首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temporal changes in the normalized difference vegetation index (NDVI) have been widely used in vegetation mapping due to the usefulness of NDVI data in distinguishing characteristic seasonal differences in the phenology of greenness of vegetation cover. Research has also shown that NDVI provides potential to derive meaningful metrics that describe ecosystem functions. In this paper, we have applied both unsupervised “k-means” classification and supervised minimum distance classification as derived from temporal changes in NDVI measured in 1997 along the North Eastern China Transect (NECT), and we have also utilized the same two classification methods together with NDVI-derived metrics, namely maximum NDVI, mean NDVI, NDVI amplitude, NDVI threshold, total length of growing season, fraction of growing season during greenup, rate of greenup, rate of senescence, integrated NDVI during the growing season, and integrated NDVI during greenup/integrated NDVI during senescence to map vegetation. The main objectives of this study are: (1) to test the relative performance of NDVI temporal profile metrics and NDVI-derived metrics for vegetation cover discrimination in NECT; (2) to test the relative performance of unsupervised (k-means) and supervised (minimum distance) methods for vegetation mapping; (3) to test the accuracy of the IGBP-DIS released land cover map for NECT; (4) to provide an up-to-date vegetation map for NECT. The results suggest that the classifications based on NDVI temporal profile metrics have higher accuracies than those based on any other metrics, such as NDVI-derived metrics, or all (NDVI temporal profile metrics + NDVI-derived metrics), or 15 metrics (NDVI temporal profile + Rate of greenup, Rate of senescence, and Integrated NDVI in greenup/integrated NDVI in senescence) for both methods. And among them, unsupervised k-means classification had the highest overall accuracy of 52% and Kappa coefficient of 0.2057. Both unsupervised (k-means) and supervised (minimum distance) methods achieved similar accuracies for the same metrics. The accuracy of IGBP-DIS released land cover map had an overall accuracy of 37% and a Kappa coefficient is 0.1441, and can improve to 46% by decomposing the crop/natural vegetation mosaic to cropland and other natural vegetation types. The results support using unsupervised k-means classification based on NDVI temporal profile metrics to provide an up-to-date vegetation cover classification. However, new effort is necessary in the future in order to improve the overall performance on this issue.  相似文献   

2.
We used RapidEye and Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra data to study terrain illumination effects on 3 vegetation indices (VIs) and 11 phenological metrics over seasonal deciduous forests in southern Brazil. We applied TIMESAT for the analysis of the Enhanced Vegetation Index (EVI) and the Normalized Difference Vegetation Index (NDVI) derived from the MOD13Q1 product to calculate phenological metrics. We related the VIs with the cosine of the incidence angle i (Cos i) and inspected percentage changes in VIs before and after topographic C-correction. The results showed that the EVI was more sensitive to seasonal changes in canopy biophysical attributes than the NDVI and Red-Edge NDVI, as indicated by analysis of non-topographically corrected RapidEye images from the summer and winter. On the other hand, the EVI was more sensitive to terrain illumination, presenting higher correlation coefficients with Cos i that decreased with reduction in the canopy background L factor. After C-correction, the RapidEye Red-Edge NDVI, NDVI, and EVI decreased 2%, 1%, and 13% over sunlit surfaces and increased up to 5%, 14%, and 89% over shaded surfaces, respectively. The EVI-related phenological metrics were also much more affected by topographic effects than the NDVI-derived metrics. From the set of 11 metrics, the 2 that described the period of lower photosynthetic activity and seasonal VI amplitude presented the largest correlation coefficients with Cos i. The results showed that terrain illumination is a factor of spectral variability in the seasonal analysis of phenological metrics, especially for VIs that are not spectrally normalized.  相似文献   

