共查询到17条相似文献,搜索用时 20 毫秒
1.
The 3D structure of the Mygdonian sedimentary basin (N. Greece) is investigated. The aim of this study is to propose a 3D model of this sedimentary structure that can later be used to model the seismic records currently being obtained by the permanent accelerograph network operating in the area. This model builds on previous efforts and incorporates new data. The geometry and dynamic properties of the soil layers were inverted using data from microtremor array measurements, seismic refraction profiles, boreholes, and geotechnical investigations. Phase-velocity dispersion curves of Rayleigh waves were determined at 27 sites in the basin using the spatial autocorrelation method (SPAC) introduced by Aki [1]. S-wave velocity profiles were inverted from these dispersion curves and the whole valley structure was interpolated using our new results and all previously available data. The proposed 3D model describes the geometry and shear-wave velocities of the Mygdonian and pre-Mygdonian sedimentary systems, and the top bedrock surface. Our results indicate that this 3D model correctly reflects the geometry and dynamic properties of the sedimentary layers. The case of Euroseistest, where the subsoil structure is the result of bringing together many disparate data, could be used as an example for similar alluvial basins throughout the world, where usually only scarce data is available. 相似文献
2.
In western India during the Bhuj earthquake (Mw 7.6) on January 26, 2001, the Anjar City at ~30 km southwest of Bhuj experienced three types of damage scenario: severely damaged, less damaged and non-damaged. Similar damage patterns were also observed for the 1819 (Mw 7.8) and the 1956 (Mw 6.0) earthquakes. Microtremor array measurements were conducted in and around the Anjar city to examine the strength of soil structures and damage pattern. Significant differences are observed in frequencies and amplitudes in horizontal-to-vertical spectral ratio (HVSR) using microtremor measurements. The severely- damaged site shows two peak amplitudes: 2.8 at 1.2 Hz; and 4.0 at 8.0 Hz. The less-damaged site also shows two amplitudes: 2.5 and 2.1 at 1.4 Hz; and 2.0 Hz, respectively. The non-damaged site, on the other hand, shows that the HVSR curves become almost flatter. Similar results for three types of damage scenario based on analyses of earthquake records are also observed for the study area. The microtremor array measurements has revealed shear wave velocity Vs≥400 m/s at 18 m depth in the non-damaged, at 40 m in the less-damaged and at 60 m depth in the severely-damaged sites. The site amplitudes and the Vs values show a good correlation with the soil characteristics and damage pattern, suggesting that strength of soil layers at varying depths is a dictating factor for the estimate of the earthquake risk evaluation of the area under study. 相似文献
3.
介绍了场地剪切波波速测试、实测波形的分析、解释、计算的方法以及波速测试在地震设防和工程地质中的应用。并对影响波速测试的一些因素做了探讨.对波速测试中存在的问题提出了一些看法。 相似文献
4.
This paper discusses variability and accuracy of site response predictions performed using shear wave velocity (Vs) profiles derived from non-unique surface wave inversions and other commonly used statistical methods of accounting for epistemic uncertainty and aleatory variability in Vs. Specifically, linear and equivalent linear site response analyses were performed on the following three classes of Vs profiles: (1) 350 Vs profiles developed by performing multiple surface wave inversions, each with a unique set of layering parameters, on a common dispersion dataset, (2) two upper/lower range base-case Vs profiles developed by systematically increasing or decreasing the solution Vs profile by 20%, and (3) 100 Vs profiles developed using the Vs randomization procedure proposed by Toro (1995) [26]. Vs profiles derived from surface wave inversions generally yielded accurate site response estimates with minimal variability, so long as their theoretical dispersion data fit the experimental dispersion data well. On the other hand, the upper/lower range and randomized Vs profiles generally produced inaccurate and highly variable site response predictions, although the inclusion of site-specific parameters in the randomization model improved the results. At real sites where substantial aleatory variability is anticipated and/or the epistemic uncertainty is quite high, the site response estimates associated with the randomized and/or upper/lower range Vs profiles may be deemed acceptable. However, if the experimental dispersion data and horizontal-to-vertical spectral ratios are shown to be consistent over the footprint of a site, it may be possible to significantly reduce the uncertainty associated with the input Vs profile and the resulting uncertainty in the site response. 相似文献
5.
