首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although this is a personal reflection of the rise of submillimetre and far-infrared astronomy I will attempt to cover all the major events and players. The review will be restricted to continuum techniques and will principally cover ground-based telescopes. Balloon-based platforms will also be discussed but airborne platforms will be covered by George Rieke. It is always important to remember that a telescope is only as good as the instrumentation it supports, and because there have been few true submillimetre telescopes constructed to date, this review will devote significant time to the instrumentation and technical developments that have been the underpinning of the submillimetre revolution.  相似文献   

2.
3.
The success of the International Ultraviolet Explorer (IUE) first and then of the STIS and COS spectrographs on-board the Hubble Space Telescope (HST) demonstrate the impact that observations at UV wavelengths had and are having on modern astronomy. Several discoveries in the exoplanet field have been done at UV wavelengths. Nevertheless, the amount of data collected in this band is still limited both in terms of observed targets and time spent on each of them. For the next decade, the post-HST era, the only large (2-m class) space telescope capable of UV observations will be the World Space Observatory–UltraViolet (WSO–UV). In its characteristics, the WSO–UV mission is similar to that of HST, but all observing time will be dedicated to UV astronomy. In this work, we briefly outline the major prospects of the WSO–UV mission in terms of exoplanet studies. To the limits of the data and tools currently available, here we also compare the quality of key exoplanet data obtained in the far-UV and near-UV with HST (STIS and COS) to that expected to obtain with WSO–UV.  相似文献   

4.
The theme of this conference is the evolution of telescopes over the last 400 years. I present my view on what the major leaps of technology have been, and attempt to predict what new technologies could come along in the next 50 years to change the way we do astronomy and help us make new discoveries. Are we approaching a peak of innovation and discovery, and will this be followed by a slow decline? Or are there prospects for even further technology leaps and consequent new discoveries? Will global resource and financial crises bring an end to our great ambitions, or will we continue with bigger telescopes and more ambitious space observatories?  相似文献   

5.
Future X-ray astronomy missions will be based on instruments with apertures much larger than those used up to now. Therefore, the risk posed by hyper-velocity dust grains in the space environment to the onboard instrumentation will increase, especially when a larger aperture is combined with a longer focal length. Starting from the lessons learned from the XMM and Swift satellites, we review the question of hyper-velocity impacts and discuss the expected impact-rate, risk of damage and possible mitigation strategies in the context of LOFT, eROSITA and ATHENA.  相似文献   

6.
The World Space Observatory Ultraviolet (WSO-UV) is the space mission that will grant access to the ultraviolet (UV) range in the post Hubble epoch. WSO-UV is equipped with instrumentation for imaging and spectroscopy and it is fully devoted to UV astronomy. In this article, we outline the WSO-UV mission model and present the current status of the project.  相似文献   

7.
The development of telescope capabilities tends to go in spurts. These are triggered by the availability of new techniques in optics, mechanics and/or instrumentation. So has nighttime telescope technology developed since the construction in the nineteen-forties of the 5-m Hale telescope, first by the introduction in the sixties of high efficiency electronic detectors, followed recently by the production of large 8- to 10-m mirrors and now by the implementation of adaptive optics. In solar astronomy, major steps were the introduction of the coronagraph by Lyot in the nineteen-thirties and the vacuum telescope concept by Dunn in the sixties. In the last thirty years, telescope developments in solar astronomy have relied primarily on improved instrumental capabilities. As in nighttime astronomy, these instruments and their detectors are reaching their limits set by the quantum nature of light and the telescope diffraction. Larger telescopes are needed to increase sensitivity and angular resolution of the observations. In this paper, I will review recent efforts to increase substantially the telescope capabilities themselves. I will emphasize the concept of a large all-wavelength, coronagraphic telescope (CLEAR) which is presently being developed.Dedicated to Cornelis de Jager  相似文献   

8.
Continuous access to the UV domain has been considered of importance to astrophysicists and planetary scientists since the mid-sixties. However, the future of UV missions for the post-HST era is believed by a significant part of astronomical community to be less encouraging. We argue that key science problems of the coming years will require further development of UV observational technologies. Among these hot astrophysical issues are: the search for missing baryons, revealing the nature of astronomical engines, properties of atmospheres of exoplanets as well as of the planets of the Solar System etc. We give a brief review of UV-missions both in the past and in the future. We conclude that UV astronomy has a great future but the epoch of very large and efficient space UV facilities seems to be a prospect for the next decades. As to the current state of the UV instrumentation we think that this decade will be dominated by the HST and coming World Space Observatory-Ultraviolet (WSO-UV) with a 1.7 m UV-telescope onboard. The international WSO-UV mission is briefly described. It will allow high resolution/high sensitivity imaging and high/low resolution spectroscopy from the middle of the decade.  相似文献   