3.
4.
MODIS增强型植被指数EVI与NDVI初步比较   总被引:31,自引:0,他引:31  
利用东亚地区典型地带性植被和MODIS数据,对广泛使用的植被指数NDVI和新开发的增强型植被指数EVI进行了对比分析。由MODIS开发的NDVI和EVI对干旱-半湿润环境下低覆盖植被的描述能力相似,但对湿润环境下高密度植被的描述有明显差别:NDVI年时间过程的季节性不明显,表现为全年高平的曲线;而EVI仍然有季节性,表现为钟形曲线,与月平均温度关系更密切。EVI的这一特征为研究高覆盖植被的季节性变化提供了新的思路。  相似文献   

5.
Moderate Resolution Imaging Spectroradiometer (MODIS) 16-day 1-km vegetation index products, daily temperature, photosynthetically active radiation (PAR), and precipitation from 2001 to 2004 were utilized to analyze the temporal variations of the MODIS normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI), as well as their correlations with climate over the evergreen forested sites in Zhejiang-a humid subtropical region in the southeast of China. The results showed that both NDVI and EVI could discern the seasonal variation of the evergreen forests. Attributed to the sufficient precipitation in the study area, the growth of vegetation is mainly controlled by energy; as a result, NDVI, and especially EVI, is more correlated with temperature and PAR than precipitation. Compared with NDVI, EVI is more sensitive to climate condition and is a better indicator to study vegetation variations in the study region  相似文献   

6.
为了研究河南省植被指数变化特征,采用最大值合成法(MVC)对MODIS-NDVI和MODIS-EVI两种指数产品进行处理,然后进行时空变化分析,得到归一化植被指数(NDVI)与增强型植被指数(EVI)两种指数产品的特点,实验结果表明:1)在时间分布特征上,两种植被指数均随季节呈现规律性变化,并且最大值均出现在7月或8月,但EVI相比NDVI更具季节性规律,能够更好地反映高植被覆盖区的植被季节性变化特征;2)在空间分布特征上,两种植被指数的区域性都非常明显,但在高植被覆盖区,NDVI出现饱和现象,而EVI未出现饱和现象。  相似文献   

7.
Recent studies in Amazonian tropical evergreen forests using the Multi-angle Imaging SpectroRadiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) have highlighted the importance of considering the view-illumination geometry in satellite data analysis. However, contrary to the observed for evergreen forests, bidirectional effects have not been evaluated in Brazilian subtropical deciduous forests. In this study, we used MISR data to characterize the reflectance and vegetation index anisotropies in subtropical deciduous forest from south Brazil under large seasonal solar zenith angle (SZA) variation and decreasing leaf area index (LAI) from the summer to winter. MODIS data were used to observe seasonal changes in the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). Topographic effects on their determination were inspected by dividing data from the summer to winter and projecting results over a digital elevation model (DEM). By using the PROSAIL, we investigated the relative contribution of LAI and SZA to vegetation indices (VI) of deciduous forest. We also simulated and compared the MISR NDVI and EVI response of subtropical deciduous and tropical evergreen forests as a function of the large seasonal SZA amplitude of 33°. Results showed that the MODIS-MISR NDVI and EVI presented higher values in the summer and lower ones in the winter with decreasing LAI and increasing SZA or greater amounts of canopy shadows viewed by the sensors. In the winter, NDVI reduced local topographic effects due to the red-near infrared (NIR) band normalization. However, the contrary was observed for the three-band EVI that enhanced local variations in shaded and sunlit surfaces due to its strong dependence on the NIR band response. The reflectance anisotropy of the MISR bands increased from the summer to winter and was stronger in the backscattering direction at large view zenith angles (VZA). EVI was much more anisotropic than NDVI and the anisotropy increased from the summer to winter. It also increased from the forward scatter to the backscattering direction with the predominance of sunlit canopy components viewed by MISR, especially at large VZA. Modeling PROSAIL results confirmed the stronger anisotropy of EVI than NDVI for the subtropical deciduous and tropical evergreen forests. PROSAIL showed that LAI and SZA are coupled factors to decrease seasonally the VIs of deciduous forest with the first one having greater importance than the latter. However, PROSAIL seasonal variations in VIs were much smaller than those observed with MODIS data probably because the effects of shadows in heterogeneous canopy structures or/and cast by emergent trees and from local topography were not modeled.  相似文献   

