模拟精度进行了评价。结果表明,与全生育期数据同化相比,新方法的生物量估算精度有了明显的提升(全生育期同化:R2 = 0.45,RMSE = 4254.30 kg/ha;新方法:R2= 0.86,RMSE = 2216.79 kg/ha)。  相似文献   

7.
The availability of accurate information on the water consumed for crop irrigation is of vital importance to support compatible and sustainable environmental policies in arid and semi-arid regions. This has promoted several studies about the use of remote sensing data to monitor irrigated croplands, which are mostly based on statistical classification and/or regression techniques. The current paper proposes a new semi-empirical approach that relies on a water balance logic and does not require local tuning. The method stems from recent investigations which demonstrated the possibility of combining standard meteorological data and Sentinel-2 (S-2) Multi Spectral Instrument (MSI) NDVI images to estimate the actual evapotranspiration (ETa) of irrigated Mediterranean croplands. This ETa estimation method is adapted to drive a simplified site water balance which, for each 10-m S-2 MSI pixel, predicts the irrigation water (IW), i.e. the water which is consumed in addition to that naturally supplied by rainfall. The new method, fed with ground and satellite data from two years (2018–2019), is tested in a Mediterranean area around the town of Grosseto (Central Italy), that is covered by a particularly complex mosaic of rainfed and irrigated crops. The results obtained are first assessed qualitatively for some fields grown with known winter, spring and summer crops. Next, the IW estimates are evaluated quantitatively versus ground measurements taken over two irrigated fields, the first grown with processing tomato in 2018 and the second with early corn in 2019. Finally, the IW estimates are statistically analyzed against various datasets informative on local agricultural practices in the two years. All these analyses indicate that the proposed method is capable of predicting both the intensity and timing of the IW supply in the study area. The method, in fact, correctly identifies rainfed and irrigated crops and, in the latter case, accurately predicts the IW actually supplied. The results of the quantitative tests performed on tomato and corn show that over 50 % and 70 % of the measured IW variance is explained on daily and weekly bases, respectively, with corresponding mean bias errors below 0.3 mm/day and 2.0 mm/week. Similar indications are produced by the qualitative tests; reasonable IW estimates are obtained for all winter, springs and summer crops grown in the study area during 2018 and 2019.  相似文献   

8.
时序双极化SAR开采沉陷区土壤水分估计   总被引:1,自引:0,他引:1  
马威  陈登魁  杨娜  马超 《遥感学报》2018,22(3):521-534
开采沉陷地质灾害诱发矿区生态环境恶化的关键因子是土壤水分变化。研究提出了一种利用Sentinel-1A双极化SAR和OLI地表反射率数据联合反演土壤含水量的方法,即基于归一化水体指数(NDWI)反演植被含水量;采用Water-Cloud Model(WCM)模型消除植被对Sentinel-1A后向散射系数产生的影响,将其转化为裸土区的后向散射系数;利用基于AIEM模型和Oh模型建立的经验模型反演研究区地表参数,并用OLI光学反演结果进行验证;最后比较了开采沉陷区内外土壤水分含量。研究表明:(1)与基于OLI的土壤水分监测指数(SMMI)的土壤水分含量反演结果相比,两种极化方式中VH极化反演的水分结果具有更好的一致性,且两种极化方式反演结果也表明荒漠化草原区比黄土丘陵沟壑区反演效果更好,说明地形对后向散射的影响不可忽略。(2)在2016年内72期数据中,VH极化反演结果对比区土壤水分含量大于沉陷区的有41期,所占比例为57%;VV极化反演结果对比区土壤水分含量大于沉陷区的有36期,所占比例为50%,且不同矿区内的沉陷区受到的影响不同。说明开采沉陷造成的地表粗糙度的增加会对地表土壤水分产生负面影响,但不同矿区之间又有差异。  相似文献   

