首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
采用TOPEX/POSEIDON(T/P)卫星高度计 1 993年 1月— 2 0 0 0年 1 2月海面高度数据 ,研究包含了整个南极绕极流流系 (40°— 6 0°S)的海面高度低频变化。首先采用EOF分解方法获取南大洋时空分布的主要模态 ,前 3个EOF模态分别占总方差的 2 4 .8%、1 3 .8%和 1 0 .7%。然后采用EMD方法分别分析了各个EOF模态的时间系数曲线的组成成分 ,对南极绕极流海域的各种时间尺度变化给出了清晰的描述 ,对于不同尺度变化所占的比例得到了定量的结果。研究结果表明 ,EOF的各个模态不仅在形态上存在差异 ,而且具有相互独立的物理背景。EOF的第一模态主要体现了以太阳辐射冬夏差异形成的年周期变化 ,另一个显著的特征就是南极绕极流从 1 993— 2 0 0 0年海面的整体上升趋势。EOF的第二模态体现了陆地地形对南极绕极流的约束作用 ,同时也显示了ENSO过程对南极绕极流 ,特别是对南太平洋的海面高度变化的影响。EOF的第三模态则体现了南极绕极流对南大洋表面风场东西方向不均匀变化的响应。同时 ,本文的研究也证明了EOF与EMD方法联合使用对揭示大范围时空变化有重要的实际意义  相似文献   

2.
南极半岛周边海域水团及水交换的研究   总被引:1,自引:1,他引:0  
利用中国第34次南极考察于2018年1–2月在南极半岛周边海域获得的温盐、海流现场观测数据,分析了调查区域主要水团及水交换特征。结果表明,观测区域内主要存在南极表层水、绕极深层水、暖深层水、南极底层水、布兰斯菲尔德海峡底层水。威德尔海的暖深层水、威德尔海深层水通过南奥克尼海台东侧的奥克尼通道、布鲁斯通道和南奥克尼海台西侧的埃斯佩里兹通道进入斯科舍海,其中奥克尼通道的深层海流最强,流速最大可达0.25 m/s,密度较大的威德尔海深层水可以通过此通道进入斯科舍海;布鲁斯通道海流流速约为0.13 m/s,通过此通道的暖深层水位势温度较高;埃斯佩里兹通道海流流速约为0.10 m/s,通过此通道的暖深层水位势温度最低,威德尔海深层水密度最小。在南奥克尼海台东西两侧均观测到南向和北向的海流,但整体上来看,向北的海流和水交换更强。水体进入斯科舍海后,沿着南斯科舍海岭的北侧向西北方向流动,流速约为0.21 m/s。德雷克海峡中的南极绕极流仅有一部分向东进入斯科舍海南部海域,且受到向西流动的暖深层水、威德尔海深层水的影响,斯科舍海南部海域的绕极深层水明显比德雷克海峡中绕极深层水的高温高盐性质弱;受到南极绕极流的影响,南斯科舍海岭北侧的威德尔海深层水比南侧暖。南斯科舍海岭上的水体可能受到北侧绕极深层水、暖深层水,西侧陆架水,东侧冬季水的影响,因此海岭上水体结构较为复杂。  相似文献   

3.
关键海区潜沉率对全球变暖停滞的可能影响   总被引:1,自引:0,他引:1  
本文从潜沉率入手,探究了潜沉率在全球变暖停滞过程中可能发挥的作用。本文利用SODA资料首先分析了全球潜沉率的时空分布特征,然后基于EOF分解明确了北大西洋翻转流区域和南极绕极流区域是潜沉率变率较大的两个海区,在此基础上选出了4个关键海区研究了局地潜沉率变化与全球海表温度异常之间的相关关系,最后对关键区潜沉率变化的原因进行了初步探索。结果表明,北大西洋翻转流和南极绕极流范围内的关键区域与全球变暖停滞之间存在超前10年的相关关系,潜沉过程可能是北大西洋翻转流和南极绕极流对全球变暖停滞产生作用的一种机制。平流项在这些关键区域的潜沉率变化中起主导作用。在南极绕极流地区,海面风应力的大小与该区域的潜沉变化密切相关。  相似文献   

