首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Summary The energy of seismic waves (i.e. seismic energy) of 60 selected events of the 1985/86 West-Bohemian swarm is determined by time integrating records. The energies lie in the interval 30 × 103 – 0·4 × 109 J for events of magnitude 0·74 – 2·59. Problems of the resultant reliability and estimation of errors are discussed. A study of the relations of seismic energy versus magnitude, of the scalar seismic moment and the source radius has shown that the processed data fit theoretical formulas in general, but individual events display scatters as large as an order of magnitude. Rather small values of the stress-drop ( = 0·01 – 0·10 MPa) are observed.Dedicated to the Memory of Professor Karel P  相似文献   

2.
Riassunto Si suppone la Terra avvolta da un velo di un fluido perfetto incomprimibile messo in rotazione da un vortice doppio puntiforme. Si calcola l'energia cinetica totale della Terra e del fluido in funzione degli angoli di Eulero , , , che esprimono il moto della Terra rispetto a una terna inerziale, e degli angoli 0, 0 esprimenti il moto del vortice rispetto alla Terra. Si determinano i predetti angoli in funzione del tempo mediante le equazioni di Lagrange; risulta che il moto del vortice è caratterizzato da 0= const., e che la sua influenza sulla polodia è trascurabile.
Summary Supposing the Earth sorrounded by a veil of an incompressible perfect fluid rotationally moved by a point shaped double vortex, the Author calculates the total kinetic energy of the system as a function of the Eulerian angles , , which expres the Earth motion referred to an inertial tern, and of the angles 0, 0 for the vortex motion referred to the Earth. He determines the above said angles as temporal functions by means of the equations of Lagrange. It results that the vortex motion is determined by 0= const., and that its influence on the rate of rotation of the Earth is negligeable.


Comunicazione presentata alla 2a. Assemblea annuale della «Società Italiana di Geofisica e Meteorologia» (Genova, 23–25 Aprile 1954).  相似文献   

3.
Summary The normal type of serpentinites consists of chrysotile. The magnetite parts are essential parts of the structure of chrysotile serpentinites (primary magnetite). Chrysotile is changed to antigorite by mechanical deformations. The magnetite parts of rock structure are lost and they sat down in the veins of serpentinite rocks (secondary magnetite). In this paper the thermomagnetic diagrams and the results of X-ray investigations of secondary and primary magnetite are described. Some results of susceptibility measurements are given. The secondary magnetite is characterized by a region of oxydation in the interval 280–400° C (secondary magnetite-Fe2O3-Fe2O3). The oxydation to -Fe2O3 is remarkably. On the thermomagnetic diagrams of primary magnetite no typical oxydation region is to be seen. The oxydation: primary magnetite-Fe2O3 is very small. The interval of measured susceptibility values amounts to (10–1500)·10–6 cgs units. The essential variability of the main parts of serpentinite samples is characterized by the great changes of susceptibility values from point to point.The determined values of specific saturation magnetization (Gauss. cm3 g–1), the X-ray powder data, and some results on remanent magnetization are given.
Zusammenfassung Die Normaltypserpentinite bestehen aus Chrysotil. Der Magnetit ist Bestandteil der Struktur der Chrysotilserpentinite (primärer Magnetit). Unter dem Einfluß mechanischer Deformationen geht Chrysotil in Antigorit über. Die Magnetitanteile der Gesteinsstruktur gehen verloren und scheiden sich auf Klüften ab (sekundärer Magnetit). In der vorliegenden Arbeit werden die thermomagnetischen Abhängigkeiten und die Ergebnisse von Röntgenuntersuchungen des sekundären und primären Magnetits beschrieben. Es werden einige Ergebnisse der Suszeptibilitätsmessungen angeführt. Der sekundäre Magnetit wird durch einen Oxydationsbereich im Temperaturintervall 280–400° C charakterisiert (sekundärer Magnetit-Fe2O3-Fe2O3). Die Oxydation zu -Fe2O3 ist beträchtlich. Die thermomagnetischen Diagramme des primären Magnetits zeigen keinen typischen Oxydationsbereich. Die Oxydation: primärer Magnetit-Fe2O3 ist sehr gering. Das Intervall der gemessenen Suszeptibilitätswerte beträgt (10–1500)·10–6 CGS-Einheiten. Die starke Veränderlichkeit der Hauptbestandteile der Serpentinitproben wird durch die großen Änderungen der Suszeptibilitätswerte von Punkt zu Punkt gekennzeichnet.Die gemessenen Werte der Sättigungsmagnetisierung (Gauss.cm3 g–1), der Röntgenuntersuchungen und einige Ergebnisse über die remanente Magnetisierung werden gegeben.
  相似文献   