Vertical seismometer arrays represent a unique interaction between observed and predicted ground motions, and they are especially helpful for validating and comparing site response models. In this study, we perform comprehensive linear, equivalent-linear, and nonlinear site response analyses of 191 ground motions recorded at six validation sites in the Kiban–Kyoshin network (KiK-net) of vertical seismometer arrays in Japan. These sites, which span a range of geologic conditions, are selected because they meet the basic assumptions of one-dimensional (1D) wave propagation, and are therefore ideal for validating and calibrating 1D nonlinear soil models. We employ the equivalent-linear site response program SHAKE, the nonlinear site response program DEEPSOIL, and a nonlinear site response overlay model within the general finite element program Abaqus/Explicit. Using the results from this broad range of ground motions, we quantify the uncertainties of the alternative site response models, measure the strain levels at which the models break down, and provide general recommendations for performing site response analyses. Specifically, we find that at peak shear strains from 0.01% to 0.1%, linear site response models fail to accurately predict short-period ground motions; equivalent-linear and nonlinear models offer a significant improvement at strains beyond this level, with nonlinear models exhibiting a slight improvement over equivalent-linear models at strains greater than approximately 0.05%. 相似文献
6.
如何正确地消除复杂地表对地震波场的影响,提高地下构造成像的质量一直是中国西部复杂地区地震勘探中存在的难题.本文在三维复杂表层速度模型层析反演\[1\]的基础上,研究了关于复杂地表的静校正问题,提出用三维波动方程在炮集上对地震波场进行正、反向延拓,消除复杂地表对波场的影响,实现三维复杂表层模型校正.理论和实际应用证明,该方法已超越常规静校正的含义,属时变校正方法.用本方法处理复杂地表问题,不但能消除表层对不同深度反射波产生的不同时差影响,提高叠加剖面质量,而且能使校正后的地震波场保持波动特征不发生畸变,可为建立正确的深层速度模型和波动方程叠前深度偏移奠定良好的基础. 相似文献
7.
反射地震剖面是进行精准油气勘探的手段之一,对勘探目标的精确定位,要求不断提高和发展三维地震资料解释技术.本文以苏北盆地溱潼凹陷的地震解释为例,验证了切片、方差体检测、正演模型、三维可视化及平衡剖面等地震解释技术组合的效果.解释成果刻画出溱潼凹陷古近系是由上、下两个构造层序叠合的、复式层序地层格架,由北向南可划分出北部缓斜坡带、中央深洼带、南部断坡带等沉积古地理单元,为有利油气聚集相带的预测奠定了坚实的基础. 相似文献
8.
准噶尔盆地的基底结构与属性一直是地学界关注的焦点问题之一.横跨准噶尔盆地北部,走向近东西的克拉玛依—喀姆斯特地震剖面提供了该盆地北部详细的地壳与上地幔顶部的速度结构与构造,特别是基底顶界面的速度.沿剖面发现了数条走向近南北的“H”型超壳断裂,它们没有明显的断差,断裂处反射系数明显降低,介质的Q值减小,推测具“开裂”性质;利用盆地内1:20万重磁数据完成了重磁联合反演,获得了沿剖面的地壳与上地幔顶部的二维密度结构与二维磁性结构.根据在一定深度范围内介质的速度-密度-岩性之间的关系,确定了盆地北部基底岩性分布.结果表明,准噶尔盆地北部的基底多处为基性和超基性物质,推测为深部(上地幔)物质沿超壳断裂进入地壳内部并对地壳物质进行改造的结果.这一推断得到盆地内部高磁性、高重力异常的支持,也与盆地具有较高的地壳平均速度相一致.综合其他地球物理与地质资料综合分析,给出了综合地质解释剖面,建立了准噶尔盆地北部基底结构与属性的动力学模型. 相似文献
9.
本文使用甘肃、青海数字地震台网及中国地震科学探测台阵记录到的门源地区地震的P波和S波到时资料,应用双差层析成像方法联合反演了该地区的地壳三维速度结构和震源位置参数.结合地质构造背景,研究了门源MS6.4地震孕育发生的深部介质环境及该地区速度结构与地震活动性之间的关系.结果表明:反演之后地震的走时残差均方根显著降低,重定位后的地震在垂直方向上呈现出与断层位置有关的条带状分布.门源地区地壳速度结构存在明显的不均匀性,浅层P波和S波速度结构与地表地质构造及地形特征密切相关.研究区内地震活动性与地壳速度结构具有很强的对应关系,地震主要分布在高速异常区域及其边缘.门源MS6.4地震震中附近的P波和S波速度结构表现出明显的高速异常,且在震源区下方存在P波低速层,这种特殊的构造条件可能是导致此次地震发生的重要原因. 相似文献
10.