9.
The mangrove forests of northeast Hainan Island are the most species diverse forests in China and consist of the Dongzhai National Nature Reserve and the Qinglan Provincial Nature Reserve. The former reserve is the first Chinese national nature reserve for mangroves and the latter has the most abundant mangrove species in China. However, to date the aboveground ground biomass (AGB) of this mangrove region has not been quantified due to the high species diversity and the difficulty of extensive field sampling in mangrove habitat. Although three-dimensional point clouds can capture the forest vertical structure, their application to large areas is hindered by the logistics, costs and data volumes involved. To fill the gap and address this issue, this study proposed a novel upscaling method for mangrove AGB estimation using field plots, UAV-LiDAR strip data and Sentinel-2 imagery (named G∼LiDAR∼S2 model) based on a point-line-polygon framework. In this model, the partial-coverage UAV-LiDAR data were used as a linear bridge to link ground measurements to the wall-to-wall coverage Sentinel-2 data. The results showed that northeast Hainan Island has a total mangrove AGB of 312,806.29 Mg with a mean AGB of 119.26 Mg ha−1. The results also indicated that at the regional scale, the proposed UAV-LiDAR linear bridge method (i.e., G∼LiDAR∼S2 model) performed better than the traditional approach, which directly relates field plots to Sentinel-2 data (named the G∼S2 model) (R2 = 0.62 > 0.52, RMSE = 50.36 Mg ha−1<56.63 Mg ha−1). Through a trend extrapolation method, this study inferred that the G∼LiDAR∼S2 model could decrease the number of field samples required by approximately 37% in comparison with those required by the G∼S2 model in the study area. Regarding the UAV-LiDAR sampling intensity, compared with the original number of LiDAR plots, 20% of original linear bridges could produce an acceptable accuracy (R2 = 0.62, RMSE = 51.03 Mg ha−1). Consequently, this study presents the first investigation of AGB for the mangrove forests on northeast Hainan Island in China and verifies the feasibility of using this mangrove AGB upscaling method for diverse mangrove forests.  相似文献   

10.
Sentinel-1A C-SAR and Sentinel-2A MultiSpectral Instrument (MSI) provide data applicable to the remote identification of crop type. In this study, six crop types (beans, beetroot, grass, maize, potato, and winter wheat) were identified using five C-SAR images and one MSI image acquired during the 2016 growing season. To assess the potential for accurate crop classification with existing supervised learning models, the four different approaches namely kernel-based extreme learning machine (KELM), multilayer feedforward neural networks, random forests, and support vector machine were compared. Algorithm hyperparameters were tuned using Bayesian optimization. Overall, KELM yielded the highest performance, achieving an overall classification accuracy of 96.8%. Evaluation of the sensitivity of classification models and relative importance of data types using data-based sensitivity analysis showed that the set of VV polarization data acquired on 24 July (Sentinel-1A) and band 4 data (Sentinel-2A) had the greatest potential for use in crop classification.  相似文献   

11.
Field experiment was carried out on sandy loam soil with sorghum (cv. S-136), maize (cv. Ageti-76) and pearl millet (cv. PHB-14) during the summer season (may–July) of 1980 at Haryana Agricultural University Farm, Hisar. After one uniform irrigation at crop establishment, the crops were subjected to four irrigation treatments, viz. irrigation at ID/CPE (ID=irrigation depth of 7cm; CPE=cumulative pan evaporation) of 1.0, 0.6, 0.3 & 0.15. Changes in soil water potential (ψ soil), leaf water potential (ψ L), stomatal conductance (KL), canopy temperature (Tc), transpirational cooling (Canopy temperature minus air temperature, Tc-Ta), evapotranspiration (ET) and dry matter yields were recorded in different treatments. An increase in moisture stress resulted in a decrease in ψ soil, ψ L, KL, transpirational cooling, ET but increase in Tc. Tc-Ta showed significant curvilinear association with ψ soil and linear relationship with ψ L, KL, Tc, ET and dry matter yield of summer cereals. It is suggested that the mid day values of Tc-Ta as observed with an infra-red thermometer could effectively be used to sense the moisture stress effects in summer cereals.  相似文献   

