首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 7 毫秒
1.
The spectral angle mapper (SAM), as a spectral matching method, has been widely used in lithological type identification and mapping using hyperspectral data. The SAM quantifies the spectral similarity between an image pixel spectrum and a reference spectrum with known components. In most existing studies a mean reflectance spectrum has been used as the reference spectrum for a specific lithological class. However, this conventional use of SAM does not take into account the spectral variability, which is an inherent property of many rocks and is further magnified in remote sensing data acquisition process. In this study, two methods of determining reference spectra used in SAM are proposed for the improved lithological mapping. In first method the mean of spectral derivatives was combined with the mean of original spectra, i.e., the mean spectrum and the mean spectral derivative were jointly used in SAM classification, to improve the class separability. The second method is the use of multiple reference spectra in SAM to accommodate the spectral variability. The proposed methods were evaluated in lithological mapping using EO-1 Hyperion hyperspectral data of two arid areas. The spectral variability and separability of the rock types under investigation were also examined and compared using spectral data alone and using both spectral data and first derivatives. The experimental results indicated that spectral variability significantly affected the identification of lithological classes with the conventional SAM method using a mean reference spectrum. The proposed methods achieved significant improvement in the accuracy of lithological mapping, outperforming the conventional use of SAM with a mean spectrum as the reference spectrum, and the matching filtering, a widely used spectral mapping method.  相似文献   

2.
提出了一种基于Fisher权重分析的迭代光谱解混方法(WLSMA),该方法首先对高光谱图像进行区域分割,在分割后的各子块中自动提取端元;再次对提取的端元进行聚类,从光谱的整体特征上将不同类别的端元区分开,针对聚类结果中的每一类别各选取几个具有代表性的端元光谱,并对最优光谱进行窗口卷积处理,结合In_CoB指标构建端元光谱样本库;最后对图像进行迭代光谱解混处理,在丰度反演过程中引入基于Fisher准则的补偿权值矩阵以提高反演精度。AVIRIS高光谱数据实验证明,WLSMA不需要大量先验信息,利用Fisher准则和迭代光谱分析理论增强了相似性矿物的可分性,为加强对矿区地表岩性的认识和模拟提供了更大的灵活性和可能性,对高光谱矿物填图有一定的借鉴意义。  相似文献   

3.
In geological imaging spectrometry (i.e., hyperspectral remote sensing), surface compositional information (e.g., mineralogy and subsequently chemistry) is obtained by statistical comparison (by means of spectral matching algorithms) of known field- or library spectra to unknown image spectra. Though these algorithms are readily used, little emphasis has been given to comparison of the performance of the various spectral matching algorithms. Four spectral measures are presented: three that calculate the angle (spectral angle measure, SAM), the vector distance (Euclidean distance measure, ED) or the vector cross-correlation (spectral correlation measure, SCM), between a known reference and unknown target spectrum and a fourth measure that measures the discrepancy of probability distributions between two pixel vectors (the spectral information divergence, SID). The performance of these spectral similarity measures is compared using synthetic hyperspectral and real (i.e., Airborne Visible Infrared Imaging Spectrometer, AVIRIS) hyperspectral data of a (artificial or real) hydrothermal alteration system characterised by the minerals alunite, kaolinite, montmorillonite and quartz. Two statistics are used to assess the performance of the spectral similarity measures: the probability of spectral discrimination (PSD) and the power of spectral discrimination (PWSD). The first relates to the ability of the selected set of spectral endmembers to map a target spectrum, whereas the second expresses the capability of a spectral measure to separate two classes relative to a reference class. Analysis of the synthetic data set (i.e., simulated alteration zones with crisp boundaries at 1–2 nm spectral resolution) shows that (1) the SID outperforms the classical empirical spectral matching techniques (SAM, SCM and ED), (2) that SCM (SID, SAM and ED do not) exploits the overall shape of the reflectance curve and hence its outcomes are (positively and negatively) affected by the spectral range selected, (3) SAM and ED give nearly similar results and (4) for the same reason as in (2), the SCM is also more sensitive (again in positive and negative sense) to the spectral noise added. Results from the study of AVIRIS data show that SAM yields more spectral confusion (i.e., class overlap) than SID and SCM. In turn, SID is more effective in mapping the four target minerals than SCM as it clearly outperforms SCM when the target mineral coincides with the mineral phase on the ground.  相似文献   