9.
天文学是一门观测学科, 其发展受观测技术及仪器进步所推动, 而天文科学发展同样不断对观测仪器提出新的要求. 天文学发展至今, 对观测仪器的要求逐渐走向极致和极端, 这在实现成本及难度两方面均带来极大挑战. 为应对上述挑战, 基于新原理、新技术的下一代天文光学技术及观测仪器已成为天文学发展的内在需要. 近年来, 集成光子学的发展为天文光学技术带来了新的变革性机遇, 在此基础上产生的新兴交叉学科天文光子学(Astrophotonics)可为天文观测提供低成本、高度集成化(芯片化)的新一代高性能光学终端仪器, 这类仪器将在空间天文观测、大规模光谱巡天、高分辨高精度光谱成像等应用中起到关键作用. 主要从仪器/器件功能出发介绍天文光子学主要研究内容及现状, 并简要讨论其发展所面临的主要问题, 最后对其发展趋势做出展望.  相似文献   

10.
Astronomy is an observational discipline, and its improvement is driven by the progress of observation technology and instruments. The advancement of astronomy also constantly puts forward new requirements for observation instruments. Since the development of astronomy, the requirements for observing instruments have gradually become extreme, which brings great challenges in both cost and difficulty. In order to tackle the challenges, a future generation of astronomical optical technology and observation instruments based on new principles and technologies has become an inherent need to promote the advancement of astronomy. In recent years, the growth of integrated photonics has presented revolutionary opportunities for that of astronomical optical technology. On the basis, astrophotonics, an emerging interdisciplinary subject, can provide a new generation of high-performance optical terminal instruments with low cost and high integration (chip-based) for astronomical observation. Such instruments will play a vital role in space astronomical observation, large-scale spectral survey, high-resolution and high-precision spectral imaging, and other applications. This paper mainly introduces the main research contents and status quo of astronomical photonics starting from the instruments/device functions, briefly discusses the major problems in its development, and eventually forecasts its development prospect.  相似文献   

11.
Summary This review is of current and projected applications of optical fibers to observational astronomy. The intent is to provide astronomers with a broad perspective on the subject, with the hope of encouraging productive use of optical fibers in the design of new instrumentation. The unique characteristics of fibers have been (or soon will be) exploited to advantage in several areas of astronomical instrumentation, including multiplexers for muti-object spectrographs, remote optical feeds for spectrographs and photometers, coherent beam recombiners for optical interferomety, and many miscellaneous applications. We discuss the most important such applications in detail, with reference to operational instruments wherever possible, and with emphasis on the optical properties of fibers and the engineering considerations encountered in their application to observational astronomy.  相似文献   

12.
H2O, CO and CO2 ices are condensed on carbonaceous and silicate dust grains in dense interstellar clouds and circumstellar environments. The presence of these ices is inferred by analysing their infrared (IR) spectra. The upcoming Herschel space observatory (HERSCHEL) and ground-based astronomy project (ALMA) will provide new spectral data in the unexplored far infrared (FIR) and sub-millimetre range. In our laboratory we are developing instrumentation to study ices at IR region. One of the key components of our laboratory is a silicon composite bolometer in our IFS. This detector allows us to obtain spectra with a sensitivity much greater than that obtained with a standard deuterated triglycine sulphate (DTGS) detector working at room temperature and under vacuum conditions. We plan to collect mid infrared (MIR) and FIR spectra of simple ices and their mixtures and compare these with observational data. It is also planned to do a systematic laboratory study of the effects that ultraviolet (UV) photolysis and thermal annealing have on the ice band profiles and their structure.  相似文献   

13.
The Hubble Space Telescope has been the most successful space astronomy project to date, producing images that put the public in awe and images and spectra that have produced many scientific discoveries. It is the natural culmination of a dream envisioned when rocket flight into space was first projected and a goal set for the US space program soon after NASA was created. The design and construction period lasted almost two decades and its operations have already lasted almost as long. The capabilities of the observatory have evolved and expanded with periodic upgrading of its instrumentation, thus realizing the advantages of its unique design. The success of this long-lived observatory is closely tied to the availability of the Space Shuttle and the end of the Shuttle program means that the end of the Hubble program will follow before long.  相似文献   