4.
根据 2 0 0 2 ,2 0 0 0和 1999年中国南极考察和 1992年澳大利亚南极考察资料 ,分析了普里兹湾 73°E断面水团与地转流的结构及其多年变化 :(1)该断面上水团主要有南极表层水、绕极深层水、南极底层水和陆架水 ;(2 )南极表层水 1999,2 0 0 0年向北扩展最强 ,2 0 0 2年向北扩展最弱 ,绕极深层水 2 0 0 2年向南扩展也较强 ,1999和 1992年绕极深层水向南扩展较弱 ,南极底层水 ,位温在 - 0 .3~- 0 .4℃ ,盐度在 34.6 6左右 ,主要是本地形成 ,而 1992年高盐底层水可能来源于其他原因 ;(3)该海域深层水呈显著的升温 ,增暖率约为 0 .0 0 7~ 0 .0 0 8℃ /a;(4 )南极陆坡锋的强度和位置 ,与南极表层水的北向扩展和绕极深层水的变化一致 ;(5 ) 6 2°S~ 6 6°S是绕极流的南缘 ,东向流深度可达 2 0 0 0 m,最大流速中心在 6 4.5°S附近 ,2 0 0 0年北移至 6 3.5°S附近 ,最大流速为 3~ 5 cm/s;陆架上 6 8°S附近主要为流速 1cm /s左右的西向流。  相似文献   

5.
基于垂向混合坐标系统的海洋模式HYCOM建立了全球大洋气候态环流场.在此基础上与前人研究工作进行对比,分析和讨论了全球风生大洋环流场的季节变化情况.从模拟结果看该模式具有较好的模拟能力,可以合理地模拟南极绕极流、赤道流系、黑潮和湾流等世界各主要大洋流系.从断面温度场、流函数分布和断面流量场等分析显示:南极绕极流堪称世界最强流,湾流整体强于黑潮,3者都具有夏季增强、冬季减弱的特点.HYCOM模式在国外的研究方兴未艾,而在国内的应用尚处在起步阶段.本文通过对该模式的介绍和结果分析,向读者推荐使用该模式.  相似文献   

6.
马浩  张作为 《海洋科学》2011,35(1):75-80
基于气候态的SODA(simple Ocean Data Assimilation)数据,比较了气候态意义下南极附近和南极绕极流区域的海洋层结,对南极融冰问题的合理海洋边界条件进行了初步探讨.结果表明:南极融冰所注入的淡水通量在大西洋东部和印度洋海区将沿着表层路径到达南极绕极流区,在大西洋西部和太平洋的经向运动路径视淡...  相似文献   

7.
利用我国第九次南极考察队获得的德雷克海峡地区水温资料,并结合国外锚碇浮标和测流资料,分析和研究了德雷克海峡绕极流和锋面的时间变化和空间变化.研究表明,德雷克海峡绕极流的流速共有3个强流区,就德雷克海峡上层海流的空间变化而言,以亚南极锋附近的海流最强,流向和流速也最稳定少变.德雷克海峡深层海流的空间分布特点与上层海流的空间分布特点不同,深层流速明显减弱,且稳定性差.德雷克海峡绕极流有着明显的时间变化,但是这种时间变化因地而异.极锋附近在冬春季节是稳定的深层北向流,它与南半球高纬度的冬、春季节的Ventilation过程有着密切的关系,德雷克海峡上层水温的空间分布具有明显的锋面分布特征.水温在德雷克海峡的高纬度区更加稳定少变,而极锋附近深层海水温度随时间的变化最大.  相似文献   

8.
绕极流海域存在全球最大的波浪输运量,遇陆地阻隔,在大洋东岸形成连接高纬度与低纬度之间涌浪的经向输运通道。本文分析了存在于南极绕极波(ACW)中的波浪信号以及来自绕极流海域涌浪的东向强化特征,并进一步从理论分析及定性计算的角度研究了波浪诱导的经向输运对东赤道太平洋海表面温度变化的影响,提出了波浪过程对厄尔尼诺影响的全新观点。未来工作中,我们将在海浪-海流-大气耦合模式中考虑波浪的大尺度效应,深入探究波浪在大气海洋动力过程中的重要作用。  相似文献   