4.
A new phenomenon was found at the polar edge of the auroral oval in the postmidnight-morning sectors: field-aligned (FA) high-energy upward electron beams in the energy range 20–40 keV at altitudes about 3 RE, accompanied by bidirectional electron FA beams of keV energy. The beam intensity often reaches more than 0.5 · 103 electrons/s · sr · keV · cm2, and the beams are observed for a relatively long time (3 102–103 s), when the satellite at the apogee moves slowly in the ILAT-MLT frame. A qualitative scenario of the acceleration mechanism is proposed, according to which the satellite is within a region of bidirectional acceleration where a stochastic FA acceleration is accomplished by waves with fluctuating FA electric field components in both directions.  相似文献   

5.
Summary On the basis of investigating 10 storms (1965–1967) good correlation was found between the density of the solar wind energy (2=1/2mNv2) and the intensity of the main phase of the geomagnetic storms, expressed in terms of the maximum decrease of the horizontal intensity (B=H/cos). The relation between 2, or Nv2, and B could then be used to determine the quantities and 0 ( is the factor expressing the increase in energy density in the magnetosphere, 0 is the energy density of the particles in a quiet magnetosphere). A comparison with the directly observed distribution of the energy density of the particles in the magnetosphere indicates that the computed value of 0 seems to be realistic. The magnitude of the factor will have to be checked again.  相似文献   

6.
A relatively simple indentation technique for the rapid measurement of fracture surface energy, , of small samples is described. The reliability of this technique is assessed by testing soda-lime glass for which there are good independent fracture mechanics determinations of fracture surface energy. The indentation technique gives a value for of 4.33 J m–2 which compares favourably with the accepted value of 3.8 J m–2. Fracture surface energies of the {010} and {001} cleavage planes of single crystal olivine (modal composition Fo88Fa12) are then determined and compared with theoretical estimates of the thermodynamic surface energy, , calculated from atomistic parameters ( is equal to in the absence of dissipative processes during crack extension). The experimental values for {010} and {001} are respectively 0.98 J m–2 and 1.26 J m–2. The calculated values of {010} and {001} are respectively in the range from 0.37 J m–2 to 8.63 J m–2 and 12.06 J m–2. The particular advantages of the indentation technique for the study of the fracture surface energies of geological materials are outlined.  相似文献   

7.
Considering the blocking problem as a baroclinic instability problem in a dispersive wave system with diabatic heating effects, it is of great interest to investigate the role of wavegroup velocityv gr in blocking processes, becausev gr controls the energy transfer in the wave field. Using a Newtonian Cooling —type of forcing with a phase differencek to the main field and taking the linearized version of a two-level model, the phase speedc r, the group velocityv gr and the growth ratekc i have been obtained as analytical functions of the mean zonal windU, the thermal windU T, the coefficient of diabatic heating x, the phase differencek and the wavelengthL. Now the hypothesis is introduced, that a blocking should be expected, ifv gr has a maximum value in the vicinity ofL o, for whichc r vanishes and thee-folding timet=1/kc i (kc i>0) is smaller than 6 days (see condition (20) in the text). One finds, that for special parameter combinations (U T, U, ), where 15 m/secU T25m/sec,U=10m/sec, 0.8·10–51.5·10–5 [sec–1], certain valuesL o with an appropriate phase differencek exist, which satisfy the conditions mentioned above (for values see Table 2). TherebyL o varies within the range 8500 km <L o<11000 km corresponding to the preferred planetary blocking wavenumber 2 in middle latitudes 50°<<70° N.  相似文献   