An extensive campaign—including detailed geologic and geotechnical surveys both existing and news as well as noise measurements—was conducted along a cross-section in order to define both geometry and soil properties (mainly the shear wave velocity) of the main formations in Aigion city. Aigion city is located in the Gulf of Corinth, Greece, a highly seismic region of the Aegean Sea. The main objective of the accurate 2D soil model is its use in site response modeling and in the interpretation of observations from a vertical down-hole accelerograph array. This model revealed a complex geologic structure with a multi-faulted shear zone related to the Aigion fault. The defined subsurface structure offered the possibility for its correlation with estimated site effects, in terms of spectral ratios. Two different data sets, earthquakes recorded at down-hole accelerograph network and noise measurements at 17 sites, were used. To translate the empirical transfer functions with the geologic structure, the 1D estimates were also computed. All these results are consistent, indicating a satisfactory correlation between the soil model and preliminary site response. 相似文献
11.
This paper describes the process of construction of the 2D model of Volvi's geological structure and results of empirical and theoretical approaches to the evaluation of site response at Euroseistest. The construction of the 2D model is based on a re-interpretation of the available geophysical and geotechnical data in an effort to improve the definition of the subsoil structure at Euroseistest in terms of the most important parameters needed to model site response. The results of this re-interpretation are compared with a previous published 2D model of the same alluvial valley. Different analysis of the measurements and different criteria in the synthesis of data have led to a different model, even if both studies had access to the same field measurements. This underscores the fact that a model results of an interpretation and is not uniquely determined by the data, no matter how detailed they are. The well known subsoil structure opened the possibility to correlate the geometry and the dynamic properties of the 2D model with the results of site response determined from a detailed analysis of two events in frequency and time domains and 1D numerical modeling. The study of site response shows the important effect of the lateral variations on the ground motion and suggests that the contribution of locally generated surface waves to the resonant peak may be important. In the case of Volvi's graben, the limitations of the 1D approximation to simulate ground motion under complex soil conditions in both frequency and time domains are also shown. This paper lays the ground for a companion article dealing with 2D site effects in this basin. 相似文献
12.
讨论了利用面波与布格重力异常联合反演三维地壳速度结构的新方法,并利用该方法联合反演获得山西断陷带地壳S波速度结构.通过建立速度与密度之间的经验关系,利用非线性迭代反演方法获得最终速度模型.结果显示,联合反演获得的速度模型可以同时提高对面波及重力数据的观测拟合程度,而面波单独反演得到的速度模型则无法很好的拟合重力观测数据.相比较,联合反演速度模型中的大同火山区中下地壳的低速异常幅值小于面波单独反演模型中低速异常体的幅值.联合反演速度模型结果揭示,吕梁山地区在中下地壳存在低速异常,并且和北部的大同火山区低速异常相连接,说明可能导致新生代以来大同火山区岩浆活动的上地幔构造活动(上地幔局部上涌,地幔柱)可能对山西断陷带的形成和构造活动起到了一定的控制作用,并且导致了吕梁山地区中下地壳的低速异常. 相似文献
13.
Array measurements of microtremors at 16 sites in the city of Thessaloniki were performed to estimate the Vs velocity of soil formations for site effect analysis. The spatial autocorrelation method was used to determine phase velocity dispersion curves in the frequency range from 0.8–1.5 to 6–7 Hz. A Rayleigh wave inversion technique (stochastic method) was subsequently applied to determine the Vs profiles at all the examined sites. The determination of Vs profiles reached a depth of 320 m. Comparisons with Vs values from cross-hole tests at the same sites proved the reliability of the SPAC method. The accuracy of the Vs profiles, the ability to reach large penetration depths in densely populated urban areas and its low cost compared to conventional geophysical prospecting, make Mictrotremor Exploration Method very attractive and useful for microzonation and site effects studies. An example of its application for the site characterization in Thessaloniki is presented herein. 相似文献
14.