9.
本文概括了近几十年来,关于德里克海峡附近绕极流研究的进展,这些研究主要以实际观测资料为基础,说明了德里克海峡附近海洋锋面分布和绕极流的体积输运,其中,主要的海洋锋面有:亚南极锋,极锋和陆缘水边界;而德里克海峡绕极流的体积输运则代表了太平洋和大西洋两大洋之间通过德里克海峡的水量交换,读者可通过本文加深关于德里克海峡锋面成因和绕极流机制的理解。  相似文献   

10.
全球大洋环流诊断模式研究--流场及流函数   总被引:9,自引:0,他引:9  
基于GFDL的MOM模式建立一个全球大洋环流的诊断模式(R0bust diagnostic model)来研究全球大洋环流.水平空间分辨率1°×1°.垂向分为21层.分别进行月平均和年平均模拟,积分的时间长度为11a.模式水流来自DBDB5(National Geodetic Center,Boulder,Colorado).所用的温度、盐度数据根据Levitus(1994)的资料,表面风应力根据Hellerman and Rosenstem(1983)的全球风场数据插值而来.从模拟结果看,全球大洋中的主要环流结构均得到体现.北太平洋副热带流圈得到合理的模拟,其最大的输运超过50 Sv.北赤道流在12.N附近分为南北两支.北支形成黑潮,而南支为棉兰老海流,在其东边,棉兰老冷涡得到很好的再现.在吕宋海峡有海水进入南海,在南海形成一个气旋式流圈,进而通过南海南部水道流入印度尼西亚海.模拟结果表明南极绕极流和黑潮可以深达底层.湾流则不能深达底层,其下方在1 000~2 000 m深度存在南向的深层流,显示了大西洋深层水的流动.  相似文献   

11.
A coupled ice-ocean isopycnal numerical model of the Southern Ocean is established tostudy the circulation and its seasonal variability in the region around the Kerguelen Plateau. An analysis of the simulated results shows significant stripe-like structure and non-zonal feature of the Antarctic Cir-cumpolar Current (ACC) in this region. ACC begins to bifurcate and to turn its direction before meeting the plateau. The southernmost branch of ACC is near to the Antarctic coast and displays its strong interaction with the westward Antarctic Slope Current. The northern branch of ACC has a tendency of annual variations while the southern one varies in a semiannual cycle. The variation phases of both branches are coincident with that of the wind stress in this region.  相似文献   

12.
It has long been seen from satellite ocean color data that strong zonal gradients of phytoplankton biomass persistently occur in the southern Drake Passage during austral summer and fall, where the low productivity Antarctic Surface Water (ASW) within the Antarctic Circumpolar Current (ACC) region transforms to the high productivity water. An interdisciplinary cruise was conducted in February and March 2004 to investigate potential physical and biogeochemical processes, which are responsible for transporting nutrients and metals and for enhancing primary production. To explore physical processes at both the meso- and large-scales, surface drifters, a shipboard Acoustic Doppler Current Profiler and conductivity–temperature–depth sensors were used. Analyzing meso- and large-scale hydrography, circulation and eddy activities, it is shown that the topographic rise of the Shackleton Transverse Ridge plays the key role in steering an ACC branch southward west of the ridge, forming an eastward ACC jet through the gap between the ridge and Elephant Island and causing the offshelf transport of shelf waters approximately 1.2 Sv from the shelf near Elephant Island. High mesoscale eddy activities associated with this ACC southern branch and shelf waters transported off the shelf were found. The mixing between the iron-poor warmer ASW of the ACC and iron-rich waters on the shelf through horizontal transport and vertical upwelling processes provides a physical process which could be responsible for the enhanced primary productivity in this region and the southern Scotia Sea.  相似文献   

13.
Methods from chaos theory are applied to the analysis of the circulation in the Southern Ocean, using velocity fields produced by a realistic global ocean model. We plot the intersections of individual trajectories encircling Antarctica with a vertical plane in the Drake passage. This so-called Poincaré section shows a drastic difference between regular trajectories in a core region of the Antarctic Circumpolar Current (ACC), and chaotic, mixing trajectories in the surrounding region. It also shows that there is a region with overturning circulation of approximately 3.5 Sv in the ACC, with downwelling on the northern side and upwelling on the southern side, which may be related to the Deacon cell.  相似文献   