8.
We analyzed the broadband body waves of the 1992 Nicaragua earthquake to determine the nature of rupture. The rupture propagation was represented by the distribution of point sources with moment-rate functions at 9 grid points with uniform spacing of 20 km along the fault strike. The moment-rate functions were then parameterized, and the parameters were determined with the least squares method with some constraints. The centroid times of the individual moment-rate functions indicate slow and smooth rupture propagation at a velocity of 1.5 km/s toward NW and 1.0 km/s toward SE. Including a small initial break which precedes the main rupture by about 10 s, we obtained a total source duration of 110 s. The total seismic moment isM o =3.4×1020 Nm, which is consistent with the value determined from long-period surface waves,M o =3.7×1020 Nm. The average rise time of dislocation is determined to be 10 s. The major moment release occurred along a fault length of 160 km. With the assumption of a fault widthW=50 km, we obtained the dislocationD=1.3 m. From andD the dislocation velocity isD=D/0.1 m/s, significantly smaller than the typical value for ordinary earthquakes. The stress drop =1.1 MPa is also less than the typical value for subduction zone earthquakes by a factor of 2–3. On the other hand, the apparent stress defined by 2E s /M o , where andE s are respectively the rigidity and the seismic wave energy, is 0.037 MPa, more than an order of magnitude smaller than . The Nicaragua tsunami earthquake is characterized by the following three properties: 1) slow rupture propagation; 2) smooth rupture; 3) slow dislocation motion.  相似文献   

9.
Summary The geopotential scale factor R 0 =GM/W 0 has been determined on the basis of satellite altimetry as R 0=(6 363 672·5±0·3) m and/or the geopotential value on the geoid W 0 =(62 636 256·5±3) m 2 s –2 . It has been stated that R 0 and/or W 0 is independent of the tidal distortion of surface W=W 0 due to the zero frequency tide.
¶rt;a nmu amumuu u ama amnmuaa R 0 =GM/W 0 =(6 363 672,5±0,3) m u/uu aunmuaa a nmuu¶rt;a W 0 =(62 636 256,5±3) m2 s–2. m, m R 0 u/uu W 0 auum m nm amu a a nuu ¶rt;au nmu W=W 0 .
  相似文献   

10.
The size and frequency of the largest explosive eruptions on Earth   总被引:4,自引:2,他引:2  
A compilation and analysis of the size and frequency of the largest known explosive eruptions on Earth are presented. The largest explosive events are defined to be those eruptions yielding greater than 1015 kg of products (>150 times the mass of the 1991 eruption of Mt. Pinatubo). This includes all known eruptions with a volcanic explosivity index (VEI) of 8. A total of 47 such events, ranging in age from Ordovician to Pleistocene, are identified, of which 42 eruptions are known from the past 36 Ma. A logarithmic magnitude scale of eruption size is applied, based on erupted mass, to these events. On this scale, 46 eruptions >1015 kg are defined to be of magnitude M8. There is one M9 event known so far, the Fish Canyon Tuff, with an erupted mass of >1016 kg and a magnitude of 9.2. Analysis of this dataset indicates that eruptions of size M8 and larger have occurred with a minimum frequency of 1.4 events/Ma in two pulses over the past 36 Ma. On the basis of the activity during the past 13.5 Ma, there is at least a 75% probability of a M8 eruption (>1015 kg) occurring within the next 1 Ma. There is a 1% chance of an eruption of this scale in the next 460–7,200 years. While the effect of any individual M8 or larger eruption is considerable, the time-averaged impact (i.e., erupted mass×frequency) of the very largest eruptions is small, due to their rarity. The long-term, time-averaged erupted mass flux from magnitude 8 and 9 eruptions is ~10–100 times less than for M7 eruptions; the time-averaged mass eruption rate from M7 eruptions is 9,500 kg s–1, whereas for M8 and M9 eruptions it is ~70–1,000 kg s–1. Comparison of the energy release by volcanic eruptions with that due to asteroid impacts suggests that on timescales of <100,000 years, explosive volcanic eruptions are considerably more frequent than impacts of similar energy yield. This has important implications for understanding the risk of extreme events.Editorial responsibility: R. Cioni  相似文献   

