首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高光谱-LiDAR多级融合城区地表覆盖分类   总被引:3,自引:3,他引:0  
城市地区地表覆盖分类在城市研究中是一个十分重要的方向。遥感作为获取地物物理属性的一种重要技术手段,已初步应用于分类研究中。然而,随着城镇化的不断推进,城市内部地物类型越来越复杂,单一的遥感影像已无法满足城区地表覆盖分类中高精度的要求。高光谱影像和LiDAR数据能够分别表征地物的光谱信息及高程而被广泛应用。因此,根据两者之间互补的优势,本文提出了基于高光谱影像和LiDAR数据多级融合的城区地表覆盖分类方法。首先对两幅影像分别进行特征提取,将提取到的光谱、空间及高程信息进行层叠实现特征级融合。对得到的特征影像的所有像素点进行分类,然后利用LiDAR点云数据提取的建筑物掩膜,对非建筑物部分进行分类,再次实现特征级融合,以此改善建筑物区域与非建筑物区域的混淆。然后将未使用掩膜得到的分类结果与利用掩膜得到的分类结果进行投票实现决策级融合。最后利用条件随机场模型对分类结果进行后处理操作,达到平滑图像去除噪声点的目的。  相似文献   

2.
Abstract

This study proposes the development of a multi-sensor, multi-spectral composite from Landsat-8 and Sentinel-2A imagery referred to as ‘LSC’ for land use land cover (LULC) characterisation and compared with respect to the hyperspectral imagery of the EO1: Hyperion sensor. A three-stage evaluation was implemented based on the similarity observed in the spectral response, supervised classification results and endmember abundance information obtained using linear spectral unmixing. The study was conducted for two areas located around Dhundi and Rohtak in Himachal Pradesh and Haryana, respectively. According to the analysis of the spectral reflectance curves, the spectral response of the LSC is capable of identifying major LULC classes. The kappa accuracy of 0.85 and 0.66 was observed for the classification results from LSC and Hyperion data for Dhundi and Rohtak datasets, respectively. The coefficient of determination was found to be above 0.9 for the LULC classes in both the datasets as compared to Hyperion, indicating a good agreement. Thus, these three-stage results indicated the significant potential of a composite derived from freely available multi-sensor multi-spectral imagery as an alternative to hyperspectral imagery for LULC studies.  相似文献   

3.
Information on Earth's land surface cover is commonly obtained through digital image analysis of data acquired from remote sensing sensors. In this study, we evaluated the use of diverse classification techniques in discriminating land use/cover types in a typical Mediterranean setting using Hyperion imagery. For this purpose, the spectral angle mapper (SAM), the object-based and the non-linear spectral unmixing based on artificial neural networks (ANNs) techniques were applied. A further objective had been to investigate the effect of two approaches for training sites selection in the SAM classification, namely of the pixel purity index (PPI) and of the direct selection of training points from the Hyperion imagery assisted by a QuickBird imagery and field-based training sites. Object-based classification outperformed the other techniques with an overall accuracy of 83%. Sub-pixel classification based on the ANN showed an overall accuracy of 52%, very close to that of SAM (48%). SAM applied using the training sites selected directly from the Hyperion imagery supported by the QuickBird image and the field visits returned an increase accuracy by 16%. Yet, all techniques appeared to suffer from the relatively low spatial resolution of the Hyperion imagery, which affected the spectral separation among the land use/cover classes.  相似文献   