14.
Pacific ocean circulation based on observation   总被引:2,自引:1,他引:1  
A thorough understanding of the Pacific Ocean circulation is a necessity to solve global climate and environmental problems. Here we present a new picture of the circulation by integrating observational results. Lower and Upper Circumpolar Deep Waters (LCDW, UCDW) and Antarctic Intermediate Water (AAIW) of 12, 7, and 5 Sv (106 m3s−1) in the lower and upper deep layers and the surface/intermediate layer, respectively, are transported to the North Pacific from the Antarctic Circumpolar Current (ACC). The flow of LCDW separates in the Central Pacific Basin into the western (4 Sv) and eastern (8 Sv) branches, and nearly half of the latter branch is further separated to flow eastward south of the Hawaiian Ridge into the Northeast Pacific Basin (NEPB). A large portion of LCDW on this southern route (4 Sv) upwells in the southern and mid-latitude eastern regions of the NEPB. The remaining eastern branch joins nearly half of the western branch; the confluence flows northward and enters the NEPB along the Aleutian Trench. Most of the LCDW on this northern route (5 Sv) upwells to the upper deep layer in the northern (in particular northeastern) region of the NEPB and is transformed into North Pacific Deep Water (NPDW). NPDW shifts southward in the upper deep layer and is modified by mixing with UCDW around the Hawaiian Islands. The modified NPDW of 13 Sv returns to the ACC. The remaining volume in the North Pacific (11 Sv) flows out to the Indian and Arctic Oceans in the surface/intermediate layer.  相似文献   

15.
Nearly 36,000 vertical temperature profiles collected by 15 king penguins are used to map oceanographic fronts south of New Zealand. There is good correspondence between Antarctic Circumpolar Current (ACC) front locations derived from temperatures sampled in the upper 150 m along the penguin tracks and front positions inferred using maps of sea surface height (SSH). Mesoscale features detected in the SSH maps from this eddy-rich region are also reproduced in the individual temperature sections based on dive data. The foraging strategy of Macquarie Island king penguins appears to be influenced strongly by oceanographic structure: almost all the penguin dives are confined to the region close to and between the northern and southern branches of the Polar Front. Surface chlorophyll distributions also reflect the influence of the ACC fronts, with the northern branch of the Polar Front marking a boundary between low surface chlorophyll to the north and elevated values to the south.  相似文献   

16.
The dynamic importance of the Southern Indian Ocean (SIO) lies in the fact that it connects the three major world oceans: the Pacific, Atlantic, and Indian Oceans. Modeling study has been used to understand the circulation pattern of this very important region. Simulation of SIO (10°N–60°S and 30°E–120°E) is performed with z-coordinate Ocean General Circulation Model (OGCM) viz; MOM3.0 and the results have been compared with observed ship drift data. It is found that except near coastal boundaries and in equatorial region, the simulated current reproduce most well known current pattern such as Antarctic Circumpolar Current (ACC), South Equatorial Current (SEC) etc. and bears a resemblance to that of the observed data; however the magnitude of the surface current is weaker in model than the observed data, which may be due to deficiency in the forcing field and boundary condition and problem with observed data. The annual mean wind stress curl computed over the oceanic domain reveals about ACC and its similar importance. The way in which the ocean responds to the windstress and vertically integrated transport using model output is fascinating and rather good.  相似文献   

17.
Ocean Model Simulation of Southern Indian Ocean Surface Currents   总被引:1,自引:0,他引:1  
The dynamic importance of the Southern Indian Ocean (SIO) lies in the fact that it connects the three major world oceans: the Pacific, Atlantic, and Indian Oceans. Modeling study has been used to understand the circulation pattern of this very important region. Simulation of SIO (10°N-60°S and 30°E-120°E) is performed with z-coordinate Ocean General Circulation Model (OGCM) viz; MOM3.0 and the results have been compared with observed ship drift data. It is found that except near coastal boundaries and in equatorial region, the simulated current reproduce most well known current pattern such as Antarctic Circumpolar Current (ACC), South Equatorial Current (SEC) etc. and bears a resemblance to that of the observed data; however the magnitude of the surface current is weaker in model than the observed data, which may be due to deficiency in the forcing field and boundary condition and problem with observed data. The annual mean wind stress curl computed over the oceanic domain reveals about ACC and its similar importance. The way in which the ocean responds to the windstress and vertically integrated transport using model output is fascinating and rather good.  相似文献   