14.
Important insights into the formation, structure, evolution and environment of all types of stars can be obtained through the measurement of their winds and possible magnetospheres. However, this has hardly been done up to now mainly because of the lack of UV instrumentation available for long periods of time. To reach this aim, we have designed UVMag, an M-size space mission equipped with a high-resolution spectropolarimeter working in the UV and visible spectral range. The UV domain is crucial in stellar physics as it is very rich in atomic and molecular lines and contains most of the flux of hot stars. Moreover, covering the UV and visible spectral domains at the same time will allow us to study the star and its environment simultaneously. Adding polarimetric power to the spectrograph will multiply tenfold the capabilities of extracting information on stellar magnetospheres, winds, disks, and magnetic fields. Examples of science objectives that can be reached with UVMag are presented for pre-main sequence, main sequence and evolved stars. They will cast new light onto stellar physics by addressing many exciting and important questions. UVMag is currently undergoing a Research & Technology study and will be proposed at the forthcoming ESA call for M-size missions. This spectropolarimeter could also be installed on a large UV and visible observatory (e.g. NASA’s LUVOIR project) within a suite of instruments.  相似文献   

15.
This is a crucial time in the history of astronomy with major all-sky surveying work being carried out in all spectral bands, as well as in astrometry. The results of this activity are advancing all fields of astrophysical research, from the investigation of exo-planetary systems to the study of the chemical evolution of the Universe. Full sky surveys are available from the radio domain to X-ray wavelengths but not in the ultraviolet range (UV). While large UV missions are currently under discussion within the astrophysical community and at the major Space Agencies, the efficient use of resources requires preparatory work that can fill the UV surveying gap. This article summarizes the research and on-going activities in this field.  相似文献   

16.
After considering a number of historical but somewhat “forgotten” UV astronomy experiments, I discuss a number of ways of non-conventional astronomy in the ultraviolet that, on first considerations, could be viable alternatives and valuable complements to classical space observations. These are (a) UV astronomy from the Antarctic or the Arctic regions that take advantage of the “ozone hole”, (b) the use of high-altitude stratospheric balloon-borne telescopes, and (c) the operation of UV telescopes on the Moon. The advantages of these options are discussed and evaluated against the costs of each option and, one by one, are mostly rejected as not fully justifying the specific alternative. The possibility to achieve valuable (but limited) UV science, such as imaging at ~2000 Å, using long-duration stratospheric balloons is described. The option of lunar UV observatories is retained to be implemented for the case of a UV interferometer, where the stability of the lunar regolith is seen as a significant advantage in comparison to free-flying interferometers. A location beyond the main asteroid belt, where the background due zodiacal light may be negligible, is advocated as an ideal location for a UV observatory in the Solar System.  相似文献   

17.
袁强 《天文学报》2023,64(5):49-11
高能宇宙线的起源、加速和传播是重大的前沿科学问题,回答该问题需要对宇宙线的能谱、各向异性以及各类高能天体电磁辐射进行精确观测.通过空间粒子探测器对宇宙线各成分能谱的直接测量是研究宇宙线物理问题的重要手段.中国于2015年底发射并持续运行至今的暗物质粒子探测卫星以其大接受度、高能量分辨率等特点,在宇宙线直接探测方面取得了系列重要成果,揭示出质子、氦核、硼碳和硼氧比例等宇宙线能谱的新结构,为理解宇宙线起源等科学问题提供了新的依据.介绍了暗物质粒子探测卫星的仪器设置、运行状况、科学成果及其物理意义.  相似文献   

18.
19.
Observational astronomy is the beneficiary of an ancient chain of apprenticeship. Kepler's laws required Tycho's data. As the pace of discoveries has increased over the centuries, so has the cadence of tutelage (literally, “watching over”). Naked eye astronomy is thousands of years old, the telescope hundreds, digital imaging a few decades, but today's undergraduates will use instrumentation yet unbuilt – and thus, unfamiliar to their professors – to complete their doctoral dissertations. Not only has the quickening cadence of astronomical data‐taking overrun the apprehension of the science within, but the contingent pace of experimental design threatens our capacity to learn new techniques and apply them productively. Virtual technologies are necessary to accelerate our human processes of perception and comprehension to keep up with astronomical instrumentation and pipelined dataflows. Necessary, but not sufficient. Computers can confuse us as efficiently as they illuminate. Rather, as with neural pathways evolved to meet competitive ecological challenges, astronomical software and data must become organized into ever more coherent ‘threads’ of execution. These are the same threaded constructs as understood by computer science. No datum is an island. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Considerable progress has been made in the last half-decade in the field of very high energy (VHE) gamma-ray astronomy (photons with energies between 1011 and 1013 eV). The high background level due to the isotropic cosmic ray flux which has bedevilled the field since its inception in the early 1960's can now be reduced to such a degree that significant gamma-ray signals from several sources become visible within a few hours of observation. The instrumentation and methodologies which have made this possible are reviewed. A brief historical introduction is followed by a summary of the salient properties of the atmospheric Cherenkov flash associated with VHE gamma-ray events. The major components of a VHE gamma-ray astronomy telescope are then reviewed. This is followed by a discussion of the different methodologies currently being used to discriminate against the cosmic ray background. Properties of several specific installations are then summarized, and possible future developments in VHE instrumentation are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号