4.
The availability of freely available moderate-to-high spatial resolution (10–30 m) satellite imagery received a major boost with the recent launch of the Sentinel-2 sensor by the European Space Agency. Together with Landsat, these sensors provide the scientific community with a wide range of spatial, spectral, and temporal properties. This study compared and explored the synergistic use of Landsat-8 and Sentinel-2 data in mapping land use and land cover (LULC) in rural Burkina Faso. Specifically, contribution of the red-edge bands of Sentinel-2 in improving LULC mapping was examined. Three machine-learning algorithms – random forest, stochastic gradient boosting, and support vector machines – were employed to classify different data configurations. Classification of all Sentinel-2 bands as well as Sentinel-2 bands common to Landsat-8 produced an overall accuracy, that is 5% and 4% better than Landsat-8. The combination of Landsat-8 and Sentinel-2 red-edge bands resulted in a 4% accuracy improvement over that of Landsat-8. It was found that classification of the Sentinel-2 red-edge bands alone produced better and comparable results to Landsat-8 and the other Sentinel-2 bands, respectively. Results of this study demonstrate the added value of the Sentinel-2 red-edge bands and encourage multi-sensoral approaches to LULC mapping in West Africa.  相似文献   

5.
LiDAR data are becoming increasingly available, which has opened up many new applications. One such application is crop type mapping. Accurate crop type maps are critical for monitoring water use, estimating harvests and in precision agriculture. The traditional approach to obtaining maps of cultivated fields is by manually digitizing the fields from satellite or aerial imagery and then assigning crop type labels to each field - often informed by data collected during ground and aerial surveys. However, manual digitizing and labeling is time-consuming, expensive and subject to human error. Automated remote sensing methods is a cost-effective alternative, with machine learning gaining popularity for classifying crop types. This study evaluated the use of LiDAR data, Sentinel-2 imagery, aerial imagery and machine learning for differentiating five crop types in an intensively cultivated area. Different combinations of the three datasets were evaluated along with ten machine learning. The classification results were interpreted by comparing overall accuracies, kappa, standard deviation and f-score. It was found that LiDAR data successfully differentiated between different crop types, with XGBoost providing the highest overall accuracy of 87.8%. Furthermore, the crop type maps produced using the LiDAR data were in general agreement with those obtained by using Sentinel-2 data, with LiDAR obtaining a mean overall accuracy of 84.3% and Sentinel-2 a mean overall accuracy of 83.6%. However, the combination of all three datasets proved to be the most effective at differentiating between the crop types, with RF providing the highest overall accuracy of 94.4%. These findings provide a foundation for selecting the appropriate combination of remotely sensed data sources and machine learning algorithms for operational crop type mapping.  相似文献   

6.
Image classification from remote sensing is becoming increasingly urgent for monitoring environmental changes. Exploring effective algorithms to increase classification accuracy is critical. This paper explores the use of multispectral HJ1B and ALOS (Advanced Land Observing Satellite) PALSAR L-band (Phased Array type L-band Synthetic Aperture Radar) for land cover classification using learning-based algorithms. Pixel-based and object-based image analysis approaches for classifying HJ1B data and the HJ1B and ALOS/PALSAR fused-images were compared using two machine learning algorithms, support vector machine (SVM) and random forest (RF), to test which algorithm can achieve the best classification accuracy in arid and semiarid regions. The overall accuracies of the pixel-based (Fused data: 79.0%; HJ1B data: 81.46%) and object-based classifications (Fused data: 80.0%; HJ1B data: 76.9%) were relatively close when using the SVM classifier. The pixel-based classification achieved a high overall accuracy (85.5%) using the RF algorithm for classifying the fused data, whereas the RF classifier using the object-based image analysis produced a lower overall accuracy (70.2%). The study demonstrates that the pixel-based classification utilized fewer variables and performed relatively better than the object-based classification using HJ1B imagery and the fused data. Generally, the integration of the HJ1B and ALOS/PALSAR imagery can improve the overall accuracy of 5.7% using the pixel-based image analysis and RF classifier.  相似文献   