8.
Satellite-based remote sensed phenology has been widely used to assess global climate change. However, it is constrained by uncertain linkages with photosynthesis activity. Two dynamic threshold methods were employed to retrieve spring phenology metrics from four Moderate Resolution Imaging Spectroradiometer (MODIS) products, including fraction of Absorbed Photosynthetically Active Radiation (fAPAR), Leaf Area Index (LAI), Normalized Difference Vegetation Index (NDVI), and Enhanced Vegetation Index (EVI) for three temperate deciduous broadleaf forests in North America between 2001 and 2009. These MODIS-based spring phenology metrics were subsequently linked to the photosynthetic curves (daily gross primary productivity, GPP) measured by an eddy covariance flux tower. The 20% dynamic threshold spring onset metrics from MODIS products were closer to the photosynthesis onset metrics at the date of 2% GPP increase for NDVI and fAPAR, and closer to the date of 5% and 10% increase of GPP for EVI and LAI, respectively. The 50% dynamic threshold onset metrics were closer to the photosynthesis onset metrics at the date of 10% GPP increase for NDVI, and closer to the date of 20% GPP increase for fAPAR, LAI and EVI, respectively. These results can improve our knowledge on the photosynthesis activity status of remotely sensed spring phenology metrics.  相似文献   

9.
以山东省为研究区域,利用2009年9月MODIS的8 d合成波段反射率产品MOD09,选择特征变量植被指数(NDVI、EVI)、NDWI、NDMI、NDSI及辅助信息DEM,通过选取其中的影像特征组合来确定分类方案,构建各波段组合的CART决策树,对MODIS影像进行分类,得到CART决策树的最优波段组合。结果表明,特征变量DEM、NDVI、EVI对分类结果贡献较大;将CART决策树的分类结果与其相对应的最大似然分类结果进行比较可知,基于影像多特征的CART决策树分类方法能明显提高分类精度。  相似文献   

10.
Time series data on cropping pattern at disaggregated level were analysed and its implications on geospatial drought assessment were demonstrated. An index of Cropping Pattern Dissimilarity (CP-DI) between a pair of years, developed in this study, proved that the cropping pattern of a year has a higher degree of similarity with that of recent past years only and tends to be dissimilar with longer time difference. The temporal divergence in cropping pattern has direct implications on geospatial approach of drought assessment, in which, time series NDVI data are compared for drought interpretation. It was found that, seasonal NDVI profiles of drought year and normal year did not show any anomaly when the cropping patterns were dissimilar and two normal years having dissimilar cropping pattern showed different NDVI profiles. Therefore, it is suggested that such temporal comparisons of NDVI are better restricted to recent past years to achieve more objective interpretation.  相似文献   

11.
A spectral linear-mixing model using Landsat ETM+ imagery was undertaken to estimate fraction images of green vegetation, soil and shade in an indigenous land area in the state of Mato Grosso in the central-western region of Brazil. The fraction images were used to classify different types of land use and vegetation cover. The fraction images were classified by the following two methods: (a) application of a segmentation based on the region-growing technique; and (b) grouping of the regions segmented using the per-region unsupervised classifier named ISOSEG. Adopting a 75% threshold, ISOSEG generated 44 clusters that were grouped into eight land-use and vegetation-cover classes. The mapping achieved an average accuracy of 83%, showing that the methodology is efficient in mapping areas of great land-use and vegetation-cover diversity, such as that found in the Brazilian cerrado (savanna).  相似文献   