12.
ABSTRACT

Globally, drought constitutes a serious threat to food and water security. The complexity and multivariate nature of drought challenges its assessment, especially at local scales. The study aimed to assess spatiotemporal patterns of crop condition and drought impact at the spatial scale of field management units with a combined use of time-series from optical (Landsat, MODIS, Sentinel-2) and Synthetic Aperture Radar (SAR) (Sentinel 1) data. Several indicators were derived such as Normalized Difference Vegetation Index (NDVI), Normalized Difference Moisture Index (NDMI), Land Surface Temperature (LST), Tasseled cap indices and Sentinel-1 based backscattering intensity and relative surface moisture. We used logistic regression to evaluate the drought-induced variability of remotely sensed parameters estimated for different phases of crop growth. The parameters with the highest prediction rate were further used to estimate thresholds for drought/non-drought classification. The models were evaluated using the area under the receiver operating characteristic curve and validated with in-situ data. The results revealed that not all remotely sensed variables respond in the same manner to drought conditions. Growing season maximum NDVI and NDMI (70–75%) and SAR derived metrics (60%) reflect specifically the impact of agricultural drought. These metrics also depict stress affected areas with a larger spatial extent. LST was a useful indicator of crop condition especially for maize and sunflower with prediction rates of 86% and 71%, respectively. The developed approach can be further used to assess crop condition and to support decision-making in areas which are more susceptible and vulnerable to drought.  相似文献   

13.
ABSTRACT

This study investigates misregistration issues between Landsat-8/ Operational Land Imager and Sentinel-2A/ Multi-Spectral Instrument at 30?m resolution, and between multi-temporal Sentinel-2A images at 10?m resolution using a phase-correlation approach and multiple transformation functions. Co-registration of 45 Landsat-8 to Sentinel-2A pairs and 37 Sentinel-2A to Sentinel-2A pairs were analyzed. Phase correlation proved to be a robust approach that allowed us to identify hundreds and thousands of control points on images acquired more than 100 days apart. Overall, misregistration of up to 1.6 pixels at 30?m resolution between Landsat-8 and Sentinel-2A images, and 1.2 pixels and 2.8 pixels at 10?m resolution between multi-temporal Sentinel-2A images from the same and different orbits, respectively, were observed. The non-linear random forest regression used for constructing the mapping function showed best results in terms of root mean square error (RMSE), yielding an average RMSE error of 0.07?±?0.02 pixels at 30?m resolution, and 0.09?±?0.05 and 0.15?±?0.06 pixels at 10?m resolution for the same and adjacent Sentinel-2A orbits, respectively, for multiple tiles and multiple conditions. A simpler 1st order polynomial function (affine transformation) yielded RMSE of 0.08?±?0.02 pixels at 30?m resolution and 0.12?±?0.06 (same Sentinel-2A orbits) and 0.20?±?0.09 (adjacent orbits) pixels at 10?m resolution.  相似文献   