7.
ABSTRACT

In recent years, the data science and remote sensing communities have started to align due to user-friendly programming tools, access to high-end consumer computing power, and the availability of free satellite data. In particular, publicly available data from the European Space Agency’s Sentinel missions have been used in various remote sensing applications. However, there is a lack of studies that utilize these data to assess the performance of machine learning algorithms in complex boreal landscapes. In this article, I compare the classification performance of four non-parametric algorithms: support vector machines (SVM), random forests (RF), extreme gradient boosting (Xgboost), and deep learning (DL). The study area chosen is a complex mixed-use landscape in south-central Sweden with eight land-cover and land-use (LCLU) classes. The satellite imagery used for the classification were multi-temporal scenes from Sentinel-2 covering spring, summer, autumn and winter conditions. Using stratified random sampling, each LCLU class was allocated 1477 samples, which were divided into training (70%) and evaluation (30%) subsets. Accuracy was assessed through metrics derived from an error matrix, but primarily overall accuracy was used in allocating algorithm hierarchy. A two-proportion Z-test was used to compare the proportions of correctly classified pixels of the algorithms and a McNemar’s chi-square test was used to compare class-wise predictions. The results show that the highest overall accuracy was produced by support vector machines (0.758 ± 0.017), closely followed by extreme gradient boosting (0.751 ± 0.017), random forests (0.739 ± 0.018), and finally deep learning (0.733 ± 0.0023). The Z-test comparison of classifiers showed that a third of algorithm pairings were statistically different. On a class-wise basis, McNemar’s test results showed that 62% of class-wise predictions were significant from one another at the 5% level or less. Variable importance metrics show that nearly half of the top twenty Sentinel-2 bands belonged to the red edge (25%) and shortwave infrared (23%) portions of the electromagnetic spectrum, and were dominated by scenes from spring (38%) and summer (40%). The results are discussed within the scope of recent studies involving machine learning and Sentinel-2 data and key knowledge gaps identified. The article concludes with recommendations for future research.  相似文献   

8.
Tree species composition of forest stand is an important indicator of forest inventory attributes for assessing ecosystem health, understanding successional processes, and digitally displaying forest biodiversity. In this study, we acquired high spatial resolution multispectral and RGB imagery over a subtropical natural forest in southwest China using a fixed-wing UAV system. Digital aerial photogrammetric (DAP) technique was used to generate multi-spectral and RGB derived point clouds, upon which individual tree crown (ITC) delineation algorithms and a machine learning classifier were used to identify dominant tree species. To do so, the structure-from-motion method was used to generate RGB imagery-based DAP point clouds. Then, three ITC delineation algorithms (i.e., point cloud segmentation (PCS), image-based multiresolution segmentation (IMRS), and advanced multiresolution segmentation (AMRS)) were used and assessed for ITC detection. Finally, tree-level metrics (i.e., multispectral, texture and point cloud metrics) were used as metrics in the random forest classifier used to classify eight dominant tree species. Results indicated that the accuracy of the AMRS ITC segmentation was highest (F1-score = 82.5 %), followed by the segmentation using PCS (F1-score = 79.6 %), the IMRS exhibited the lowest accuracy (F1-score = 78.6 %); forest types classification (coniferous and deciduous) had a higher accuracy than the classification of all eight tree species, and the combination of spectral, texture and structural metrics had the highest classification accuracy (overall accuracy = 80.20 %). In the classification of both eight tree species and two forest types, the classification accuracies were lowest when only using spectral metrics, indicated that the texture metrics and point cloud structural metrics had a positive impact on the classification (the overall accuracy and kappa accuracy increased by 1.49–4.46 % and 2.86–6.84 %, respectively).  相似文献   

