首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Th(IV) isotopes are important proxies in oceanographic investigations, and are used as tracers of particle dynamics and particulate organic matter (POC) fluxes out of the euphotic zone through the use of 234Th/POC ratios. These approaches rely on empirically determined and variable POC to 234Th ratios, which might be controlled, in parts, by the abundance of exopolymeric substances (EPS). EPS contain acidic polysaccharides (APS) and are excreted by both phytoplankton and bacteria. To this end, radiotracer experiments with EPS from microbial cultures were conducted to determine the binding environment of 234Th(IV)-binding ligands in colloids and suspended particles in marine systems. In these experiments, the 234Th distribution during isoelectric focusing (IEF) and polyacrylamide gel electrophoresis (PAGE) was related to the functional group composition of EPS and of colloidal organic matter (COM) isolated from the Gulf of Mexico (GOM) using cross-flow ultrafiltration. EPS was extracted from phytoplankton (Emiliania huxleyi and Synechococcus elongatus) and bacteria (Sagittula stellata and Roseobacter gallaeciensis) cultures by repeated alcohol precipitation. Phosphate and sulfate concentrations were determined using ion chromatography (IC). IEF profiles indicated that 49% to 65% of the 234Th-labeled EPS from plankton and bacteria as well as COM samples from the GOM was found concentrated below pH of 4, near an isoelectric point, pHIEP, of about 2. The carboxylic acid maxima for extracted EPS and COM samples appeared close to the pHIEF of 234Th(IV). The phosphate maximum appeared at the same pHIEF as 234Th(IV) for EPS from R. gallaeciensis and S. elongatus. The sulfate maximum was found at the same pHIEF as 234Th(IV) for EPS from S. elongatus and COM. The molecular weight (MW) of the strongly Th(IV)-binding ligand varied from 1 to 14 kDa, depending on the species, but was about 10 kDa in COM. Thus, depending on the species of plankton or bacteria, the MW and specific functional group composition of the strongly 234Th(IV)-binding amphiphilic biomolecule can vary. Therefore, different acidic functional groups can, at times, contribute to the binding of Th(IV) to the EPS chelating ligand, which can also have different MWs. This implies that the binding environment for Th(IV), which is present at total concentrations at least a million times lower than the acid functional groups, consists of strong polydentate chelate complexes in clustered structures of carboxylate, sulfates and/or phosphates. The combination of strongly chelating groups and amphiphilicity gives this biomolecule the unique properties of a “sticky” ligand.  相似文献   

2.
The strong species of cadmium(II), copper(II), manganese(II) and nickel(II) in an Antarctic seawater sample are investigated by a method based on the sorption of metal ions on complexing resins. The resins compete with the ligands present in the sample to combine with the metal ions. Two resins with different adsorbing strengths were used. Very stable metal complexes were investigated with the strong sorbent Chelex 100 and weaker species with the less strong resin, Amberlite CG-50. Strong species were detected for three of the considered metal ions, but not for Mn(II). Cu(II) is completely linked to species with a side reaction coefficient as high as log αM(I) = 11.6 at pH = 7.3. The ligand concentration was found to be similar to that of the metal ion, and the conditional stability constant was around 1020 M− 1. In the considered sample, only a fraction of the metal ions Cd(II) and Ni(II) is bound to the strong ligands, with side reaction coefficients equal to log αM(I) = 5.5 and 6.5 at pH = 7.3 for Cd(II) and Ni(II), respectively. These findings were confirmed by the test with the weaker sorbent Amberlite CG-50. It can be calculated from the sorption equilibria that neither Mn(II) nor Ni(II) is adsorbed on Amberlite CG-50 under the considered conditions and, in fact, only a negligible fraction of Mn(II) and Ni(II) was adsorbed. A noticeable fraction of Cd(II) was adsorbed on Amberlite CG-50, meaning that cadmium(II) is partially linked to weak ligands, possibly chloride, while no copper(II) was adsorbed on this resin, confirming that copper(II) is only combined in strong species. These results are similar, but not identical, to those obtained for other seawater samples examined in previous investigations.  相似文献   