14.
The invasion by Striga in most cereal crop fields in Africa has posed a significant threat to food security and has caused substantial socioeconomic losses. Hyperspectral remote sensing is an effective means to discriminate plant species, providing possibilities to track such weed invasions and improve precision agriculture. However, essential baseline information using remotely sensed data is missing, specifically for the Striga weed in Africa. In this study, we investigated the spectral uniqueness of Striga compared to other co-occurring maize crops and weeds. We used the in-situ FieldSpec® Handheld 2™ analytical spectral device (ASD), hyperspectral data and their respective narrow-band indices in the visible and near infrared (VNIR) region of the electromagnetic spectrum (EMS) and four machine learning discriminant algorithms (i.e. random forest: RF, linear discriminant analysis: LDA, gradient boosting: GB and support vector machines: SVM) to discriminate among different levels of Striga (Striga hermonthica) infestations in maize fields in western Kenya. We also tested the utility of Sentinel-2 waveband configurations to map and discriminate Striga infestation in heterogenous cereal crop fields. The in-situ hyperspectral reflectance data were resampled to the spectral waveband configurations of Sentinel-2 using published spectral response functions. We sampled and detected seven Striga infestation classes based on three flowering Striga classes (low, moderate and high) against two background endmembers (soil and a mixture of maize and other co-occurring weeds). A guided regularized random forest (GRRF) algorithm was used to select the most relevant hyperspectral wavebands and vegetation indices (VIs) as well as for the resampled Sentinel-2 multispectral wavebands for Striga infestation discrimination. The performance of the four discriminant algorithms was compared using classification accuracy assessment metrics. We were able to positively discriminate Striga from the two background endmembers i.e. soil and co-occurring vegetation (maize and co-occurring weeds) based on the few GRRF selected hyperspectral vegetation indices and the GRRF selected resampled Sentinel-2 multispectral bands. RF outperformed all the other discriminant methods and produced the highest overall accuracy of 91% and 85%, using the hyperspectral and resampled Sentinel-2 multispectral wavebands, respectively, across the four different discriminant models tested in this study. The class with the highest detection accuracy across all the four discriminant algorithms, was the “exclusively maize and other co-occurring weeds” (>70%). The GRRF reduced the dimensionality of the hyperspectral data and selected only 9 most relevant wavebands out of 750 wavebands, 6 VIs out of 15 and 6 out of 10 resampled Sentinel-2 multispectral wavebands for discriminating among the Striga and co-occurring classes. Resampled Sentinel-2 multispectral wavebands 3 (green) and 4 (red) were the most crucial for Striga detection. The use of the most relevant hyperspectral features (i.e. wavebands and VIs) significantly (p ≤ 0.05) increased the overall classification accuracy and Kappa scores (±5% and ±0.2, respectively) in all the machine learning discriminant models. Our results show the potential of hyperspectral, resampled Sentinel-2 multispectral datasets and machine learning discriminant algorithms as a tool to accurately discern Striga in heterogenous maize agro-ecological systems.  相似文献   

15.
Real time, accurate and reliable estimation of maize yield is valuable to policy makers in decision making. The current study was planned for yield estimation of spring maize using remote sensing and crop modeling. In crop modeling, the CERES-Maize model was calibrated and evaluated with the field experiment data and after calibration and evaluation, this model was used to forecast maize yield. A Field survey of 64 farm was also conducted in Faisalabad to collect data on initial field conditions and crop management data. These data were used to forecast maize yield using crop model at farmers’ field. While in remote sensing, peak season Landsat 8 images were classified for landcover classification using machine learning algorithm. After classification, time series normalized difference vegetation index (NDVI) and land surface temperature (LST) of the surveyed 64 farms were calculated. Principle component analysis were run to correlate the indicators with maize yield. The selected LSTs and NDVIs were used to develop yield forecasting equations using least absolute shrinkage and selection operator (LASSO) regression. Calibrated and evaluated results of CERES-Maize showed the mean absolute % error (MAPE) of 0.35–6.71% for all recorded variables. In remote sensing all machine learning algorithms showed the accuracy greater the 90%, however support vector machine (SVM-radial basis) showed the higher accuracy of 97%, that was used for classification of maize area. The accuracy of area estimated through SVM-radial basis was 91%, when validated with crop reporting service. Yield forecasting results of crop model were precise with RMSE of 255 kg ha?1, while remote sensing showed the RMSE of 397 kg ha?1. Overall strength of relationship between estimated and actual grain yields were good with R2 of 0.94 in both techniques. For regional yield forecasting remote sensing could be used due greater advantages of less input dataset and if focus is to assess specific stress, and interaction of plant genetics to soil and environmental conditions than crop model is very useful tool.  相似文献   