9.
The Sentinel-2 Multi-Spectral Imager (MSI) has three spectral bands centered at 705, 740, and 783 nm wavelengths that exploit the red-edge information useful for quantifying plant biochemical traits. This sensor configuration is expected to improve the prediction accuracy of vegetation chlorophyll content. In this work, we assessed the performance of several statistical and physical-based methods in retrieving canopy chlorophyll content (CCC) from Sentinel-2 in a heterogeneous mixed mountain forest. Amongst the algorithms presented in the literature, 13 different vegetation indices (VIs), a non-parametric statistical approach, and two radiative transfer models (RTM) were used to assess the CCC prediction accuracy. A field campaign was conducted in July 2017 to collect in situ measurements of CCC in Bavarian forest national park, and the cloud-free Sentinel-2 image was acquired on 13 July 2017. The leave-one-out cross-validation technique was used to compare the VIs and the non-parametric approach. Whereas physical-based methods were calibrated using simulated data and validated using the in situ reference dataset. The statistical-based approaches, such as the modified simple ratio (mSR) vegetation index and the partial least square regression (PLSR) outperformed all other techniques. As such the modified simple ratio (mSR3) (665, 865) gave the lowest cross-validated RMSE of 0.21 g/m2 (R2 = 0.75). The PLSR resulted in the highest R2 of 0.78, and slightly higher RMSE =0.22 g/m2 than mSR3. The physical-based approach-INFORM inversion using look-up table resulted in an RMSE =0.31 g/m2, and R2 = 0.67. Although mapping CCC using these methods revealed similar spatial distribution patterns, over and underestimation of low and high CCC values were observed mainly in the statistical approaches. Further validation using in situ data from different terrestrial ecosystems is imperative for both the statistical and physical-based approaches' effectiveness to quantify CCC before selecting the best operational algorithm to map CCC from Sentinel-2 for long-term terrestrial ecosystems monitoring across the globe.  相似文献   

10.
This paper discusses the development and implementation of a method that can be used with multi-decadal Landsat data for computing general coastal US land use and land cover (LULC) maps consisting of seven classes. With Mobile Bay, Alabama as the study region, the method that was applied to derive LULC products for nine dates across a 34-year time span. Classifications were computed and refined using decision rules in conjunction with unsupervised classification of Landsat data and Coastal Change and Analysis Program value-added products. Each classification’s overall accuracy was assessed by comparing stratified random locations to available high spatial resolution satellite and aerial imagery, field survey data and raw Landsat RGBs. Overall classification accuracies ranged from 83 to 91% with overall κ statistics ranging from 0.78 to 0.89. Accurate classifications were computed for all nine dates, yielding effective results regardless of season and Landsat sensor. This classification method provided useful map inputs for computing LULC change products.  相似文献   

11.
Multitemporal land cover classification over urban areas is challenging, especially when using heterogeneous data sources with variable quality attributes. A prominent challenge is that classes with similar spectral signatures (such as trees and grass) tend to be confused with one another. In this paper, we evaluate the efficacy of image point cloud (IPC) data combined with suitable Bayesian analysis based time-series rectification techniques to improve the classification accuracy in a multitemporal context. The proposed method uses hidden Markov models (HMMs) to rectify land covers that are initially classified by a random forest (RF) algorithm. This land cover classification method is tested using time series of remote sensing data from a heterogeneous and rapidly changing urban landscape (Kuopio city, Finland) observed from 2006 to 2014. The data consisted of aerial images (5 years), Landsat data (all 9 years) and airborne laser scanning data (1 year). The results of the study demonstrate that the addition of three-dimensional image point cloud data derived from aerial stereo images as predictor variables improved overall classification accuracy, around three percentage points. Additionally, HMM-based post processing reduces significantly the number of spurious year-to-year changes. Using a set of 240 validation points, we estimated that this step improved overall classification accuracy by around 3.0 percentage points, and up to 6 to 10 percentage points for some classes. The overall accuracy of the final product was 91% (kappa = 0.88). Our analysis shows that around 1.9% of the area around Kuopio city, representing a total area of approximately 0.61 km2, experienced changes in land cover over the nine years considered.  相似文献   