4.
Classification of hyperspectral images has been receiving considerable attention with many new applications reported from commercial and military sectors. Hyperspectral images are composed of a large number of spectral channels, and have the potential to deliver a great deal of information about a remotely sensed scene. However, in addition to high dimensionality, hyperspectral image classification is compounded with a coarse ground pixel size of the sensor for want of adequate sensor signal to noise ratio within a fine spectral passband. This makes multiple ground features jointly occupying a single pixel. Spectral mixture analysis typically begins with pixel classification with spectral matching techniques, followed by the use of spectral unmixing algorithms for estimating endmembers abundance values in the pixel. The spectral matching techniques are analogous to supervised pattern recognition approaches, and try to estimate some similarity between spectral signatures of the pixel and reference target. In this paper, we propose a spectral matching approach by combining two schemes—variable interval spectral average (VISA) method and spectral curve matching (SCM) method. The VISA method helps to detect transient spectral features at different scales of spectral windows, while the SCM method finds a match between these features of the pixel and one of library spectra by least square fitting. Here we also compare the performance of the combined algorithm with other spectral matching techniques using a simulated and the AVIRIS hyperspectral data sets. Our results indicate that the proposed combination technique exhibits a stronger performance over the other methods in the classification of both the pure and mixed class pixels simultaneously.  相似文献   

5.
Thermal infrared remote sensing (8–12 μm) (TIR) has great potential for geologic remote sensing studies. TIR has been successfully used for terrestrial and planetary geologic studies to map surface materials. However, the complexity of the physics and the lack of hyperspectral data make the studies under-investigated. A new generation of commercial hyperspectral infrared sensors, known as Thermal Airborne Spectrographic Imager (TASI), was used for image analysis and mineral mapping in this study. In this paper, a combined method integrating normalized emissivity method (NEM), ratio algorithm (RATIO) and maximum–minimum apparent emissivity difference (MMD), being applied in multispectral data, has been modified and used to determine whether this method is suitable for retrieving emissivity from TASI hyperspectral data. MODTRAN 4 has been used for the atmospheric correction. The retrieved emissivity spectra matched well with the field measured spectra except for bands 1, 2, and 32. Quartz, calcite, diopside/hedenbergite, hornblende and microcline have been mapped by the emissivity image. Mineral mapping results agree with the dominant minerals identified by laboratory X-ray powder diffraction and spectroscopic analyses of field samples. Both of the results indicated that the atmospheric correction method and the combined temperature–emissivitiy method are suitable for TASI image. Carbonate skarnization was first found in the study area by the spatial extent of diopside. Chemical analyses of the skarn samples determined that the Au content was 0.32–1.74 g/t, with an average Au content of 0.73 g/t. This information provides an important resource for prospecting for skarn type gold deposits. It is also suggested that TASI is suitable for prospect and deposit scale exploration.  相似文献   

6.
The objective of this research is to select the most sensitive wavelengths for the discrimination of the imperceptible spectral variations of paddy rice under different cultivation conditions. The paddy rice was cultivated under four different nitrogen cultivation levels and three water irrigation levels. There are 2151 hyperspectral wavelengths available, both in hyperspectral reflectance and energy space transformed spectral data. Based on these two data sets, the principal component analysis (PCA) and band-band correlation methods were used to select significant wavelengths with no reference to leaf biochemical properties, while the partial least squares (PLS) method assessed the contribution of each narrow band to leaf biochemical content associated with each loading weight across the nitrogen and water stresses. Moreover, several significant narrow bands and other broad bands were selected to establish eight kinds of wavelength (broad-band) combinations, focusing on comparing the performance of the narrow-band combinations instead of broad-band combinations for rice supervising applications. Finally, to investigate the capability of the selected wavelengths to diagnose the stress conditions across the different cultivation levels, four selected narrow bands (552, 675, 705 and 776 nm) were calculated and compared between nitrogen-stressed and non-stressed rice leaves using linear discriminant analysis (LDA). Also, wavelengths of 1158, 1378 and 1965 nm were identified as the most useful bands to diagnose the stress condition across three irrigation levels. Results indicated that good discrimination was achieved. Overall, the narrow bands based on hyperspectral reflectance data appear to have great potential for discriminating rice of differing cultivation conditions and for detecting stress in rice vegetation; these selected wavelengths also have great potential use for the designing of future sensors.  相似文献   