16.
The Sentinel-2 Multi-Spectral Imager (MSI) has three spectral bands centered at 705, 740, and 783 nm wavelengths that exploit the red-edge information useful for quantifying plant biochemical traits. This sensor configuration is expected to improve the prediction accuracy of vegetation chlorophyll content. In this work, we assessed the performance of several statistical and physical-based methods in retrieving canopy chlorophyll content (CCC) from Sentinel-2 in a heterogeneous mixed mountain forest. Amongst the algorithms presented in the literature, 13 different vegetation indices (VIs), a non-parametric statistical approach, and two radiative transfer models (RTM) were used to assess the CCC prediction accuracy. A field campaign was conducted in July 2017 to collect in situ measurements of CCC in Bavarian forest national park, and the cloud-free Sentinel-2 image was acquired on 13 July 2017. The leave-one-out cross-validation technique was used to compare the VIs and the non-parametric approach. Whereas physical-based methods were calibrated using simulated data and validated using the in situ reference dataset. The statistical-based approaches, such as the modified simple ratio (mSR) vegetation index and the partial least square regression (PLSR) outperformed all other techniques. As such the modified simple ratio (mSR3) (665, 865) gave the lowest cross-validated RMSE of 0.21 g/m2 (R2 = 0.75). The PLSR resulted in the highest R2 of 0.78, and slightly higher RMSE =0.22 g/m2 than mSR3. The physical-based approach-INFORM inversion using look-up table resulted in an RMSE =0.31 g/m2, and R2 = 0.67. Although mapping CCC using these methods revealed similar spatial distribution patterns, over and underestimation of low and high CCC values were observed mainly in the statistical approaches. Further validation using in situ data from different terrestrial ecosystems is imperative for both the statistical and physical-based approaches' effectiveness to quantify CCC before selecting the best operational algorithm to map CCC from Sentinel-2 for long-term terrestrial ecosystems monitoring across the globe.  相似文献   

17.
ABSTRACT

Sustainable intensification of existing cropland is one of the most viable options for meeting the escalating food demands of the ever-increasing population in the world. Accurate geospatial data about the potential single-crop (rice-fallows) areas is vital for policymakers to target the agro-technologies for enhancing crop productivity and intensification. Therefore, the study aimed to evaluate and understand the dynamics of rice-fallows in the Odisha state of India, using SAR (Sentinel-1) and Optical (Landsat OLI) datasets. This study utilized a decision-tree approach and Principal component analysis (PCA) for the segmentation and separation of different vegetation classes. The estimated overall accuracy of extracted rice-fallow maps was in the range of 84 to 85 percent. The study identified about 2.2, 2.0 and 2.1mha of Rice-Fallows in the years 2015–16, 2016–17, and 2017–18, respectively. The combined analysis (all three years) of rice-fallow maps identified about 1.34mha of permanent rice-fallows, whereas the remaining 0.6–0.8mha area was under the current-fallow category. About 50% of the total permanent rice-fallows were detected in the rainfed areas of Mayurbhanj, Bhadrak, Bolangir, Sundargarh, Keonjhar, Baleswar, Nawarangpur and Bargarh districts. The study also illustrated the time-series profiles of SMAP (soil moisture) datasets for the ten agroclimatic zones of the Odisha, which can be utilized (along with rice-fallow maps) for the selection of crop and cultivars (e.g. short or medium duration pulses or oilseeds) to target the rice fallows. The approach utilized in the current study can be scaled up in similar areas of South and South-east Asia and Africa to identify single-crop areas for targeting improved technologies for enhanced crop productivity and intensification.  相似文献   

18.
Sentinel-2 is planned for launch in 2014 by the European Space Agency and it is equipped with the Multi Spectral Instrument (MSI), which will provide images with high spatial, spectral and temporal resolution. It covers the VNIR/SWIR spectral region in 13 bands and incorporates two new spectral bands in the red-edge region, which can be used to derive vegetation indices using red-edge bands in their formulation. These are particularly suitable for estimating canopy chlorophyll and nitrogen (N) content. This band setting is important for vegetation studies and is very similar to the ones of the Ocean and Land Colour Instrument (OLCI) on the planned Sentinel-3 satellite and the Medium Resolution Imaging Spectrometer (MERIS) on Envisat, which operated from 2002 to early 2012. This paper focuses on the potential of Sentinel-2 and Sentinel-3 in estimating total crop and grass chlorophyll and N content by studying in situ crop variables and spectroradiometer measurements obtained for four different test sites. In particular, the red-edge chlorophyll index (CIred-edge), the green chlorophyll index (CIgreen) and the MERIS terrestrial chlorophyll index (MTCI) were found to be accurate and linear estimators of canopy chlorophyll and N content and the Sentinel-2 and -3 bands are well positioned for deriving these indices. Results confirm the importance of the red-edge bands on particularly Sentinel-2 for agricultural applications, because of the combination with its high spatial resolution of 20 m.  相似文献   