11.
We estimate the response of chl-a (mg · m–3) to changes in concentrations of total phosphorus (TP) by calculating the slopeS = chl-a/TP in chl-a =f(TP) graphs. Results show that in years where algae are P-limited oligotrophic lakes respond less (median slope 0.21) to changes in nutrient concentrations than eutrophic lakes, (median slope 0.31) and these again less than hypereutrophic lakes, (median slope 1.02). We find no saturation value for the slope within the TP range considered (6–480 mg · m–3). Chl-a in eutrophic lakes responds more frequently to non-nutrient factors than oligotrophic and hypereutrophic lakes. Results obtained by replacing TP with a new nutrient parameter, TP = 0.056 · TP · IN0.226, in which inorganic nitrogen, IN, is factored in, suggest that nitrogen has an influence on chl-a in oligotrophic lakes. Blue-green algae respond less to changes in TP than other algal species, e.g., diatoms.  相似文献   

12.
13.
The seasonal variation of the 162 kHz radio wave reflection height was measured indirectly at Panská Ves using the IPHA method described in Fier and Matys (1992). The fact that these waves are reflected at the height where the electron concentration is about 3.5 × 10 8 m –3 was used to model this height using a 1-D model of the lower ionosphere electron concentration described by Ondráková (1993). The comparison of the measurements and model results indicates that: 1. The annual mean of the reflection height derived from measurements is several km higher than that derived from the model; 2. the character of the modelled seasonal variation is different from the real variation shown in Fier and Latovika (1992). The differences are discussed.  相似文献   

14.
The authors conducted a Rn222 survey in wells of the Larderello geothermal field (Italy) and observed considerable variations in concentrations. Simple models show that flow-rate plays an important part in the Rn222 content of each well, as it directly affects the fluid transit time in the reservoirs. Rn222 has been sampled from two wells of the Serrazzano area during flow-rate drawdown tests. The apparent volume of the steam reservoir of each of these two wells has been estimated from the Rn222 concentration versus flow-rate curves.List of symbols Q Flow-rate (kg h–1) - Decay constant of Rn222 (=7.553×10–3 h–1) - Porosity of the reservoir (volume of fluid/volume of rock) - 1 Density of the fluid in the reservoir (kg m–3) - 2 Density of the rock in the reservoir (kg m–3) - M Stationary mass of fluid filling the reservoir (kg). - E Emanating power of the rock in the reservoir (nCi kg rock –1 h–1). - P Production rate of Rn222 in the reservoir: number of atoms of Rn222 (divided by 1.764×107) transferred by the rock to the mass unit of fluid per unit time (nCi kg fluid –1 h–1). - N Specific concentration of Rn222 in the fluid (nCi kg–1) - Characteristic time of the steam reservoir at maximum flow-rate (=M/Q)  相似文献   

15.
Summary The method of the automated computation of the gravimetric deflections of the vertical and of the geoidal heights for the European region is described. The work was carried out during the period 1986–1988 by the Topographic Service of the Czechoslovak Army. The computation applies to 20 sheets of the international map 1:1 000 000 (total area of =16c, =30c - see Fig. 1). The mean values of the free-air anomalies for each surface element =5, =7.5, approximately 9 × 9 km, were used with radius of integration of 300 km.  相似文献   

16.
Summary An approximate method of one-dimensional modelling of the plasma of the Earth's ionosphere is demonstrated for purposes of studying the ionospheric filtration of ULF waves (micropulsations). Apart from the basic local parameters, characterizing the plasma, also derived local characteristics have been defined, i.e. the mass of the so-called effective ion and its effective collision frequency . Drawing on existing empirical models of the mid-latitude ionosphere, vertical profiles (50 km h 1000 km) were determined of the characteristics Ne Ni, ve, and for the daytime and nighttime mid-latitude ionosphere under low and enhanced solar activity, which can be used to study the ionospheric ULF filter.
aa nu uum m¶rt; ¶rt;a ¶rt;uau na ¶rt; u ¶rt; nmm uu u umauu (unau). ¶rt; u mu naamau na n¶rt; mu m aamumuu — aa m. a. mu ua, , u mua amma mu, . a mu nuuu ¶rt; ¶rt;um u u n¶rt; mua nuu (50 h 1000 ) aamumu Ne Ni, ve, u ¶rt; u u ¶rt;u um nu u u amumu. ¶rt;u nam nu uuu u uma.
  相似文献   