12.
The aim of the study was to (1) examine the classification of forest land using airborne laser scanning (ALS) data, satellite images and sample plots of the Finnish National Forest Inventory (NFI) as training data and to (2) identify best performing metrics for classifying forest land attributes. Six different schemes of forest land classification were studied: land use/land cover (LU/LC) classification using both national classes and FAO (Food and Agricultural Organization of the United Nations) classes, main type, site type, peat land type and drainage status. Special interest was to test different ALS-based surface metrics in classification of forest land attributes. Field data consisted of 828 NFI plots collected in 2008–2012 in southern Finland and remotely sensed data was from summer 2010. Multinomial logistic regression was used as the classification method. Classification of LU/LC classes were highly accurate (kappa-values 0.90 and 0.91) but also the classification of site type, peat land type and drainage status succeeded moderately well (kappa-values 0.51, 0.69 and 0.52). ALS-based surface metrics were found to be the most important predictor variables in classification of LU/LC class, main type and drainage status. In best classification models of forest site types both spectral metrics from satellite data and point cloud metrics from ALS were used. In turn, in the classification of peat land types ALS point cloud metrics played the most important role. Results indicated that the prediction of site type and forest land category could be incorporated into stand level forest management inventory system in Finland.  相似文献   

13.
Sentinel-1A C-SAR and Sentinel-2A MultiSpectral Instrument (MSI) provide data applicable to the remote identification of crop type. In this study, six crop types (beans, beetroot, grass, maize, potato, and winter wheat) were identified using five C-SAR images and one MSI image acquired during the 2016 growing season. To assess the potential for accurate crop classification with existing supervised learning models, the four different approaches namely kernel-based extreme learning machine (KELM), multilayer feedforward neural networks, random forests, and support vector machine were compared. Algorithm hyperparameters were tuned using Bayesian optimization. Overall, KELM yielded the highest performance, achieving an overall classification accuracy of 96.8%. Evaluation of the sensitivity of classification models and relative importance of data types using data-based sensitivity analysis showed that the set of VV polarization data acquired on 24 July (Sentinel-1A) and band 4 data (Sentinel-2A) had the greatest potential for use in crop classification.  相似文献   

14.
The knowledge of the surface temperature is important to a range of issues and themes in earth sciences central to urban climatology, global environmental change and human-environment interactions. The study analyses land surface temperature (LST) estimation using temporal ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) datasets (day time and night time) over National Capital Territory Delhi using the surface emissivity information at pixel level. The spatial variations of LST over different land use/land cover (LU/LC) at day time and night time were analysed and relationship between the spatial distribution of LU/LC and vegetation density with LST was developed. Minimum noise fraction (MNF) was used for LU/LC classification which gave better accuracy than classification with original bands. The satellite derived emissivity values were found to be in good agreement with literature and field measured values. It was observed that fallow land, waste land/bare soil, commercial/industrial and high dense built-up area have high surface temperature values during day time, compared to those over water bodies, agricultural cropland, and dense vegetation. During night time high surface temperature values are found over high dense built-up, water bodies, commercial/industrial and low dense built-up than over fallow land, dense vegetation and agricultural cropland. It was found that there is a strong negative correlation between surface temperature and NDVI over dense vegetation, sparse vegetation and low dense built-up area while with fraction vegetation cover, it indicates a moderate negative correlation. The results suggest that the methodology is feasible to estimate NDVI, surface emissivity and surface temperature with reasonable accuracy over heterogeneous urban area. The analysis also indicates that the relationship between the spatial distribution of LU/LC and vegetation density is closely related to the development of urban heat islands (UHI).  相似文献   