7.
Imaging spectroscopy is an emerging and versatile technique that finds applications in diverse fields concerned with remote identification, discrimination and mapping of materials. The large amount of spectral data produced by hyperspectral imaging necessitates the development of automated techniques that convert imagery directly into thematic maps. Spectral library search method, a method of choice for organic compound identification by the mass spectroscopy, has caught the attention of researchers as one of the appropriate methods for an efficient exploitation of high quality spectral data available from the hyperspectral imaging systems. Given the apparent increase in the number of papers appearing on the subject as well as the variety of methods proposed, it is reasonable to say that the field of automated interpretation of reflectance spectral data has passed its infancy now gaining important space in the scientific community. We present an overall view of the literature relevant to the development of library search method, the various search algorithms and systems available in the purview for developing an automated hyperspectral data analysis system for material identification.  相似文献   

8.
In this study, we proposed an automated lithological mapping approach by using spectral enhancement techniques and Machine Learning Algorithms (MLAs) using Airborne Visible Infrared Imaging Spectroradiometer-Next Generation (AVIRIS-NG) hyperspectral data in the greenstone belt of the Hutti area, India. We integrated spectral enhancement techniques such as Principal Component Analysis (PCA) and Independent Component Analysis (ICA) transformation and different MLAs for an accurate mapping of rock types. A conjugate utilization of conventional geological map and spectral enhancement products derived from ASTER data were used for the preparation of a high-resolution reference lithology map. Feature selection and extraction methods were applied on the AVIRIS-NG data to derive different input dataset such as (a) all spectral bands, (b) shortwave infrared bands, (c) Joint Mutual Information Maximization (JMIM) based optimum bands, and (d) optimum bands using PCA, to choose optimum input dataset for automated lithological mapping. The comparative analysis of different MLAs shows that the Support Vector Machine (SVM) outperforms other Machine Learning (ML) models. The SVM achieved an Overall Accuracy (OA) and Kappa Coefficient (k) of 85.48% and 0.83, respectively, using JMIM based optimum bands. The JMIM based optimum bands were more suitable than other input datasets to classify most of the lithological units (i.e. metabasalt, amphibolite, granite, acidic intrusive and migmatite) within the study area . The sensitivity analysis performed in this study illustrates that the SVM is less sensitive to the number of samples and mislabeling in the model training than other MLAs. The obtained high-resolution classified map with accurate litho-contacts of amphibolite, metabasalt, and granite can be coupled with an alteration map of the area for targeting the potential zone of gold mineralization.  相似文献   

9.
Remote sensing offers a potential tool for large scale environmental surveying and monitoring. However, remote observations of coral reefs are difficult especially due to the spatial and spectral complexity of the target compared to sensor specifications as well as the environmental implications of the water medium above. The development of sensors is driven by technological advances and the desired products. Currently, spaceborne systems are technologically limited to a choice between high spectral resolution and high spatial resolution, but not both. The current study explores the dilemma of whether future sensor design for marine monitoring should prioritise on improving their spatial or spectral resolution. To address this question, a spatially and spectrally resampled ground-level hyperspectral image was used to test two classification elements: (1) how the tradeoff between spatial and spectral resolutions affects classification; and (2) how a noise reduction by majority filter might improve classification accuracy. The studied reef, in the Gulf of Aqaba (Eilat), Israel, is heterogeneous and complex so the local substrate patches are generally finer than currently available imagery. Therefore, the tested spatial resolution was broadly divided into four scale categories from five millimeters to one meter. Spectral resolution resampling aimed to mimic currently available and forthcoming spaceborne sensors such as (1) Environmental Mapping and Analysis Program (EnMAP) that is characterized by 25 bands of 6.5 nm width; (2) VENμS with 12 narrow bands; and (3) the WorldView series with broadband multispectral resolution. Results suggest that spatial resolution should generally be prioritized for coral reef classification because the finer spatial scale tested (pixel size < 0.1 m) may compensate for some low spectral resolution drawbacks. In this regard, it is shown that the post-classification majority filtering substantially improves the accuracy of all pixel sizes up to the point where the kernel size reaches the average unit size (pixel < 0.25 m). However, careful investigation as to the effect of band distribution and choice could improve the sensor suitability for the marine environment task. This in mind, while the focus in this study was on the technologically limited spaceborne design, aerial sensors may presently provide an opportunity to implement the suggested setup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号