12.
In this study, we assess the potential of X-band Interferometric Synthetic Aperture Radar imagery for automated classification of sea ice over the Baltic Sea. A bistatic SAR scene acquired by the TanDEM-X mission over the Bothnian Bay in March of 2012 was used in the analysis. Backscatter intensity, interferometric coherence magnitude, and interferometric phase have been used as informative features in several classification experiments. Various combinations of classification features were evaluated using Maximum likelihood (ML), Random Forests (RF) and Support Vector Machine (SVM) classifiers to achieve the best possible discrimination between open water and several sea ice types (undeformed ice, ridged ice, moderately deformed ice, brash ice, thick level ice, and new ice). Adding interferometric phase and coherence-magnitude to backscatter-intensity resulted in improved overall classification per- formance compared to using only backscatter-intensity. The RF algorithm appeared to be slightly superior to SVM and ML due to higher overall accuracies, however, at the expense of somewhat longer processing time. The best overall accuracy (OA) for three methodologies were achieved using combination of all tested features were 71.56, 72.93, and 72.91% for ML, RF and SVM classifiers, respectively. Compared to OAs of 62.28, 66.51, and 63.05% using only backscatter intensity, this indicates strong benefit of SAR interferometry in discriminating different types of sea ice. In contrast to several earlier studies, we were particularly able to successfully discriminate open water and new ice classes.  相似文献   

13.
地表生物量对农作物估产、植被长势评估具有很重要的意义。随着遥感技术的发展与应用,遥感为生物量估算提供了一种新的手段。本文以唐山市为例,利用小麦种植区的MODIS遥感影像数据和同期野外调查获得的16组32个生物量数据,对比分析了归一化植被指数(NDVI)、增强型植被指数(EVI)与小麦生物量多个回归方程的相关系数,进而建立了NDVI、EVI与小麦生物量的线性回归模型。结果显示,使用MODIS数据的植被指数能够很好地对研究区地上生物量进行估算,其中使用EVI的三次函数模型拟合精度最高,并且对每组数据进行平均处理会使模型精度进一步提高。  相似文献   

14.
This study investigated rice cropping practices and rice growing areas in the Vietnamese Mekong Delta using MODIS 250 × 250 m normalized difference vegetation index (NDVI) data acquired during the 2002 and 2007 rice cropping seasons. Data processing was conducted in five main steps: (1) constructing time-series MODIS NDVI data; (2) noise filtering of the time-series MODIS NDVI data using empirical mode decomposition (EMD); (3) extracting and evaluating phenological rice training patterns from the smooth time profiles of NDVI; (4) classifying rice cropping systems using support vector machines (SVMs); and (5) conducting an error analysis using ground reference data and government rice statistics. The results indicated that EMD was an efficient filter for noise removal in the time-series MODIS NDVI data. The filtered temporal NDVI profile characterized the distinct behaviors of the rice cropping systems. The estimated sowing and harvesting dates were compared with the field-survey data and indicated root mean square error (RMSE) values of 7.5 and 8.2 days, respectively. The comparison results between the 2002 classification map and the ground reference data indicated that the overall accuracy for the 2002 data was 92.9% with a Kappa coefficient of 0.89, while in 2007 these values were 93.8% and 0.90, respectively. At the district level, there was good agreement between the MODIS-based estimated areas and government rice statistics for 2002 and 2007 (R 2 ≥ 0.85). An investigation of changes in cropping practices from 2002 to 2007 showed that 12.9% of the area used for double-cropped irrigated rice in 2002 had been converted to triple-cropped irrigated rice by 2007, whereas 27.4% of the area used for triple-cropped irrigated rice in 2002 had been converted to double-cropped irrigated rice by 2007.  相似文献   