15.
The invasion by Striga in most cereal crop fields in Africa has posed a significant threat to food security and has caused substantial socioeconomic losses. Hyperspectral remote sensing is an effective means to discriminate plant species, providing possibilities to track such weed invasions and improve precision agriculture. However, essential baseline information using remotely sensed data is missing, specifically for the Striga weed in Africa. In this study, we investigated the spectral uniqueness of Striga compared to other co-occurring maize crops and weeds. We used the in-situ FieldSpec® Handheld 2™ analytical spectral device (ASD), hyperspectral data and their respective narrow-band indices in the visible and near infrared (VNIR) region of the electromagnetic spectrum (EMS) and four machine learning discriminant algorithms (i.e. random forest: RF, linear discriminant analysis: LDA, gradient boosting: GB and support vector machines: SVM) to discriminate among different levels of Striga (Striga hermonthica) infestations in maize fields in western Kenya. We also tested the utility of Sentinel-2 waveband configurations to map and discriminate Striga infestation in heterogenous cereal crop fields. The in-situ hyperspectral reflectance data were resampled to the spectral waveband configurations of Sentinel-2 using published spectral response functions. We sampled and detected seven Striga infestation classes based on three flowering Striga classes (low, moderate and high) against two background endmembers (soil and a mixture of maize and other co-occurring weeds). A guided regularized random forest (GRRF) algorithm was used to select the most relevant hyperspectral wavebands and vegetation indices (VIs) as well as for the resampled Sentinel-2 multispectral wavebands for Striga infestation discrimination. The performance of the four discriminant algorithms was compared using classification accuracy assessment metrics. We were able to positively discriminate Striga from the two background endmembers i.e. soil and co-occurring vegetation (maize and co-occurring weeds) based on the few GRRF selected hyperspectral vegetation indices and the GRRF selected resampled Sentinel-2 multispectral bands. RF outperformed all the other discriminant methods and produced the highest overall accuracy of 91% and 85%, using the hyperspectral and resampled Sentinel-2 multispectral wavebands, respectively, across the four different discriminant models tested in this study. The class with the highest detection accuracy across all the four discriminant algorithms, was the “exclusively maize and other co-occurring weeds” (>70%). The GRRF reduced the dimensionality of the hyperspectral data and selected only 9 most relevant wavebands out of 750 wavebands, 6 VIs out of 15 and 6 out of 10 resampled Sentinel-2 multispectral wavebands for discriminating among the Striga and co-occurring classes. Resampled Sentinel-2 multispectral wavebands 3 (green) and 4 (red) were the most crucial for Striga detection. The use of the most relevant hyperspectral features (i.e. wavebands and VIs) significantly (p ≤ 0.05) increased the overall classification accuracy and Kappa scores (±5% and ±0.2, respectively) in all the machine learning discriminant models. Our results show the potential of hyperspectral, resampled Sentinel-2 multispectral datasets and machine learning discriminant algorithms as a tool to accurately discern Striga in heterogenous maize agro-ecological systems.  相似文献   

16.
多光谱遥感图像土地利用分类区域多中心方法   总被引:1,自引:0,他引:1  
林剑 《遥感学报》2010,14(1):173-179
针对遥感图像土地利用一种类别由多种地物组成,存在难以求取类别光谱特征多元分布模型的问题,分析了多光谱遥感图像土地利用的光谱特征和区域多中心特征,提出了一种光谱信息和区域信息基于规则的区域多中心分类方法,以类别的类内中心集合表征类别模式,以区域为分类单元,以区域单元含类别类内中心数和区域单元中属于某种类别的像元占单元总像元的百分比为分类准则;采用类内中心表征类别模式和基于规则的分类方法,较好地解决了土地利用类别由多种地物组成、类别模式不满足多元正态分布的问题,由于类别区域单元多中心特性差异大,分类规则的建立及训练样本的选择易于实现。实验表明:该方法能提高分类精度4%—6%。  相似文献   

17.
赵诣  蒋弥 《测绘学报》2019,48(5):609-617
提出一种基于极化参数优化的面向对象分类方法。该方法结合光学和SAR数据,有效提高了对地物的识别能力。本文方法的关键在于:在■分解中,使用光学影像指导SAR影像选择同质点,使其更精确地估计极化参数并结合光学波谱信息作为输入特征;使用面向对象的分类方法,仅将光学影像作为分割输入,避免SAR噪声引起的分割错误。以美国Bakersfield地区的Sentinel-1/2数据为例,确定7种地物类型,对比分析不同输入与不同分类器对分类结果的影响。研究表明,优化输入参数在纹理丰富区域能够有效提高分类精度;面向对象的分类结果更加稳定并较好地维持地表几何特征;改进分类方法较传统分类方法总体精度提高了近10%,达到92.6%。  相似文献   