19.
The goal of this study was to map rainfed and irrigated rice-fallow cropland areas across South Asia, using MODIS 250?m time-series data and identify where the farming system may be intensified by the inclusion of a short-season crop during the fallow period. Rice-fallow cropland areas are those areas where rice is grown during the kharif growing season (June–October), followed by a fallow during the rabi season (November–February). These cropland areas are not suitable for growing rabi-season rice due to their high water needs, but are suitable for a short -season (≤3 months), low water-consuming grain legumes such as chickpea (Cicer arietinum L.), black gram, green gram, and lentils. Intensification (double-cropping) in this manner can improve smallholder farmer’s incomes and soil health via rich nitrogen-fixation legume crops as well as address food security challenges of ballooning populations without having to expand croplands. Several grain legumes, primarily chickpea, are increasingly grown across Asia as a source of income for smallholder farmers and at the same time providing rich and cheap source of protein that can improve the nutritional quality of diets in the region. The suitability of rainfed and irrigated rice-fallow croplands for grain legume cultivation across South Asia were defined by these identifiers: (a) rice crop is grown during the primary (kharif) crop growing season or during the north-west monsoon season (June–October); (b) same croplands are left fallow during the second (rabi) season or during the south-east monsoon season (November–February); and (c) ability to support low water-consuming, short-growing season (≤3 months) grain legumes (chickpea, black gram, green gram, and lentils) during rabi season. Existing irrigated or rainfed crops such as rice or wheat that were grown during kharif were not considered suitable for growing during the rabi season, because the moisture/water demand of these crops is too high. The study established cropland classes based on the every 16-day 250?m normalized difference vegetation index (NDVI) time series for one year (June 2010–May 2011) of Moderate Resolution Imaging Spectroradiometer (MODIS) data, using spectral matching techniques (SMTs), and extensive field knowledge. Map accuracy was evaluated based on independent ground survey data as well as compared with available sub-national level statistics. The producers’ and users’ accuracies of the cropland fallow classes were between 75% and 82%. The overall accuracy and the kappa coefficient estimated for rice classes were 82% and 0.79, respectively. The analysis estimated approximately 22.3?Mha of suitable rice-fallow areas in South Asia, with 88.3% in India, 0.5% in Pakistan, 1.1% in Sri Lanka, 8.7% in Bangladesh, 1.4% in Nepal, and 0.02% in Bhutan. Decision-makers can target these areas for sustainable intensification of short-duration grain legumes.  相似文献   

20.
Soil moisture is a geophysical key observable for predicting floods and droughts, modeling weather and climate and optimizing agricultural management. Currently available in situ observations are limited to small sampling volumes and restricted number of sites, whereas measurements from satellites lack spatial resolution. Global navigation satellite system (GNSS) receivers can be used to estimate soil moisture time series at an intermediate scale of about 1000 m2. In this study, GNSS signal-to-noise ratio (SNR) data at the station Sutherland, South Africa, are used to estimate soil moisture variations during 2008–2014. The results capture the wetting and drying cycles in response to rainfall. The GNSS Volumetric Water Content (VWC) is highly correlated (r 2 = 0.8) with in situ observations by time-domain reflectometry sensors and is accurate to 0.05 m3/m3. The soil moisture estimates derived from the SNR of the L1 and L2P signals compared to the L2C show small differences with a RMSE of 0.03 m3/m3. A reduction in the SNR sampling rate from 1 to 30 s has very little impact on the accuracy of the soil moisture estimates (RMSE of the VWC difference 1–30 s is 0.01 m3/m3). The results show that the existing data of the global tracking network with continuous observations of the L1 and L2P signals with a 30-s sampling rate over the last two decades can provide valuable complementary soil moisture observations worldwide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号