15.
The vegetation index is derived using many remote sensing sensors. Vegetation Index is extensively used and remote sensing has become the primary data source. Number of vegetation indices (VIs) have been developed during the past decades in order to assess the state of vegetation qualitatively and quantitatively. Analysis of vegetation indices has been carried out by many investigators scaling from regional level to global level using the remote sensing data of varying spatial, temporal and radiometric resolutions. There are as many as 14 VIs in use. Globally operational algorithms for generation of NDVI have utilized digital counts, at sensor radiances, ‘normalized’ reflectance (top of the atmosphere), and more recently, partially atmospheric corrected (ozone absorption and molecular scattering) reflectance. Presently NDVI and EVI are standard MODIS data products which are widely used by the scientific community for environmental studies. The OCM sensor in Oceansat 2 is designed for ocean colour studies. The OCM sensor has been used for studying ocean phytoplankton, suspended sediments and aerosol optical depth by many investigators. In addition to its capability of studying the ocean surface, OCM sensor has also the potential to study the land surface features. In a past EVI has been retrieved using OCM sensor of Oceansat 1. However, there is slight change in the band width of Oceansat 2—OCM sensor compared with OCM of Oceansat 1 sensor. In the present paper an attempt has been made to derive EVI using Oceansat 2 OCM sensor and the results have been compared with MODIS data. The enhanced vegetation index (EVI) is calculated using the reflectance values obtained after removing molecular scattering and ozone absorption component from the total radiance detected by the sensor. The band-2, Band-3, band-6 and band-8 corresponding to Blue, Red and Infrared part of the visible spectrum have been used to determine EVI. The result shows that Oceansat 2 derived EVI and MODIS derived EVI are well correlated.  相似文献   

16.
The “blooming desert”, or the explosive development and flowering of ephemeral herbaceous and some woody desert species during years with abnormally high accumulated rainfall, is a spectacular biological phenomenon of the hyper-arid Atacama Desert (northern Chile) attracting botanists, ecologists, geo-scientists, and the general public from all over the world. However, the number of “blooming deserts”, their geographical distribution and spatio-temporal patterns have not been quantitatively assessed to date. Here, we used NDVI data from the Global Inventory Modeling and Mapping Studies (GIMMS) project to reconstruct the annual land surface phenology (LSP) of the Atacama Desert using a non-parametric statistical approach. From the reconstructed LSP, we detected the “blooming deserts” as positive NDVI anomalies and assessed three dimensions of the events: their temporal extent, intensity of “greening” and spatial extent. We identified 13 “blooming deserts” between 1981 and 2015, of which three (1997–98, 2002–03, and 2011) can be considered major events according to these metrics. The main event occurred in 2011, spanning 180 days between July and December 2011, and spread over 11,136 km2 of Atacama dry plains. “Blooming deserts” in Atacama have been triggered by the accumulation of precipitation during a period of 2 to 12 months before and during the events. The proposed three-dimensional approach allowed us to characterize different types of “blooming deserts”: with longer episodes or larger spatial distribution or with different “greening” intensities. Its flexibility to reconstruct different LSP and detect anomalies makes this method a useful tool to study these rare phenomena in other deserts in the world also.  相似文献   

17.
融合时间序列环境卫星数据与物候特征的水稻种植区提取   总被引:3,自引:0,他引:3  
柳文杰  曾永年  张猛 《遥感学报》2018,22(3):381-391
获取高精度的区域水稻种植面积对于农业规划、配置与决策具有重要意义。区域尺度的水稻面积获取依赖于高时空分辨率影像,但受卫星回访周期和气候影响,难以获取足够时间序列的高时空分辨率影像,从而影响水稻种植面积遥感提取的精度。为此,提出适应于中国南方多雨云天气地区,基于国产环境卫星(HJ-1A/1B)与MODIS融合数据的水稻种植面积提取的新方法。以洞庭湖区为实验区,利用STARFM模型融合环境卫星NDVI数据与MODIS13Q1数据,获取时间序列的环境卫星NDVI数据,利用水稻关键期的NDVI数据结合物候特征参数对水稻种植区域进行提取。结果表明,该方法能有效提取区域水稻种植的面积,水稻种植面积提取的总体精度与Kappa系数分别达到91.71%与0.9024,分类结果明显优于仅采用多光谱影像或NDVI数据。该研究为中国南方多雨云天气地区水稻种植面积提取提供了有效的方法。  相似文献   