18.
A basic methodology for land cover classification using airborne multispectral scanner (MSS) imagery is outlined. This includes waveband selection and radiometric calibration; correction for scan angle and atmosphere; training and classification and accuracy assessment. Refinements to this basic methodology include per‐field sampling and the addition of low‐pass filtering, image texture, prior probabilities and two dates of imagery.

For a study area in upland England, eight land covers were classified with a mean accuracy of 52.6 percent using the basic methodology. This was increased to 79.0 percent by using a suitability refined methodology. Per‐field sampling accounted for the largest proportion of this increase.  相似文献   

19.
Land cover identification and monitoring agricultural resources using remote sensing imagery are of great significance for agricultural management and subsidies. Particularly, permanent crops are important in terms of economy (mainly rural development) and environmental protection. Permanent crops (including nut orchards) are extracted with very high resolution remote sensing imagery using visual interpretation or automated systems based on mainly textural features which reflect the regular plantation pattern of their orchards, since the spectral values of the nut orchards are usually close to the spectral values of other woody vegetation due to various reasons such as spectral mixing, slope, and shade. However, when the nut orchards are planted irregularly and densely at fields with high slope, textural delineation of these orchards from other woody vegetation becomes less relevant, posing a challenge for accurate automatic detection of these orchards. This study aims to overcome this challenge using a classification system based on multi-scale textural features together with spectral values. For this purpose, Black Sea region of Turkey, the region with the biggest hazelnut production in the world and the region which suffers most from this issue, is selected and two Quickbird archive images (June 2005 and September 2008) of the region are acquired. To differentiate hazel orchards from other woodlands, in addition to the pansharpened multispectral (4-band) bands of 2005 and 2008 imagery, multi-scale Gabor features are calculated from the panchromatic band of 2008 imagery at four scales and six orientations. One supervised classification method (maximum likelihood classifier, MLC) and one unsupervised method (self-organizing map, SOM) are used for classification based on spectral values, Gabor features and their combination. Both MLC and SOM achieve the highest performance (overall classification accuracies of 95% and 92%, and Kappa values of 0.93 and 0.88, respectively) when multi temporal spectral values and Gabor features are merged. High Fβ values (a combined measure of producer and user accuracy) for detection of hazel orchards (0.97 for MLC and 0.94 for SOM) indicate the high quality of the classification results. When the classification is based on multi spectral values of 2008 imagery and Gabor features, similar Fβ values (0.95 for MLC and 0.93 for SOM) are obtained, favoring the use of one imagery for cost/benefit efficiency. One main outcome is that despite its unsupervised nature, SOM achieves a classification performance very close to the performance of MLC, for detection of hazel orchards.  相似文献   

20.
In this study, we test the potential of two different classification algorithms, namely the spectral angle mapper (SAM) and object-based classifier for mapping the land use/cover characteristics using a Hyperion imagery. We chose a study region that represents a typical Mediterranean setting in terms of landscape structure, composition and heterogeneous land cover classes. Accuracy assessment of the land cover classes was performed based on the error matrix statistics. Validation points were derived from visual interpretation of multispectral high resolution QuickBird-2 satellite imagery. Results from both the classifiers yielded more than 70% classification accuracy. However, the object-based classification clearly outperformed the SAM by 7.91% overall accuracy (OA) and a relatively high kappa coefficient. Similar results were observed in the classification of the individual classes. Our results highlight the potential of hyperspectral remote sensing data as well as object-based classification approach for mapping heterogeneous land use/cover in a typical Mediterranean setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号