17.
Summary Mean equatorial gravity has been computed from geopotential models GEM-10C, GEM-7, GEM-T1, GEM-T2, GEM-T3, JGM-1, JGM-2, JGM-3 and OSU91A and compared to the normal equatorial gravity, e=978 032·699 × 10–5 m s–2, computed from four given parameters defining the Earth's level ellipsoid. In all models ge>e.  相似文献   

18.
Summary The estimate of the tidal long-term decrease in the angular velocity of the Earth's rotation due to the Sun is given as –(0.8±0.3)×10 –22 rad s –2. It was computed on the basis of the observed total long-term decrease in , of the observed tidal deceleration of the Moon and the observed decrease in the second-degree zonal Stokes geopotential harmonic term. Adopting the estimate given, the product of the Love number and the tidal phase lag angle due to the Sun (in degrees) comes out as 0.53±0.20.
am a z nuuu u z mu au u, az : –(0,8±0,3) 10 –22 a¶rt; –2 . ¶rt; ua n a¶rt;a u , n a¶rt;a nuu u ¶rt;z ¶rt;uu u n a¶rt;a u mz az znmuaz naama ma. u num n au, m nu¶rt;u ua a a z u ( za¶rt;a) a z nuua a (0,53±0,20).
  相似文献   

19.
Using the FLOWGO thermo-rheological model we have determined cooling-limited lengths of channel-fed (i.e. a) lava flows from Mauna Loa. We set up the program to run autonomously, starting lava flows from every 4th line and sample in a 30-m spatial-resolution SRTM DEM within regions corresponding to the NE and SW rift zones and the N flank of the volcano. We consider that each model run represents an effective effusion rate, which for an actual flow coincides with it reaching 90% of its total length. We ran the model at effective effusion rates ranging from 1 to 1,000 m3 s–1, and determined the cooling-limited channel length for each. Keeping in mind that most flows extend 1–2 km beyond the end of their well-developed channels and that our results are non-probabilistic in that they give all potential vent sites an equal likelihood to erupt, lava coverage results include the following: SW rift zone flows threaten almost all of Mauna Loas SW flanks, even at effective effusion rates as low as 50 m3 s–1 (the average effective effusion rate for SW rift zone eruptions since 1843 is close to 400 m3 s–1). N flank eruptions, although rare in the recent geologic record, have the potential to threaten much of the coastline S of Keauhou with effective effusion rates of 50–100 m3 s–1, and the coast near Anaehoomalu if effective effusion rates are 400–500 m3 s–1 (the 1859 a flow reached this coast with an effective effusion rate of 400 m3 s–1). If the NE rift zone continues to be active only at elevations >2,500 m, in order for a channel-fed flow to reach Hilo the effective effusion rate needs to be 400 m3 s–1 (the 1984 flow by comparison, had an effective effusion rate of 200 m3 s–1). Hilo could be threatened by NE rift zone channel-fed flows with lower effective effusion rates but only if they issue from vents at 2,000 m or lower. Populated areas on Mauna Loas SE flanks (e.g. Phala), could be threatened by SW rift zone eruptions with effective effusion rates of 100 m3 s–1.Editorial responsibility: J Donnelly-Nolan  相似文献   

20.
Summary Using the fromulae given byGutenberg andRichter, the writer has computed the magnitude and energy of 1804 earthquakes which occurred in Turkey during the period 1850–1960. For drawing the Isenerget, the formula =log10 S has been used in accordance with the definitions given byToperczer andTrapp, whereS=e i/F·p represents the energy in erg/m2 h corresponding to the surface element of 0.5° Lat. x 0.5° Long. Also the relationship between the seismicity and the tectonics of Turkey has been studied by drawing the maps of the epicenters, the focus-depths and the frequences of the earthquakes with various intensities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号