2014年9月晋冀蒙临时地震台网正式运行,为晋冀蒙交界地区的地震研究提供了丰富的资料。结合临时台与固定台记录的P波走时资料,采用双差层析成像方法对该区进行地震重定位和三维P波速度结构联合反演,分析该区3个典型盆地的速度扰动结果,结果表明,地震重定位残差显著降低,震源深度分布更加合理;P波速度浅层基本符合平原地区低速、山区高速的特点,深层则有相反表现,典型盆地P波速度在浅层较为复杂,高低速相间,深层表现为低速;研究时段内忻定盆地和延怀盆地地震活动密集,大同盆地地震活动较弱,低速体及边缘地震活动强度高于高速体及边缘。 相似文献
15.
采用块状建模以及三角形拼接的界面描述方式,并通过立方体速度网格线性插值获得块体内部的速度分布。正演过程中采用逐段迭代射线追踪方法计算三维复杂地质模型中的射线走时,并采用模拟退火方法进行了三维模型中的地震波走时反演研究。模型测试结果表明,使用的射线追踪和走时反演算法有效。 相似文献
16.
本文联合利用甘肃及周边测震台网记录的古浪及周边地区4592次地震的P波绝对到时资料和相对到时资料,采用双差地震层析成像方法反演了古浪震源区高分辨率的三维P波速度精细结构.结果显示,浅部P波速度分布与地表地质之间具有很好的对应关系.皇城—双塔断裂带在6 km以上深度表现为高速异常带,而在6~15 km逐渐转换为明显的低速特征,之后再次转换为高速体.震区下部在10~20 km深度有一个尺度约200 km2的低速异常体,地震发生时破裂首先在该低速体发生,与主震空间位置非常吻合.主震区的岩石结构主要由奥陶纪变质砂岩、石英岩和加里东期的花岗岩等坚硬岩体组成.这种坚硬岩体对应的P波速度结构为高速体,有利于能量积累.武威盆地在20 km以上深度表现为明显的低速异常,在25 km深度之下,整体显示为高速体,表现出稳定块体的特征.表明武威盆地中下地壳和上地幔顶部已插入到冷龙岭隆起带之下.震区小震重新定位发现,皇城—双塔断裂带东、西两段表现出不同的力学运动性质,西段以逆冲运动为主,地震主要发生在断裂的下盘.而东段地震却主要发生在上盘,断层活动以局部拉张为主.我们还首次发现在皇城—双塔断裂带的中段与主破裂呈垂直方向存在有在主震发生时新产生的一条共轭断层,基于小震的断层面参数反演显示该断裂是一高倾角运动性质以右旋为主兼具正断的断裂. 相似文献
17.
联合芦山地震序列5285个地震的50711条P波初至绝对到时数据及7294691条高质量的相对到时数据,利用双差地震层析成像方法联合反演了芦山震源区高分辨率的三维P波速度精细结构及5115个地震震源参数.反演结果表明,芦山主震震中为30.28°N,103.98°E,震源深度为16.38 km,主震南西段余震扩展长度约23 km,余震前缘倾角较和缓,主震北东段余震扩展长度约12 km,余震前缘呈铲形,倾角较陡.芦山震源区P波三维速度结构表现出明显的横向不均匀性,近地表处的P波速度异常与地形起伏及地质构造密切相关:宝兴杂岩对应明显的高速异常,此异常由地表延伸到地下15 km深度附近,而中新生代岩石表现为低速异常;大兴附近区域亦显示出小范围的大幅度高速异常,宝兴高速异常与大兴高速异常在10 km深度附近相连,进而增加了芦山震源区的高低速异常对比幅度.在芦山主震的南西、北东两段速度结构存在着较大差异,芦山主震在水平向位于宝兴及大兴高速异常所包围的低速异常的前缘.主震南西段余震主要发生在倾向北西的高低速异常转换带上并靠近低速一侧,其下盘为低速异常,上盘为高速异常.而芦山主震北东段的余震主要分布在宝兴高速体与大兴高速体之间,主发震层向北西倾斜,主发震层上方的宝兴高速异常下边界出现一条南东倾向的反冲地震带,两地震带呈"y"型分布. 相似文献
|