3.
The results of a potentiometric investigation (by ISE-H+, glass electrode) on the speciation of phytate ion (Phy12−) in an ionic medium simulating the major components (Na+, K+, Ca2+, Mg2+, Cl and SO42−) of natural seawater, at different salinities and t = 25 °C, are reported. The work was particularly aimed at determining the possible formation of mixed Ca2+–Mg2+–phytate ion pairs, and to establish how including the formation of these mixed species would affect the speciation modeling in seawater media. After testing various speciation models, that considering the formation of the MgCaH3Phy5−, MgCaH4Phy4−, Mg2CaH3Phy3− and Mg2CaH4Phy2− species was accepted, and corresponding stability constants were determined at two salinities (S = 5, 10). A discussion is reported both on the choice of the experimental conditions and on the possibility to extend these results to those typical of real seawater. A detailed procedure is also described to demonstrate that the stability of these species is higher than that statistically predicted. As reported in literature, a parameter, namely log X, has been determined in order to quantify this extra stability for the formation of each mixed species at various salinities. For example, at S = 10, log X113 = 2.67 and log X114 = 1.37 for MgCaH3Phy5− and MgCaH4Phy4− (statistical value is log Xstat = 0.60), and log X213 = 6.11 and log X214 = 2.15 for Mg2CaH3Phy3− and Mg2CaH4Phy2− (log Xstat = 1.43), respectively. Results obtained also showed that the formation of these species may occur even in conditions of low salinity (i.e. low concentration of alkaline earth cations) and low pH (i.e., more protonated ligand).  相似文献   

4.
Size-fractionated bacterial production, abundance and α- and β- glucosidase enzyme activities were studied with respect to changes in hydrography, total suspended matter (TSM), chlorophyll a, particulate organic carbon and nitrogen ratio (POC:PON), 1.5 M NaCl-soluble and 10 mM EDTA-soluble carbohydrates (Sal-PCHO and CPCHO) and transparent exopolymeric particles (TEP) in the surface waters from July 1999–2000 at a shallow coastal station in Dona Paula Bay, west coast of India. The bulk of the total bacterial production and glucosidase activity were associated with particles (75% and >80%, respectively). Total bacterial production was linearly correlated to chlorophyll a (r = 0.513; p < 0.05) whereas enzyme activity was significantly correlated to TSM (α-glucosidase: r = 0.721 (p < 0.001); β-glucosidase: r = 0.596 (p < 0.01)). Both α-glucosidase (r = 0.514; p < 0.05) and β-glucosidase enzymes (r = 0.598; p < 0.01) appeared to be involved in the degradation of CPCHO and Sal-PCHO, respectively. Changes in α-glucosidase/β-glucosidase ratios highlighted the varying composition of particulate organic matter. The bacterial uptake of 14C-labeled bacterial extracellular carbohydrate measured over 11 days showed a strong linear correlation between 14C-uptake and bacterial production using tritiated thymidine. The turnover rate of 14C-labeled carbohydrate-C was 0.52 d−1, higher than the estimated annual mean potential carbohydrate carbon turnover rate of 0.33 ± 0.2 d−1. Our study suggests that carbohydrates derived from sediments may serve as an important alternative carbon source sustaining the bacterial carbon demand in the surface waters of Dona Paula Bay.  相似文献   

5.
6.
This paper describes the characteristics of a prototype of a modular multiparametric analyzer (MicroMAC FAST MP3) for automatic monitoring of seawater and analytical methods for nutrients.The MicroMAC FAST reactor is an evolution of the basic LFA (Loop Flow Analysis) reactor. It has been conceived to assay ammonium, nitrate–nitrite and orthophosphate at low concentration in seawater samples. A sample analysis is 3–4 times faster than that obtainable with a standard LFA reactor. With respect to the previous analyzer a temperature control (30–52 °C) on the measurement cell has been added (only for modules NH4 and PO4), while the colorimeter and the related links for transporting the sample have been moved beyond the Loop and form a hydraulic-optical set almost completely independent from the main LFA. All the steps of a wet-chemical colorimetric analysis method are carried out in an analysis cycle sequentially. The hermetic closed Loop provides full protection against background interference, which is a basic requirement for stable trace analysis. At the start of a cycle the loop is washed and filled with sample. The sample color is measured for compensation. Small amounts of concentrated reagents are added and mixed with high intensity. This new technique allows the preparation of two products of reaction which can be introduced at intervals of 150 s in the measurement cell. The intensity of the color of the reaction product is measured on the colorimeter using a monochromatic light beam of specific wavelength. The statistical test shows that the results of automated and manual analyses agree for all the examined parameters. Precision of all three analyses is ≤ 4% RSD.Multiparametric online analyzer: it is possible to connect the analytical modules to a data logger with analogue and digital signals, in order to have online simultaneous analysis of the sample. A typical application is used during research at sea which vessel does not require an operator.  相似文献   