18.
东中国海环流及其季节变化的数值模拟   总被引:1,自引:0,他引:1  
关于东中国海环流的研究,国内外学者已做了大量的工作。早期科学家们主要依赖于对温盐资料和少数测流资料的分析研究对渤、黄、东海的环流结构有了较系统和深入的认识。东中国海环流是由一个气旋式的“流涡”组成,东侧主要是北上的黑潮-对马暖流-黄海暖流及其延伸部分;西侧为南下的沿岸流系。黑潮对东中国海环流的影响是如此之大,以致于除了某些局部区域外,上述海域主要流系的冬、夏季分布形式比较相似而无本质上的差异(胡敦欣等,1993)。但本文所研究海域正处于世界上最显著的季风区,冬、夏季盛行风向基本相反,过渡季节(春、秋季)风向多变,风力减弱;海洋热盐结构季节变化明显(如冬季混合强,而夏季层化明显等),这些因素都使得东中国海环流存在着较明显的季节变化。 自20世纪80年代以来,东中国海环流的数值模拟工作逐步展开,并已成为研究环流结构及其形成机制的强有力工具。但由于数值模式本身以及计算方案的缺陷(如有些学者用固定的风场、温盐场对东中国海环流进行诊断模拟等)和观测资料的不足,数值模拟的结果难以得到验证,渤、黄、东海的环流研究中仍有大量的问题存在争议,以待澄清。例如,台湾暖流的来源、流径;对马暖流的来源;夏季黄海暖流的流径以及黄海冷水团环流等均有不同的论述。对黄、东海环流季节变化的数值模拟工作也较少,多用冬、夏典型月份的风场强迫积分至稳定态,给出冬、夏季环流,这种做法值得商榷。三维环流模式很难在1个月内达到稳定态,尤其是夏季层化明显、风力减弱的情况下,非常定风场的影响更应引起人们的重视。 本文采用比较符合实际的计算方案,用年循环风场和海面热通量场为外强迫,对渤、黄、东海的环流及其季节变化进行了模拟,并对一些争议问题进行了探讨。  相似文献   

19.
Altimeter and in situ data are used to estimate the mean surface zonal geostrophic current in the section along 115°E in the southern Indian Ocean,and the variation of strong currents in relation to the major fronts is studied.The results show that,in average,the flow in the core of Antarctic Circumpolar Current(ACC) along the section is composed of two parts,one corresponds to the jet of Subantarctic Front(SAF) and the other is the flow in the Polar Front Zone(PFZ),with a westward flow between them.The mean surface zonal geostrophic current corresponding to the SAF is up to 49 cm · s-1 at 46°S,which is the maximal velocity in the section.The eastward flow in the PFZ has a width of about 4.3 degrees in latitudes.The mean surface zonal geostrophic current corresponding to the Southern Antarctic Circumpolar Current Front(SACCF) is located at 59.7 °S with velocity less than 20 cm · s-1.The location of zonal geostrophic jet corresponding to the SAF is quite stable during the study period.In contrast,the eastward jets in the PFZ exhibit various patterns,i.e.,the primary Polar Front(PF1) shows its strong meridional shift and the secondary Polar Front(PF2) does not always coincide with jet.The surface zonal geostrophic current corresponding to SAF has the significant periods of annual,semi-annual and four-month.The geostrophic current of the PFZ also shows significant periods of semi-annual and four-month,but is out of phase with the periods of the SAF,which results in no notable semi-annual and fourmonth periods in the surface zonal geostrophic current in the core of the ACC.In terms of annual cycle,the mean surface zonal geostrophic current in the core of the ACC shows its maximal velocity in June.  相似文献   

20.
A zonal-average model of the upper branch of the meridional overturning circulation of the southern ocean is constructed and used to discuss the processes – wind, buoyancy, eddy forcing and boundary conditions – that control its strength and sense of circulation. The geometry of the thermocline ‘wedge’, set by the mapping between the vertical spacing of buoyancy surfaces (the stratification) on the equatorial flank of the Antarctic Circumpolar Current and their outcrop at the sea surface, is seen to play a central role by setting the interior large-scale potential vorticity distribution. It is shown that the action of eddies mixing this potential vorticity field induces a residual flow in the meridional plane much as is observed, with upwelling of fluid around Antarctica, northward surface flow and subduction to form intermediate water. Along with this overturning circulation there is a concomitant air-sea buoyancy flux directed in to the ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号