18.
In this paper, we developed a more sophisticated method for detection and estimation of mixed paddy rice agriculture from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data. Previous research demonstrated that MODIS data can be used to map paddy rice fields and to distinguish rice from other crops at large, continental scales with combined Enhanced Vegetation Index (EVI) and Land Surface Water Index (LSWI) analysis during the flooding and rice transplanting stage. Our approach improves upon this methodology by incorporating mixed rice cropping patterns that include single-season rice crops, early-season rice, and late-season rice cropping systems. A variable EVI/LSWI threshold function, calibrated to more local rice management practices, was used to recognize rice fields at the flooding stage. We developed our approach with MODIS data in Hunan Province, China, an area with significant flooded paddy rice agriculture and mixed rice cropping patterns. We further mapped the aerial coverage and distribution of early, late, and single paddy rice crops for several years from 2000 to 2007 in order to quantify temporal trends in rice crop coverage, growth and management systems. Our results were validated with finer resolution (2.5 m) Satellite Pour l’Observation de la Terre 5 High Resolution Geometric (SPOT 5 HRG) data, land-use data at the scale of 1/10,000 and with county-level rice area statistical data. The results showed that all three paddy rice crop patterns could be discriminated and their spatial distribution quantified. We show the area of single crop rice to have increased annually and almost doubling in extent from 2000 to 2007, with simultaneous, but unique declines in the extent of early and late paddy rice. These results were significantly positive correlated and consistent with agricultural statistical data at the county level (P < 0.01).  相似文献   

19.
Vegetation phenology has a great impact on land-atmosphere interactions like carbon cycling, albedo, and water and energy exchanges. To understand and predict these critical land-atmosphere feedbacks, it is crucial to measure and quantify phenological responses to climate variability, and ultimately climate change. Coarse-resolution sensors such as MODIS and AVHRR have been useful to study vegetation phenology from regional to global scales. These sensors are, however, not capable of discerning phenological variation at moderate spatial scales. By offering increased observation density and higher spatial resolution, the combination of Landsat and Sentinel-2 time series might provide the opportunity to overcome this limitation.In this study, we analyzed the potential of combined Sentinel-2 and Landsat time series for estimating start of season (SOS) of broadleaf forests across Germany for the year 2018. We tested two common statistical modeling approaches (logistic and generalized additive models using thin plate splines) and the two most commonly used vegetation indices, the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI).We found strong agreement between SOS estimates from logistic and spline models (rEVI = 0.86; rNDVI = 0.65), whereas agreement was higher for EVI than for NDVI (RMSDEVI = 3.07, RMSDNDVI = 5.26 days). The choice of vegetation index thus had a higher impact on the results than the fitting method. The EVI-based SOS also showed higher correlation with ground observations compared to NDVI (rEVI = 0.51, rNDVI = 0.42). Data density played an important role in estimating land surface phenology. Models combining Sentinel-2A/B, with an average cloud-free observation frequency of 12 days, were largely consistent with the combined Landsat and Sentinel-2 models, suggesting that Sentinel-2A/B may be sufficient to capture SOS for most areas in Germany in 2018. However, in non-overlapping swath areas and mountain areas, observation frequency was significantly lower, underlining the need to combine Landsat and Sentinel-2 for consistent SOS estimates over large areas. Our study demonstrates that estimating SOS of temperate broadleaf forests at medium spatial resolution has become feasible with combined Landsat and Sentinel-2 time series.  相似文献   

20.
通过对比分析MODIS数据的标准归一化差分植被指数、土壤调节植被指数及增强型植被指数的特点,最终选择标准归一化差分植被指数(NDVI)对工程区进行监测。并阐述了最大合成法合成MODIS植被指数是一种行之有效的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号