7.
The Mussel Watch program conducted along the French coasts for the last 20 years indicates that the highest mercury concentrations in the soft tissue of the blue mussel (Mytilus edulis) occur in animals from the eastern part of Seine Bay on the south coast of the English Channel, the “Pays de Caux”. This region is characterized by the presence of intertidal and submarine groundwater discharges, and no particular mercury effluent has been reported in its vicinity. Two groundwater emergence systems in the karstic coastal zone of the Pays de Caux (Etretat and Yport with slow and fast water percolation pathways respectively) were seasonally sampled to study mercury distribution, partitioning and speciation in water. Samples were also collected in the freshwater–seawater mixing zones in order to compare mercury concentrations and speciation between these “subterranean” or “groundwater” estuaries and the adjacent macrotidal Seine estuary, characterized by a high turbidity zone (HTZ). The mercury concentrations in the soft tissue of mussels from the same areas were monitored at the same time.The means of the “dissolved” (< 0.45 μm) mercury concentrations (HgTD) in the groundwater springs were 0.99 ± 0.15 ng l− 1 (n = 18) and 0.44 ± 0.17 ng l− 1 (n = 17) at Etretat and Yport respectively. High HgTD concentrations were associated with strong runoff over short water pathways during storm periods, while low concentrations were associated with long groundwater pathways. Mean particulate mercury concentrations were 0.22 ± 0.05 ng mg− 1 (n = 16) and 0.16 ± 0.10 ng mg− 1 (n = 17) at Etretat and Yport respectively, and decreased with increasing particle concentration probably as a result of dilution by particles from soil erosion. Groundwater mercury speciation was characterized by high reactive-to-total mercury ratios in the dissolved phase (HgRD/HgTD: 44–95%), and very low total monomethylmercury concentrations (MMHg < 8 pg l− 1). The HgTD distributions in the Yport and Etretat mixing zones were similar (overall mean concentration of 0.73 ± 0.21 ng l− 1, n = 43), but higher than those measured in the adjacent industrialized Seine estuary (mean: 0.31 ± 0.11 ng l− 1, n = 67). In the coastal waters along the Pays de Caux dissolved monomethylmercury (MMHgD) concentrations varied from 9.5 to 13.5 pg l− 1 (2 to 8% of the HgTD). Comparable levels were measured in the Seine estuary (range: 12.2– 21.1 pg l−1; 6–12% of the HgTD). These groundwater karstic estuaries seem to be mostly characterized by the higher HgTD and HgRD concentrations than in the adjacent HTZ Seine estuary. While the HTZ of the Seine estuary acts as a dissolved mercury removal system, the low turbid mixing zone of the Pays de Caux receives the dissolved mercury inputs from the groundwater seepage with an apparent Hg transfer from the particulate phase to the “dissolved” phase (< 0.45 μm). In parallel, the soft tissue of mussels collected near the groundwater discharges, at Etretat and Yport, exhibited significantly higher values than those found in the mussel from the mouth of the Seine estuary. We observe that this difference mimics the differences found in the mercury distribution in the water, and argue that the dissolved phase of the groundwater estuaries and coastal particles are significant sources of bioavailable mercury for mussels.  相似文献   

8.
Transparent exopolymer particles (TEP) are formed by the assembly of dissolved precursors, mainly mono and polysaccharides (DMCHO and DPCHO) that are released by microorganisms. Although TEP formation plays a significant role in carbon export to deep waters and can affect gas exchange at the sea surface, simultaneous measurements of TEP and their precursors in natural waters have been scantly reported. In this study, we described the spatial (vertical and regional) distribution of TEP, DMCHO and DPCHO in a region located around the Antarctic Peninsula, assessed their contribution to the total organic carbon pool, and explored their relationships with phytoplankton (with chlorophyll a (chl a) as a proxy) and bacteria. TEP concentration ranged from undetectable values to 48.9 µg XG eq L− 1 with a mean value of 15.4 µg XG eq L− 1 (11.6 µg TEP-C L− 1). DMCHO and DPCHO showed average values of 4.3 µmol C L− 1 and 8.6 µmol C L− 1, respectively. We did not find simple relationships between the concentrations of TEP and dissolved carbohydrates, but a negative correlation between DMCHO and DPCHO was observed. Chl a was the best regressor of TEP concentration in waters within the upper mixed layer, while bacterial production was the best regressor of TEP concentration below the mixed layer, underlining the direct link between these particles and bacterial activity in deep waters.  相似文献   

9.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号